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Abstract: We consider a boundary value problem (BVP) consisting ofasg-order quantum difference equation and boundary
conditions depending on an eigenvalue parameter. Dismghie point spectrum and using the uniqueness theorem oftiana
functions, we present a condition that guarantees thatBWB has a finite number of eigenvalues and spectral singjelsnivith
finite multiplicities.
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1 Introduction nonselfadjoint BVP consisting of the second-order
g-difference equation
Consider the BVP consisting of the Sturm-—Liouville

equation t t
aettyiat) +boy0)+a (3 )y(5 ) = Ave. te
_y” + Q(X)y =A 2Ya 0<x<o 2)
¥ (0) —hy(0) =0, (1) and the boundary conditions
H . | ued funct C andi i (Yo +%A)y(@) + (Bo+PA)y(1) =0, @)
whereQ is a complex-valued functiom € C, andA is a VoB1— iBo £ 0. v % %7

spectral parameter. Spectral analysis of BVE \(as
investigated by Naimark 1p]. He showed that the
spectrum of BVP 1) is composed of the eigenvalues, the WNereta(t) }i.qvo and{b(t)};cqv are complex sequences,
continuous spectrum and the spectral singularities. The is a spectral parametea(t) # 0 for all t € g, and
spectral singularities are poles of the resolvent’s kernely, i € C,i=0,1.

which are imbedded in the continuous spectrum and are The set up of this paper is summarized as follows:
not eigenvalues. Boundary value problems for differenceSection 2 discusses the Jost solution and Jost function of
equations have been intensively studied in last decade ithe BVP @)—(3). Also, we give the Green function and
order to investigate problems in engineering, economicgesolvent of this BVP in this section. In Section 3, we
and control theory. Spectral theory of difference equation investigate the eigenvalues and the spectral singukaritie
has been investigated by some authors in connection witlef the BVP @)—-(3) and get some properties of the
the classical moment problem, b, 11]. Some problems eigenvalues and the spectral singularities of this BVP
of spectral theory for difference equations were alsounder the condition

treated in [, 6-9]. Furthermore, spectral analysis of

g-difference equations with spectral singularities hasbee ¢, exp| e ((Int ° 1— aft b(t
investigated in 2, 3. In this paper, we letj > 1 and use Reg P ('“q) ( O+ 1b®)I) <,
the notationg™ := {g": n € Ny}, whereN, denotes the £>0, % <o6<1

set of nonnegative integers. Let us consider the 4)
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In Section 4, we deal with the conditiod)(for 6 =1 and s the resolvent of the BVP2J—(3), where/,(q") is the

d # 1. For both cases, we prove that the B\#{3) hasa  Hilbert space of complex-valued functions with the inner
finite number of eigenvalues and spectral singularities wit product

finite multiplicities. Since the second case is weaker than L

the first, we have to use a different way for each to prove (f,0)q:= z ut)fHg), f,g:q"—C.

the theorem. teq
2 Jost Solution and Jost Function 3 Eigenvalues and Spectral Singularities
Assume 4). Then @) has the solution We will denote the set of all eigenvalues and spectral
o singularities of BVP 2)—(3) by g4 and gss, respectively.
_ ¢ ng? ez Using @), (9), and the definition of the eigenvalues and
et =alt) g ) (1+ Zreqr AlL r)el e ) (5)  the spectral singularitied §, we get

teq,
og={A eC:A=2,/qcosz, ze By, f(z) =0}, (10)
for A = 2,/qcosz, wherea(t), A(t,r) are expressed in
terms of{a(t)} and{b(t)}, z€ C; := {ze C:Imz> 0}
andu(t) = (q— 1)t for all t € g0 [2]. Moreover,A(t,r)
satisfies

At <C (I1-a(s)[+b(s)]), (6) ze {—7—1 3—”}, f(Z)=0}\{0}- (11)

LlnrJ 27 2
sc [tq 2Inq ,oo)ﬂqN

Oss = {)\ € C: A =2,/qcosz,

From 6) and (7) we find

where | ;i | is the integer part obfir. andC > 0 is a . Bo
constant. Therefor@,( z) is analytic W|thLespect tain \/ B e +a(d +a( )\/—1
C; :={zeC:Imz> 0} and continuous i .. Using 6) " q
and the boundary conditioi8), we define the functiori +|a(q) —E— +a(1),/——=P1 | €?
RATER e Je(q,2) < -y o
z) = (w+2,/0y1cosz)e(q,z Vi _
+(Bo+2,/0B1cosz)e(1, 2). (7) +a(q) ==&
The functionf is analytic inC.,, continuous inC.., and q i(for 1)z
f(z) = f(z+ 2m). Analogously to the Sturm-Liouville + a(l)\/ _1[31A(1,r)e('_q )
differential equation, the solutiog(-,z) and the function
f are called the Jost solution and Jost function2y#(3), I a(q) Vi A(G,1)
respectively 13]. Let ¢(A) = {¢(t,2)} t € g''°, be the . Va—1
solution of @) satisfying the initial conditions red N
i'ﬂﬁrz
B(LA)=—(o+A). 9(@A)=(Bo+BiA). +“<1>—,ﬁq_1A(1’”) e
If we define Yo
+ a(q) ————A(q,r
B - ZN< (@) C) (.r)
9(t,2) = $(2/Gcos2) = {$(t,2,/GC0D)} g0, &g
i Inr 1
theng is an entire function ang(z) = ¢(z+ 2m). Let us +a(l),/ q%lBlA(lvr)) d(Ri+)z
define the semi-stripg = {z€ C..: — ¥ <Rez< ¥} and .
P=RU[-%, 3. Forallze Pwith f(z) # 0, we define + ENa(q) i A(q,r)é(WﬁZ)Z.
the Green function of the BVR2]—(3) by req va-1
_ g(r2)e(t,2) )(t 2) P If we define _
- @i =t keNo © F(2) = f(2)€?, (12)
z) =
g _en ();’”EZZ)), r=tg¥, keN. then we get
Itis obvious that \/ Bl
RO(t):= ¥ GEtNh(r),  helyd") (9) 1P gz
2 + (ot g v 2 )¢
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+ (G(Q)

Yo q iz
Taa T +a(l), /qT131> e

3iz

+a (Q)

5€
+Za

1/ BlAlre'_Z
regV

'3 (a<q> AG.r)

+(a
req

+ > a(a)

regy

)z

(13)

=

A(q,r)e(ﬁ%) .

\/qu

Since f is analytic in C,, continuous inC, and
f(z) = f(z+ 2m), the functionF is also analytic inC.,
continuous inC., andF (z) = F(z+ 2m). It follows from
(10—-(12) that

og={Ae€C:A=2,/qcosz, ze By, F(2) =0}, (14)

Oss= {)\ € C: A =2,/qcosz,

ze |-

Definition 1. The multiplicity of a zero of F in P is called
the multiplicity of the corresponding eigenvalue or
spectral singularity of BVR2)—(3).

m 31

37| Fa=of\. as

Using (14) and (5), we get that in order to investigate
the quantitative properties of the BVR){(3), we need to
discuss the quantitative properties of the zeroE af P.
Let us define

My = {zePy: F(2)
My = {ze [-1,3]:

=0},

F(2) - (16)

0}.
We also denote the set of all limit points iy by M3 and
the set of all zeros of with infinite multiplicity in P by
Mg. From (14)—(16), we get that

adzg)\ € C:A =2,/[qcosz, ze My}, 17)

Oss= A €C:A=2,/qcosz, z€ MZ%\{O}.
Theorem 1. Assumd4). Then

i) the set M is bounded and countable,
II) M1NMz =0, M; "My = 0,

iv) M3 C My, M4 C My, the Lebesgue measure of ind
M, are also zero,
V) Ms C Mg.

Proof. Using 6) and (13), for all ze Ry, we find

_ \f
NG| 1
B #0,

F(2) =

ImZ)

10(1) +O(e”

)

Imz— oo,

and

F(2) = [vaa (@) + Boar(1)] €7 +O(e~2'M?),

BL=0,

These equations show the boundedness of thdViget
SinceF is a Zr-periodic function and is analytic i€,
we get thatM; has at most a countable number of
elements. ii)-iv) can be obtained from the boundary
uniqueness theorem of analytic functiori]] We can
easilysget V) using the continuity of all derivativesfbn

T 3T

2y 21"
Now we can give the following theorem as a result of
Theoreml and (7).

Theorem 2. Assumé4). Then the sety is bounded, has
at most countable number of elements and its limit points

can lie only in[—2,/4,2,/q]. AlsoossC [—-2,/G,2,/7] and
the Lebesgue measure of the ggtin the real axis is zero.

1
vg—1

Imz— co.

4 Main Result

Let us suppose that the complex sequereés }tEqNo and
{b(t) }cq satisfy

sup{exp(e:n—>(|l— ()|+|b(t)|)} <o, €>0.

tegl
(18)
Itis clear that §) reduces to18) for 6 = 1.

Theorem 3. Assumeg(18). Then the BVR2)—(3) has a
finite number of eigenvalues and spectral singularities,
and each of them is of finite multiplicity.

Proof. It follows from (6) and (8) that

glnr
< R,
IA(t,r)ICexp( 4Inq>,te{1,q},

By using (19), we observe that the functioR has an

req. (19)

analytic continuation to the half-plane im> —£. So, the
limit points of its zeros irP cannot lie in[—Z, 3F]. From

Theoreml, we get that the bounded séfs andM, have
no limit points, i.e., the setdl; and M, have a finite
number of elements. Using the analyticity & in
Imz > —%, we find that all zeros oF in P have finite
multiplicity. Consequently, we get the finiteness of the

i) the set M is compact and the Lebesgue measure of M eigenvalues and the spectral singularities of the BVP

in the real axis is zero,

(2-0).
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In the following, we will assume that
Int

sup.qe {erole ()’]

>0,

|1—a<t>|+|b<t>|>} <o,
<do<1,

Nl —~

(20)
which is weaker than1@). As is known, the condition
(18) guarantees the analytic continuationffrom the
real axis to the lower half-plane. So, we get the finitenes

(2—(3) as a result of this analytic continuation. It follows
from (20) that the functionF is analytic in C, and
infinitely differentiable on the real axis. Bt does not

have an analytic continuation from the real axis to the

lower half-plane. Therefore, under the conditi@) the

finiteness of the eigenvalues and the spectral singulgritie

of the BVP @)—(3) cannot be proved by the same
technique used in Theore® We will use the following
uniqueness theorerB,[Lemma 4.4] for analytic functions
in order to prove the next theorem.

Theorem 4. Assume that th@rr-periodic function g is
analytic inC,, all of its derivatives are continuous i@,
and

suplg®(2)] < nk, ke No.

zeP
If the set G [—Z, 3F] with Lebesgue measure zero is the
set of all zeros of the function g with infinity multiplicity i
P, and if "

/ Int(s)dpt(Gs) = —oo,
0

where {s) = infngo% and u(Gs) is the Lebesgue
measure of the s-neighborhood of G, and>wD is an
arbitrary constant, then g=0in C,..

Lemma 1. Assum&20). Then the inequality
FY () < n,

zeP, keNp (21)

holds, where
M < C4<+ DAKkIKK(5 1), (22)

and D and d are positive constants depending o é&nd
0.

Proof. Using @) and 0), we obtain

Inr\°
<ﬁ> ), te{lq}, req .
(23)

£

IAtr)] < Cexp(—;1

It follows from (13) and @3) that

IFR(z)] <C4“+Dy, zeP, ke Ny,

s
of the eigenvalues and the spectral singularities of BVP

We can also write foby
D =C4 S mke~ im
m=1
— C4k/ntke’5t5dt < C4k/°°tke’%t5dt.
0 0

If we definey = £t, then we get

k+1
I} o)
Dy < C4¢ (g) % / y'T e Vay,
0

and using the Gamma function, we obtain

k41

Dy < C42t1 (g) T k13 ikr s (24

[SUES

Using @4 and the inequalities (1+3)° < €3,

(k+1)3~1 < €3, andkX < ki€, we have

Dy < DA*KIKKGD, keN,
whereD andd are positive constants dependingoand
0.

Lemma 2. If (20) holds, then M = 0.

Proof. Since the functior is not equal to zero, we can
write w
/ Int()du(Ma,8) > —oo (25)
0
by using Theorem4, where t(s) = infkeNo%, and
U(Mg,s) is the Lebesgue measure sheighborhood of
My, and ng is defined by 22). Substituting 22) in the
definition oft(s), we find

(26)

t(s) = Dexp{—l_—ée‘l(ds)% } .

o
It follows from (25) and @6) that

W 5
/ S T-3du(Ma,s) < .
0

The last inequality holds for arbitrary if and only if
1 (Mg,s) =0, i.e.,Mgq = 0. This completes the proof.

Theorem 5. Under the condition20), the BVP(2)—(3)
has a finite number of eigenvalues and spectral
singularities, and each of them is of finite multiplicity.

Proof. To be able to prove this, we have to show that the
function F has a finite number of zeros with finite
multiplicities in P. Using Theoremil and Lemma2, we

where obtain thatM3 = 0. So the bounded sekd; andM, have
K 5 no limit points, i.e., the functioR has only finite number
Dy = C4¥ z <In_r) e—%({%) ke qo. of zeros inP. Since My = 0, these zeros are of finite
& Inq ’ multiplicity.
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