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Abstract: Recently the authors introduced if] [the notions ofqy-derivative andgg-integral of a function on finite intervals. As
applications existence and uniqueness results for initiale problems for first and second order impulgiyedifference equations
was proved. In this paper, we study the existence and unégsesf solutions for a boundary value problem of nonlineaosé-order

impulsiveqy-difference equations with integral boundary conditioivgo results are obtained by applying Banach contractiamcjpie
and Leray-Schauder’s Nonlinear Alternative. Some exaspte presented to illustrate the results.
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1 Introduction and Preliminaries

In this article, we investigate the following nonlinear
second-order impulsivegy-difference equation with
integral boundary conditions

DA u(t) = f(t,u(t)), teJ:=[0,T], t#t,
Au(ty) = Ik (u(ty)) ,

DQku(tI:r) - DQK—lu(tk) = 'E (u(tk)) s
k= ,m,

k=1,2,...,m,

(1)

2.

u(0) =0, u(T):iai /t (9t

where O=th<ti<tr < - <ty < - <tm<tma1=T,
f:J xR — R is a continuous functiorly, I € C(R,R),
Au(ty) = u(t") — u(ty), u(t’) = limp_ou(tc + h) for k =
1,2,...mand O<qgx<1l,axeRfork=0,1,2....m
are constants.

The notions ofg-derivative andgg-integral on finite
intervals were introduced irl]. For a fixedk € NU {0}
let J := [tk,tk+1] C R be an interval and & g < 1 be a
constant. We defingc-derivative of a functiorf : Jx — R
at a pointt € J; as follows:

Definition 1.1.Assumef : J, — R is a continuous function
and lett € J. Then the expression

() — okt 4 (1 — g)te)
Pafl) =" gt
Da, (1) = Jim Dq,  (1).

L # L,
()

is called thegk-derivative of functionf att. We say thaff

is gk-differentiable on, providedDy, f (t) exists for allt €
Ji. Note that ifty = 0 andgy = qin (2), thenDg, f = Dqf,
whereDy is the well-knowng-derivative of the function
f(t) defined by

f(t) - f(at)
(1-qt

In addition, we should define the highge-derivative
of functions.

Definition 1.2.Let f : Jx — R is a continuous function, we
call the second-orderk—derivativengf providedDg, f is

qi-differentiable onJ with D, f = Dg, (Dg, ) : J — R.

Similarly, we define higher ord&Ik-derlvativeng X —
R.

Dqf(t) = 3)

* Corresponding author e-majéssadat@kmutnb.ac.th

(@© 2015 NSP
Natural Sciences Publishing Cor.


http://dx.doi.org/10.12785/amis/090416

1794 NS 2 W. Sudsutad et. al. : Existence of Solutions for Second-Qrdpulsive...

. . . M i (t: —t)(t; -t
Theq-integral is defined as follows: Lemma 2.1.Let T # zoa'( = 1'1( '_+l+q' '). The
Definition 1.3. Assume f : Jx — R is a continuous . . i= L g
unique solution of problerfl) is given by

function. Then the)-integral is defined by

u(t)

m tir1
— %/ / £(r,(r))dg rdg Tdg S
t. i Jy
i

t 0
/m f(91hs= (1= a0t —t) Y (et + (L dno)
B @)

for t € J. Moreover, if a € (t,t) then the definite m ‘
Ok-integral is defined by +—zi / f(s,u(s))dg, s+ Ik (U(t)) | Hix
t t a A i=1k=1 \ Y%-1
f(s)dqs:/ f(s)dqs—/ £(8)dg.s m i
/a k t k t k KZZ(/ / (t,u(1))dg,_,Tdg, ,S)
© K=1 t t_1
= (1—q)(t—t Pf(gRt + (L— gt
(I—a)( k)n;)QK (Ot + (1 — o)) Tl (U(t)) ai (tisy —t)
o0 t m 109 S
~1-a@-t0 Y dfdar@-gn). x5 ([ / F(7,U(T))d ; Tdgc 5+ h(U(t))
n= A k=1 \“t ty 4
Note that if tt = 0 and gx = g, then (4) reduces to dl /
qintegral of a function f(t), defined by KZ $))da 1S+ Ik (Ut) | (T =10 (5)
n.
/f )dgs = (1— thqf g't) for t €[0,m). //fru )y T, S
For the basic propemes gk-derivative andy-integral
we refer to [I]. + f(r,u(r))qurqus
The book by Kac and Cheung][covers many of the te Jt

years, the topic of-calculus has attracted the attention of

several researchers and a variety of new results can be

found in the papers3]-[15 and the references cited

therein. Papers3{19 + z </t f(s,u(s))qu1s+l|’(‘(u(tk))) (t—t),
Impulsive differential equations serve as basic models ~ 0<k<t Mt

to study the dynamics of processes that are subject tevith Yo_o(-) = 0, where constant4, Hi, are defined by

sudden changes in their states. Recent development in this

fundamental aspects of the quantum calculus. In recent ti
+ / (T, u(T))dg,_; Tdg_; S+ Ik (U(tk))
O<tk<t 1/t
Ty

field has been motivated by many applied problems, such AT ai(tiv1 —t)(tip1+qit) )
as control theory, population dynamics and medicine. For Z) 1+q| ’
some recent works on the theory of impulsive differential
equations, we refer the interested reader to theand
monographs]6]-[ 18].
In this paper we prove existence and uniqueness Hy = & (tipa —t) (s + ot —t(1+a)
results for the impulsive boundary value problet by _ 1+0q )
using Banach’s contraction mapping principle and i=0,....mk=1,....m

Leray-Schauder’s nonlinear alternative. The rest of this )
paper is organized as follows: In Section 2 we present ar Fo0f. Takinggo-integral for(1) from O tot, it follows that
auxiliary lemma which is used to convert the impulsive

boundary value probleml) into an equivalent integral

equation. The main results are given in Section 3, while Dgoult) = quu(0)+/0 f(s.u(s))dgos. (8)
examples illustrating the results are presented in Section

4. Fort =t;, we have

t1
y Daguits) = Depi(0) + [ F(su(S)dgys ()
2 An auxiliary lemma 0
Using qo-integral for (8) and settingu(0) = A and

Let J = [07T]a \]0 = [t07tl]1 'Jk = (tkatk+1] for quu(o):B, we get

k=12....m Let PCJR) = {x:J = R: x(t) is
continuous everywhere except for sotpat whichx(t,”) B tors
and x(t, ) exist andx(t,) = x(t), k = 1.2.....mj. 4= “(O)JFD%“(O)”/O /0 F(7,u(1))dgo 1o

PC(J,R) is a Banach space with the norm t s
[X[lpc = sup{[x(t)[;t € I} = A+ Bt+/o /o f(7,u(T))dg, TdgoS.
(@© 2015 NSP
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T /s
In particular, fort =t; +/ / f(1,u(1))dgy, TdgyS.
tm Jtm

t S . . .
u(ty) :A+Bt1+/01/0 £(T,u(1))dgTdges.  (10) irgrg the first boundary conditiar(0) = 0, it follows that

On the other hand, we have

iai /titi+l u(s)dgs

Fort € J; = (1,12, g1-integrating(1), we have

DgyU(t) = D ult)) + / £(5U(S))doy .

_B ai(ti1—t) (i1 +qiti)
rlfsing the second impulsive condition df) with (9), one o Zﬁ 1+q|
as
ty + / / (s,u(T))dg,_, Td
Deuuit) = B+ [ * (s u(s) dps+ 11 (ute)) ) Zk 1< ey |5t
! +k (u(t))) i (tiva — i)
+ /tl f(s,U(S))dgy S e
3 5 ([ rsus st ) e
Applying gi-integral to(11) for t € J;, we obtain 1K=\t
t m tiy1 S T
u(t):u(tf)+[B+ /O 1f(s,u(s))clqos+q(u(tl)) (t—ts) +i;ai /t /t A f(r,u(r))dg rdg tdgs,
t s .
with ZO O() =0.
* - F(T, u(r))d; T0gy S (12) Itfollow<s from the second boundary condition that
The first impulsive condition of1) with (10) and (12) '
implies /t Al (s,u(1))dg_, Tdg_,S
t S
u(t) :A+Bt1+/01/0 £(7,U(T)) gy Tde S+ 11 (U(ty)) k( ( )))al(tm—t)
1 m i
t1 = .
+ {84—/0 f(s,u(s))dqos+|;(u(tl))] (t—tp) A ZZ (/tk . (5))dg,_,S+ I (u(t ))) Hik
t s 1 m tit1
+ ) f(T,u(1))dg, Tdg, S Kzoal/ /tI A f(r,u(r))dg rdg Tdgs
Avret [ gy TS+ | LS (/"
= AvBtt [ () dg g+ (ulty) A2 ( / ) / (X)), Tl 4+ k(U <tk>>)
t1
* _ 1 Mm 1k
# [ rsusns it ¢ 23 ([ feue s w60) 7w
t s k=1 1
f(T, dg, Tdg,S.
+ by Jy (T U(T)) qlT d1 / / f T, u dqudqm
Repeating the above process, ffar J, we obtain ,
Substituting the values of constadtsndB into (13), we
u(t) = A+ Bt obtain(5) as requested
S ([t rda s+ (ut)
0<tk<t k-1 .
3 Main Results
k
+0<tk<t (/tklf( ())quls+|k(u(tk))) (t—t) In view of Lemma 2.1, we define an operator
¢ s o/ . PC(J,R) — PC(J,R) by
| f(7,u(7))dg, 7dg,S. (13) (du)()
k 1tk
Fort =T, we have /t'H/ f(r,u(r))dg rdg 7dg;s
u(T) —A+ BT o

(/t /t (1,X(1))dq , Tdg, S+ Ik (U (tk)) §))dg, S+ Ii (Ut )))Hik

" kzl </tkl (8 u(s))da 1s+'§(u(tk))) (T —t)

> |

>|
HME HME OM3
HM— HM

(tm
(1

/ / T u ko 1Tko 1
1 -1
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e (u(te)) ai(tizy — )
t te /s
k-1 /tk,l f(z,u(1))dg,_, Tdg, ;S

|

>|
M=
—

14)
53 ([ sy s ) 71

//fru )dg,, Tdg,,S

+ f(r,u(r))qurqus

te St
( [ tum)da e s b <tk>>>
O<tk<t k-1 /-1

v 3 reusm s i) v

It should be noticed that proble(d) has solutions if and
only if the operator has fixed points.

where @; is defined by (15),

T |+A'|/" ki(ml(tk 1)+ Mg) (T—t0).

Theorem 3.1.Assume that the following conditions hold:

(H1)The functionf : J x R — R is continuous and there

exists a constarit; > 0 such that
[T (t,x) — f(t,y)] < La[x—Y],

for eacht € Jandx,y € R.

(H2)The functiondy, 1 : R — R are continuous and there

exist constantky, L3 > 0 such that
1) = lk(Y)| < La[x—y| and [l (X) — g (¥)| < Ls|x—VYl,
for eachx,y € R.
If
P, <o<1, a7)

then the impulsive
gk-difference boundary value problefd) has a unique

Our first result is an existence and uniqueness resulgolution onJ.

for the impulsive boundary value probleft) by using
Banach’s contraction mapping principle.
For convenience, we set:

Proof. By transforming the boundary value problgi)

into a fixed point problemy = <7u, where the operator
o/ is defined by (14) and by using the Banach’s
contraction mapping principle, we shall show tkdthas

@ = Th g ZO| Oi| —— (tivs a fixed point, which is the unique solution of the
|A| 1+ai+ q, boundary value problert).
i We define the following constants as
7 ;z (L1t —te—a) + La) [Hi] Mi = supc, |f(t,0)], Mo = sup{l(0);k = 1,2,...,m}
=1k=1 andMz = sup{l;;(0);k=1,2,...,m}. By choosing
SR Iz (leﬂ-z) @il (ti1—t) P,
|/\|i: =1 1+ 0k Pz1—p
A L 1+ Om (15) whered < € < 1 and®; is defined by(16), we shall show
TLIAL M )2 that/B, C By, where the seB, = {uc PC(J,R) : [Ju]| <
+IA] > <Llw+|_2> p}. For anyu € By, we have
A =1 1+0k1
T+ |/\| [l u
z —t1) +L3) (T —ty), t m v s T
< — i f dg rdg Tdg,
2 <supt o S fail [ [ Ifu)ldarda s
and t mod i s q
+ 1S+l (u Hi
o LD (o | h:k; (s uts) dae s It ) i
I/\I 2, '1+q.+q. m 3
</ / T U |ko 1Tko 1
i _t +M )|H | ‘ =1 Y1/t
|A| ZZ 1) M) e el
5 (ot co (i s
— T,u(T ,Tdg,
1 = + Mz |ai|(ti+l_ti) |/\‘k:1 1 Ja der e
I/\I k 1 1+q
+Ik(u(t)l)
T + |/\| l( _tm) (16) t m i B
Al M T +szl</tk (8u(5) .5+ 1 (081 ) (T 10
THIA] & < (t—tk_1)? )
M;———+M
|A| I(Zl ! 1+Qk71 e |/\‘/ / ‘f T U ‘deTde
@© 2015 NSP
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t s T+ A Q2 </tk
+ f(r, dg, Td L1+M;q)dg, .S
16 um) e e A 2, U (Pha Madac,
t Ls+M Tt
(/ [ 1) 11 s +(pLaMg)) (T —1
O<tk<t te-1 Jtea T+|/\| T s
A / / (pLy -+ My)dg TdgS
tm Jtm
+|k<u<tk>>) — PP+ D < p.
oty
£ 3 ([ s vl s I w0y ) €10 This shows that/B, C B
0<f<t Vi1 )

Foru,ve PC(J,R) and for each € J, we have

Sl [ s 7))
+%: kizl(/t:klf(SU(S))quSJr|E(U(tk))|>|Hik| |/\| Z)|a,|/tit”l/: tir|f(r’u(r))_ f(r,v(r))|dg rdg Tdg;S
i L e i PP i (/ [f(s.u(8) ~ F(sV(S)Ida ;S
Hl(us0) D el (1) &\
e ([ i s HIE () - l;(v(tk>>|> i
HIUO) ( tk v .
+%kzl(/tt 1(8u(5)dg. 5+ 1 (Ut ) (T =10 2, Z Jo e BT
o [ [ +||k(u(tk))_|k(v(tk))|>|ai|(ti+1_ti)
m/ Rt 7§</ [ 1)~ v T s
s </ Koo o e ) —|k<v<tk>>|>
w5 ([ 1 uidn s o) (-

Al g (/tk . u(s)) — f(s,v(s))|dg, ,S
+I| (U(ti)) = T (v(t)]) (T — )

Applying the following inequalities
W <[f(t,u) = F(t0)[+[f(t,0)] < pLi+ My,

(W)] < 1(W) ~ 1K(O)] + IK(O)] < pLa-+ M, o [ 1)~ 1) oy s
(W] < 1) = (0) + 1;(0)| < pLa-+ M,
we obtain = 1) = ) oy s
ol u .
+k;(/t [ 1) = () s

tit1

i
z < | ,D|_1—|-Ml)qu 1S+ (pLs+ M3)> [Hik|
K=1 k-1

i

3

+lk(u(te)) — |k(V(tk))|>

APy +§(/ U(S)) — 1(5.v($))]dg, ;s
T om o & tkl ) Ok—1
anpy 1(/ [ (Pl M 115 HI(U180) ~ K60)) (Tt

<Tpi| M)l a1 -t) g|T—| ai A / L1dq rdg 7dgsju—v]|

pL1+M1)d 7d
N k1</tl<1/tkl - TS

m 1 K
L1dg,,S+Ls | |Hikl[[u—V
(pLo+ M) 2121</t“ s 3)' lfju=vi

(@© 2015 NSP
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/ leqkflrqufls wherepg = max{p(t) : t € J} and
|/\| k1 /1
Qo= oy T 'ztt JIH
o = k — tk—1)[Hik
+L2>|ai|(ti+1—ti)|u_v| |/\| 20 "1t +q. PP
' — 1t 1)
T m t s [ | (tiy1—t)
AL (/ Lydg, , 70, S+ L2> Ju—v]| I/\I Z ! 1+q S
k=1 \ Ytk-17tk-1
Tom o LTt Tt~ tk-1)?
=y ( leqkls+L3) (T —t) [Ju—v]| Al & 140
|/\|k=1 f1 T+|/\ m
T /T z t —t1) (T — ),
1 / L1y 70l Su— V] &
m(T +]A])
[(t;
_|_/ / lequdquHU—VH Q1 = |/\| Z||a| i+1— |/\| )
/ leqkflrqufls—k L2> [lu—v]|| Tmd T+A 2
(T Q= |Hikl + (T —t).
o A& A
> ( | Lidg, .S+ |—3> (T —t)flu—Vv] Then the impulsive boundary value problgi) has at
k=1 ATkt least one solution od.
= ®1fju—v. Proof. Firstly, we shall show that7 maps bounded sets
Therefore, (balls) into bounded sets in PC(J,R). For a positive
[/ u—27v]| < @afju—v]. number p, let By = {u € PC(,R) : |Ju] < p} be a
From (17), .« is a contraction. As a consequence of the bounded ball irPC(J,R). Then, fort € J, we have
Banach fixed point theorem, we conclude thdthas a |( W) (o]
fixed point which is the unique solution of the problem o .
(1).0 a IH/ f(r,u(r))|dg rdg 7dg s
|/\| Z)' || s y Jy | ())| i ' Y ql

Our second main result is an existence result based on
Leray-Schauder’s nonlinear alternative.

m
Lemma 3.2. (Nonlinear alternative for single valued +WZ|
m

</t:k1|f( u(s))|dg, 15+|I;(U(tk))|>|Hik|

</ / (T,u(7))|dg,_, Tdg,_,S
1] tk_1

i
2
maps)L9. Let E be a Banach spac€, a closed, convex i

subset ofE, U an open subset & and Oc U. Suppose
thatF : U — C is a continuous, compact (that B(U) is

k=1
a relatively compact subset @) map. Then either +||k(u(tk) 1) il (tis — )
()F has a fixed pointifJ, or t m t /S
(iijthere is au € dU (the boundary ofJ in C) and 6 € Tl ( [£(7,u(7))|dg_, Tdg, ;S
(0,1) with u= 6F (u). AE Vs Fies
+{lk(ut))])
Theorem 3.3.Assume that: t Mmoo .
(Hs4)There exist a continuous nondecreasing functjon +Wk . (/tk 1|f( u(S))ldgc 15+ “k(u(tk))') (T-%)
[0,00) — (0,) and a continuous functiop: J — R™
such that |/\| / / |f(T,u(T))|dg, Tdg,S

[f(t,u)] < p(t)@(|u]) foreach (t,u) e IxR.
+ [ 16 um)ldg tdgs
k 1tk

i / / |f(t,u(1))|dg,_, Tdg,_,S
0<tzk<t < o1 Jte_1 Ok—1 * “0k—1

(Hs)There exist continuous nondecreasing functions
91,02 : [0,0) — (0,0) such that

k(W] < ¢a(Jul) and [l (u)] < ¢2(|ul)

forallue.R,kzl,Z,...,m. e (u(t)|
(Hg) There exists a constakt* > 0 such that
* tk
6 -1 £ 3 ([ 1tus) g s w1 €t
Poy(M*)Qo + ¢1(M*)Q1 + $2(M*)Q2 0t WVt

(@© 2015 NSP
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T M tit1
< | | al| / / |f r U ))'dQ| rdch qu
vy

|—| >|—|

NM - ||

tk
(/ / T u |ko 1Tko 1
K 1 Jtk-1

1
k) laif(tiva—ti)
| m

d d
|/\| kl(/t /tkl Tu ))| o1 T0gy_4 S

+ Ik (u(t))])

THIA D ([
+ kZ ( L 115 us)ld s
Hllie ut)) (T =)

T+I/\|
Al //|fru )|dg TS
m tl
zo I|/ // Po(||ul)dg rdg Tdg s

Z( Po(flull)da. 1s+¢z<|u|>>|Hik|

i
2
(

_l_A_

IN

M

S
ul)dg,_,7d
oS3 ([ muuns, s

()l (1)
T+IA

y AL (/ [ powlul)da, ;5
Al 1 \Vtk-1 /-1

k
+o1(fJul))
THIAN D [ [
. kzl( [ powluids s
+o2([ul)) (T —t)
TJ;\V\'/ / Pot([|ul|)dgy TdgeS
Do‘l—’ﬁ (tia—
=T Z;' '|1+q.+q.
+|%m Z PoY(P) (tk —tk—1) + $2(P)) [Hik]
T Mmd (te—te1)?
Py (p WP St
+01(P)) |ai|(ti+1 —ti)
T4+|A] I 5 (b tk 1)2 5
LT+ g (PoW(P) (tk — tk_1) + $2(P)) (T —t&)
V=
THA (T —tw)?
+ Al Poy (P) T+ am

(/ 5U(9))[dg 5+ [ (Ut >>|>|Hik|

=K.

Therefore, we conclude that7u|| < K.

Next we show thateZ maps bounded sets into
equicontinuous sets of PC(J,R). Let 11, 1> € J, for some
ne {0,1,2,....m}, 1, < 12, By be a bounded set of
PC(J,R), and letu € B;. Then we have:

(7 u)(12) = («/u)(T)]|

< |T2|X|T1| _i|ai|/n+l/s/r|f(r,u(r))|dqirdqirdqis
|T2—T1| i;z </tk 1 u(s))|dg, 4

+|I |k|

|T2—T1| (/ /
+ (t,u(1))|dg,_, Td
|/\| k_ et St s | ok—1 T0ogy_1 S

+k(u(t ))I)Iau (tiy1—t)

|T2—T1| il
A k= l(/t /tk 1 (T, u( ))|qu 1Tko 1
+{lk(u(t))])

T2 — 11| ¢ tk
Pl 2 (/ RUCTCH NI
I (ut)) ) (T —t)

|T2 Tl'/ /|fTU )|dge Tdgy,S

- mk; ( / " 165 U(E)ida 15+ 1 () |)

T s T1 /S
[ 1 um)dg s [ [ (ru(m)do, s
th Jtn tn th

|2 T1| (tiz1—
<
Y Z)' '|1+q|+q.

(T —tm)?
1+0m

-1l Y (PPt —t 1)+ 92(P))
k=1

Pol(P)

(@© 2015 NSP
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2+ T+ 2t
_ 2T el Tt
+|12— 11| pop (D) Tran +o2(]lull) k)

The right-hand side of the above inequality is independent T + 1A / / poy(||ul|)dg,TdgmS
of uand tends to zero ag — 12. As a consequence of the Al

previous results, together with the Arzela-Ascoli theonye - m i pow(lul) (tiyg—t)3
we conclude thaty : PC(J,R) — PC(J,R) is completely = Zj 1o 1+G+q?
continuous. Tom
Our result will follows from the Leray-Schauder s B _
nonlinear alternative (Lemma3) if we prove the +| | £ k;(polll(llull)(k ti-a) + @2(([ul}) [
boundendness of the set of all solutions to equations m i 5
u(t) = A («7u)(t) for some 0< A < 1. LT (p () e ber)
Letx be a solution. Thus, for ea¢he J, we have |/\| |zlk=1 140k
A u)() +9a(ul) i (t1 1)
SuTle T4l D | (—tea)?
= f( dg rdg Tdg S AL A
Sa [ [ 1nur)dardgreys A (pouu S22 g
At m i ti T+ AV
I </ f(s,u(s))dg,_ 1s+|[§(u(tk))>Hik ' Z P ([|ul]) (t — tk—1) + d2([|ul})) (T — t)
i=1k=1 \ “%&-1 k=
m i T+| | (T t)2
sz ([ [ tcxotmnes, A Pl
U6 G (601 —1) — pouul) Qo+ 6x(1)1 + ()@
s ([* g, 7d
I(u(t
Z (/tk 1/tk 1 (7, U(T)) Gy TSI (k))) Consequently, we have
)\t m
/ f(S.U(9)dg, S+ 1 (U(t) ) (T —t)
t1 X
Po([[ul])Qo+ @a([|ul) Qs+ ¢2(/[ul)Q2
/ / f(7,u(1))dgy, Tdgy,S
+A f(r,u(r))qurqus In view of (Hg), there existdv* such that|u|| # M*.
t Let us set
+A / (t,u(1))dg, ,Tdg, S+ Ik (u(t
O<tk<t< t1 1 (T))dgc; Tdacat Il (k))> U={uePC(J,R):|u| <M*}.
t

k
A /fs,sd s+ 1 (u(t, t—1ty). — . .
N O<tzk<t< te 1 (5 U(S))day S+ i (Ul k))) (t-t) Note that the operatae7 : U — PC(J,R) is continuous
o and completely continuous. From the choic&Jotthere is
This implies by(Hs) and(Hs) that for eacft € J, we have || "~ dFiJ su>(l:h thatu = A<7u for someA € (0,1).

|A (2Zu)(t)] Consequently, by the nonlinear alternative of
m i1 s T Leray-Schauder type (Lemn8, we deduce that/ has a
|01i|/ / / Po([|ull)dg;rde; Tdg; fixed pointu € U which is a solution of the problerfl).

This completes the proadf]

1=
- m 5 ([ powulhd, 5 da(ll) | e
— Po(||u S+ @o(|u Hik
/\ Z Zj_ - Ok—1 I
T m i t S
+W 2 1(/tkl/tkl pOLp(HuH)kofleQk—ls 4 Examp|es
+¢1(HUH))|aiI(ti+l—ti)
THA < ([
N A k; /tk 1 Po/([lu)da. 17,8 In this section, we will give some examples to illustrate
our main results.
+¢1(/lull))
T+|/\| / pow(|lull)d Example 4.1.Consider the following integral boundary
%1 value problem of nonlinear second-order impulsive
@© 2015 NSP
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gk-difference equation Set g = ((K+2k+1)/(k®+3k+ 2))3/4 for
20u)| k=01234 m=4T=1, a = 1/(li— 2/ +4),
Dz@kzgmwz($+2ywmﬂ+®+éﬁmm f(t,u) = ((—t? 4 2t + 3e )u)/(sirfu + 367m(€ + 4)?) +
(52) 1/(1271(€ + 4)2), I(u) = (sinu+ 1)/(3m(k + 2)) and
ted=[01] t#t, 15 (u) = (4u+6)/(7m(k+1)). Clearly,
_ |u(t)| _k —t24 2t +3e Yu(t 1
Auty) = —— . te=-, k=1234 _ | (P24 3e)ut)
S(e1+2)+uw)l T8 ot T = | S2uw) 1 36me 1 a2 | 12n(@ + 42
D\t UE) =D ) = g e 2+3 \ [u+3]
(t2)? () T A FuI! = (3 R 2) Tom
“Sko1234 | )sinu(t )+1|  |u+1
livl l = ‘ ‘ = ’
u(0) =0, u(l)= S (||—2\+4)/tt u(s)d( . )3 s, (W) 3m(k+2) on
= i T and
43 (18) 12 W) = Au(t) +6| _ 2/u[+3
Here o = ((K—k+2)/(K*+2k+3)) for K Tk | = T
k=01234 m=4T=1, a = |i — 2| + 4, .
L) = A0 /(6h + 220 4) + s, CHOOSIIO = 293¢+ )% po = 1/15 () =
u) = Ju/GET + 2+ ) and  (ul+3)/(12m), ¢1(Jul) = (|u[+1)/(9m) and ¢>(|u|) =
I (U) = 2|ul/(4(3k+ 5) + [u]). Since (2|u| +3)/(7m), we obtain
M*
Tt =TVl < (1/18)u—v, 0.71674602351" 1 0.9100843824
(W) = (W) = (1/15)[u—V| which implies that M* > 3.247913388. Hence, by
and Theorem 3.3, the boundary value probléd®) has at
g (u) = 1g(v)| < (1/16)ju—v], least one solution ofd, 1].
then (H;) and (H,) are satisfied witl.; = (1/18), L, =
(1/15), L3 = (1/16). We can show that Acknowledgement
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