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Abstract: We consider a boundary value problem (BVP) consisting of a second-order quantum difference equation and boundary
conditions depending on an eigenvalue parameter. Discussing the point spectrum and using the uniqueness theorem of analytic
functions, we present a condition that guarantees that thisBVP has a finite number of eigenvalues and spectral singularities with
finite multiplicities.
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1 Introduction

Consider the BVP consisting of the Sturm–Liouville
equation







−y′′+Q(x)y= λ 2y, 0≤ x< ∞

y′(0)−hy(0) = 0,
(1)

whereQ is a complex-valued function,h∈ C, andλ is a
spectral parameter. Spectral analysis of BVP (1) was
investigated by Naı̆mark [12]. He showed that the
spectrum of BVP (1) is composed of the eigenvalues, the
continuous spectrum and the spectral singularities. The
spectral singularities are poles of the resolvent’s kernel
which are imbedded in the continuous spectrum and are
not eigenvalues. Boundary value problems for difference
equations have been intensively studied in last decade in
order to investigate problems in engineering, economics
and control theory. Spectral theory of difference equations
has been investigated by some authors in connection with
the classical moment problem [4, 5, 11]. Some problems
of spectral theory for difference equations were also
treated in [1, 6–9]. Furthermore, spectral analysis of
q-difference equations with spectral singularities has been
investigated in [2, 3]. In this paper, we letq > 1 and use
the notationqN0 := {qn : n∈ N0}, whereN0 denotes the
set of nonnegative integers. Let us consider the

nonselfadjoint BVP consisting of the second-order
q-difference equation

qa(t)y(qt)+b(t)y(t)+a

(

t
q

)

y

(

t
q

)

= λy(t), t ∈ qN

(2)
and the boundary conditions

(γ0+ γ1λ )y(q)+ (β0+β1λ )y(1) = 0,
γ0β1− γ1β0 6= 0, γ1 6= β0

a(1) ,
(3)

where{a(t)}t∈qN0 and{b(t)}t∈qN are complex sequences,

λ is a spectral parameter,a(t) 6= 0 for all t ∈ qN0, and
γi ,βi ∈C, i = 0,1.

The set up of this paper is summarized as follows:
Section 2 discusses the Jost solution and Jost function of
the BVP (2)–(3). Also, we give the Green function and
resolvent of this BVP in this section. In Section 3, we
investigate the eigenvalues and the spectral singularities
of the BVP (2)–(3) and get some properties of the
eigenvalues and the spectral singularities of this BVP
under the condition

supt∈qN

{

exp

[

ε
(

ln t
lnq

)δ
]

(|1−a(t)|+ |b(t)|)
}

< ∞,

ε > 0, 1
2 ≤ δ ≤ 1.

(4)
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In Section 4, we deal with the condition (4) for δ = 1 and
δ 6= 1. For both cases, we prove that the BVP (2)–(3) has a
finite number of eigenvalues and spectral singularities with
finite multiplicities. Since the second case is weaker than
the first, we have to use a different way for each to prove
the theorem.

2 Jost Solution and Jost Function

Assume (4). Then (2) has the solution

e(t,z) = α(t) e
i ln t
lnq z

√
µ(t)

(

1+∑r∈qN A(t, r)ei ln r
lnqz
)

,

t ∈ qN0,

(5)

for λ = 2
√

qcosz, whereα(t), A(t, r) are expressed in
terms of{a(t)} and{b(t)}, z∈ C+ := {z∈ C : Imz≥ 0}
andµ(t) = (q−1)t for all t ∈ qN0 [2]. Moreover,A(t, r)
satisfies

|A(t, r)| ≤C ∑
s∈
[

tq
⌊ ln r

2 lnq ⌋
,∞
)

∩qN

(|1−a(s)|+ |b(s)|), (6)

where⌊ ln r
2 lnq⌋ is the integer part of ln r

2 lnq andC > 0 is a
constant. Therefore,e(·,z) is analytic with respect toz in
C+ := {z∈C : Imz> 0} and continuous inC+. Using (5)
and the boundary condition (3), we define the functionf
by

f (z) = (γ0+2
√

qγ1cosz)e(q,z)
+(β0+2

√
qβ1cosz)e(1,z). (7)

The function f is analytic inC+, continuous inC+, and
f (z) = f (z+ 2π). Analogously to the Sturm–Liouville
differential equation, the solutione(·,z) and the function
f are called the Jost solution and Jost function of (2)–(3),
respectively [13]. Let ϕ(λ ) = {ϕ(t,z)} t ∈ qN0, be the
solution of (2) satisfying the initial conditions

ϕ(1,λ ) =−(γ0+ γ1λ ), ϕ(q,λ ) = (β0+β1λ ).

If we define

φ(t,z) = ϕ(2
√

qcosz) = {ϕ(t,2
√

qcosz)}t∈qN0 ,

thenφ is an entire function andφ(z) = φ(z+2π). Let us
define the semi-stripsP0 = {z∈C+ :− π

2 ≤Rez≤ 3π
2 } and

P= P0∪
[

− π
2 ,

3π
2

]

. For allz∈ P with f (z) 6= 0, we define
the Green function of the BVP (2)–(3) by

Gt,z(z) :=











− φ(r,z)e(t,z)
qa(1) f (z) , r = tq−k, k∈ N0

− e(r,z)φ(t,z)
qa(1) f (z) , r = tqk, k∈N.

(8)

It is obvious that

(Rh)(t) := ∑
r∈qN

G(t, r)h(r), h∈ ℓ2(q
N) (9)

is the resolvent of the BVP (2)–(3), whereℓ2(qN) is the
Hilbert space of complex-valued functions with the inner
product

〈 f ,g〉q := ∑
t∈qN

µ(t) f (t)g(t), f ,g : qN →C.

3 Eigenvalues and Spectral Singularities

We will denote the set of all eigenvalues and spectral
singularities of BVP (2)–(3) by σd andσss, respectively.
Using (8), (9), and the definition of the eigenvalues and
the spectral singularities [13], we get

σd = {λ ∈ C : λ = 2
√

qcosz, z∈ P0, f (z) = 0} , (10)

σss=

{

λ ∈C : λ = 2
√

qcosz,

z∈
[

−π
2
,
3π
2

]

, f (z) = 0

}

\ {0}. (11)

From (5) and (7), we find

f (z) = α(1)
√

q
q−1

β1e−iz+α(q)
γ1√
q−1

+α(1)
β0√
q−1

+

(

α(q)
γ0

√

q(q−1)
+α(1)

√

q
q−1

β1

)

eiz

+α(q)
γ1√
q−1

e2iz

+ ∑
r∈qN

α(1)
√

q
q−1

β1A(1, r)e
i
(

ln r
lnq−1

)

z

+ ∑
r∈qN

(

α(q)
γ1√
q−1

A(q, r)

+α(1)
β0√
q−1

A(1, r)

)

ei ln r
lnqz

+ ∑
r∈qN

(

α(q)
γ0

√

q(q−1)
A(q, r)

+α(1)
√

q
q−1

β1A(1, r)

)

e
i
(

ln r
lnq+1

)

z

+ ∑
r∈qN

α(q)
γ1√
q−1

A(q, r)e
i
(

ln r
lnq+2

)

z
.

If we define
F(z) := f (z)eiz, (12)

then we get

F(z) = α(1)
√

q
q−1

β1

+

(

α(q)
γ1√
q−1

+α(1)
β0√
q−1

)

eiz
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+

(

α(q)
γ0

√

q(q−1)
+α(1)

√

q
q−1

β1

)

e2iz

+α(q)
γ1√
q−1

e3iz

+ ∑
r∈qN

α(1)
√

q
q−1

β1A(1, r)ei ln r
lnqz

+ ∑
r∈qN

(

α(q)
γ1√
q−1

A(q, r)

+α(1)
β0√
q−1

A(1, r)

)

e
i
(

ln r
lnq+1

)

z

+ ∑
r∈qN

(

α(q)
γ0

√

q(q−1)
A(q, r)

+α(1)
√

q
q−1

β1A(1, r)

)

e
i
(

ln r
lnq+2

)

z

+ ∑
r∈qN

α(q)
γ1√
q−1

A(q, r)e
i
(

ln r
lnq+3

)

z
. (13)

Since f is analytic in C+, continuous in C+ and
f (z) = f (z+ 2π), the functionF is also analytic inC+,
continuous inC+, andF(z) = F(z+2π). It follows from
(10)–(12) that

σd = {λ ∈ C : λ = 2
√

qcosz, z∈ P0, F(z) = 0} , (14)

σss=

{

λ ∈ C : λ = 2
√

qcosz,

z∈
[

−π
2
,
3π
2

]

, F(z) = 0

}

\ {0}. (15)

Definition 1. The multiplicity of a zero of F in P is called
the multiplicity of the corresponding eigenvalue or
spectral singularity of BVP(2)–(3).

Using (14) and (15), we get that in order to investigate
the quantitative properties of the BVP (2)–(3), we need to
discuss the quantitative properties of the zeros ofF in P.
Let us define

M1 := {z∈ P0 : F(z) = 0} ,
M2 :=

{

z∈
[

− π
2 ,

3π
2

]

: F(z) = 0
}

.
(16)

We also denote the set of all limit points ofM1 by M3 and
the set of all zeros ofF with infinite multiplicity in P by
M4. From (14)–(16), we get that

σd =
{

λ ∈ C : λ = 2
√

qcosz, z∈ M1
}

,

σss =
{

λ ∈ C : λ = 2
√

qcosz, z∈ M2
}

\ {0}. (17)

Theorem 1. Assume(4). Then

i) the set M1 is bounded and countable,
ii) M1∩M3 = /0, M1∩M4 = /0,
iii) the set M2 is compact and the Lebesgue measure of M2

in the real axis is zero,

iv) M3 ⊂ M2, M4 ⊂ M2, the Lebesgue measure of M3 and
M4 are also zero,

v) M3 ⊂ M4.

Proof. Using (6) and (13), for all z∈ P0, we find

F(z) =
√

q√
q−1

β1α(1)+O(e− Imz),

β1 6= 0, Imz→ ∞,

and

F(z) =
1√

q−1
[γ1α(q)+β0α(1)]eiz+O(e−2Imz),

β1 = 0, Imz→ ∞.

These equations show the boundedness of the setM1.
SinceF is a 2π-periodic function and is analytic inC+,
we get thatM1 has at most a countable number of
elements. ii)–iv) can be obtained from the boundary
uniqueness theorem of analytic functions [10]. We can
easily get v) using the continuity of all derivatives ofF on
[

− π
2 ,

3π
2

]

.

Now we can give the following theorem as a result of
Theorem1 and (17).

Theorem 2. Assume(4). Then the setσd is bounded, has
at most countable number of elements and its limit points
can lie only in[−2

√
q,2

√
q]. Alsoσss⊂ [−2

√
q,2

√
q] and

the Lebesgue measure of the setσss in the real axis is zero.

4 Main Result

Let us suppose that the complex sequences{a(t)}t∈qN0 and
{b(t)}t∈qN satisfy

sup
t∈qN

{

exp

(

ε
ln t
lnq

)

(|1−a(t)|+ |b(t)|)
}

< ∞, ε > 0.

(18)
It is clear that (4) reduces to (18) for δ = 1.

Theorem 3. Assume(18). Then the BVP(2)–(3) has a
finite number of eigenvalues and spectral singularities,
and each of them is of finite multiplicity.

Proof. It follows from (6) and (18) that

|A(t, r)| ≤Cexp

(

−ε
4

ln r
lnq

)

, t ∈ {1,q}, r ∈ qN. (19)

By using (19), we observe that the functionF has an
analytic continuation to the half-plane Imz> − ε

4. So, the
limit points of its zeros inP cannot lie in

[

− π
2 ,

3π
2

]

. From
Theorem1, we get that the bounded setsM1 andM2 have
no limit points, i.e., the setsM1 and M2 have a finite
number of elements. Using the analyticity ofF in
Imz > − ε

4, we find that all zeros ofF in P have finite
multiplicity. Consequently, we get the finiteness of the
eigenvalues and the spectral singularities of the BVP
(2)–(3).
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In the following, we will assume that

supt∈qN

{

exp

[

ε
(

ln t
lnq

)δ
]

(|1−a(t)|+ |b(t)|)
}

< ∞,

ε > 0, 1
2 ≤ δ < 1,

(20)
which is weaker than (18). As is known, the condition
(18) guarantees the analytic continuation ofF from the
real axis to the lower half-plane. So, we get the finiteness
of the eigenvalues and the spectral singularities of BVP
(2)–(3) as a result of this analytic continuation. It follows
from (20) that the functionF is analytic in C+ and
infinitely differentiable on the real axis. ButF does not
have an analytic continuation from the real axis to the
lower half-plane. Therefore, under the condition (20), the
finiteness of the eigenvalues and the spectral singularities
of the BVP (2)–(3) cannot be proved by the same
technique used in Theorem3. We will use the following
uniqueness theorem [8, Lemma 4.4] for analytic functions
in order to prove the next theorem.

Theorem 4. Assume that the2π-periodic function g is
analytic inC+, all of its derivatives are continuous inC+,
and

sup
z∈P

|g(k)(z)| ≤ ηk, k∈N0.

If the set G⊂
[

− π
2 ,

3π
2

]

with Lebesgue measure zero is the
set of all zeros of the function g with infinity multiplicity in
P, and if

∫ w

0
ln t(s)dµ(Gs) =−∞,

where t(s) = infk∈N0
ηksk

k! and µ(Gs) is the Lebesgue
measure of the s-neighborhood of G, and w> 0 is an
arbitrary constant, then g≡ 0 in C+.

Lemma 1. Assume(20). Then the inequality

|F(k)(z)| ≤ ηk, z∈ P, k∈ N0 (21)

holds, where

ηk ≤C4k+Ddkk!kk( 1
δ −1), (22)

and D and d are positive constants depending on C,ε and
δ .

Proof. Using (6) and (20), we obtain

|A(t, r)| ≤Cexp

(

−ε
4

(

ln r
lnq

)δ
)

, t ∈ {1,q}, r ∈ qN.

(23)
It follows from (13) and (23) that

|F (k)(z)| ≤C4k+Dk, z∈ P, k∈ N0,

where

Dk =C4k ∑
r∈qN

(

ln r
lnq

)k

e
− ε

4

(

ln r
lnq

)δ

, k∈ qN0.

We can also write forDk

Dk = C4k
∞

∑
m=1

mke−
ε
4mδ

= C4k
∫ n

0
tke−

ε
4 tδ

dt ≤C4k
∫ ∞

0
tke−

ε
4 tδ

dt.

If we definey= ε
4tδ , then we get

Dk ≤C4k
(

4
ε

)
k+1

δ 1
δ

∫ ∞

0
y

k+1
δ −1e−ydy,

and using the Gamma function, we obtain

Dk ≤C42k+1
(

4
ε

)
k+1

δ
(k+1)

1
δ −1(k+1)

k
δ . (24)

Using (24) and the inequalities
(

1+ 1
k

)
k
δ < e

1
δ ,

(k+1)
1
δ −1 < e

k
δ , andkk < k!ek, we have

Dk ≤ Ddkk!kk( 1
δ −1), k∈ N,

whereD andd are positive constants depending onε and
δ .

Lemma 2. If (20) holds, then M4 = /0.

Proof. Since the functionF is not equal to zero, we can
write

∫ w

0
ln t(s)dµ(M4,s)>−∞ (25)

by using Theorem4, where t(s) = infk∈N0
ηksk

k! , and
µ(M4,s) is the Lebesgue measure ofs-neighborhood of
M4, and ηk is defined by (22). Substituting (22) in the
definition oft(s), we find

t(s) = Dexp

{

−1− δ
δ

e−1(ds)
−δ
1−δ

}

. (26)

It follows from (25) and (26) that
∫ w

0
s−

δ
1−δ dµ(M4,s) < ∞.

The last inequality holds for arbitrarys if and only if
µ(M4,s) = 0, i.e.,M4 = /0. This completes the proof.

Theorem 5. Under the condition(20), the BVP(2)–(3)
has a finite number of eigenvalues and spectral
singularities, and each of them is of finite multiplicity.

Proof. To be able to prove this, we have to show that the
function F has a finite number of zeros with finite
multiplicities in P. Using Theorem1 and Lemma2, we
obtain thatM3 = /0. So the bounded setsM1 andM2 have
no limit points, i.e., the functionF has only finite number
of zeros in P. Since M4 = /0, these zeros are of finite
multiplicity.
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