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Abstract: The aim of this paper is to give several inequalities for power series starting from a generalization of Young’s inequality
for sequences of complex numbers. Then some inequalities deduced from some variants of the arithmetic-geometric mean inequality
will be given. Thus by Theorem 1, Theorem 2 and Theorem 3 several refinements of Young’s inequality for functions defined bypower
series with real coefficients are given and by Theorem 4 a generalization of a sharp Hölder’s inequality for functions defined by power
series with real coefficients is presented. Then a generalization of Young’s inequality form pair of complex numbers in the case of
the functions defined by power series is given in Remark 1, anda variant of Muirhead’s inequality for functions defined by power
series with real coefficients is given in Proposition 3. There are a lot of examples related to some fundamental complex functions
such as the exponential, logarithm, trigonometric and hyperbolic functions and also there are applications for some special functions
such as polylogarithm, hypergeometric and Bessel functions for the first kind. Finally, we present an application related to the average
information.

Keywords: Power series, Young’s inequality, Muirhead’s inequality,arithmetic-geometric mean inequality

1 Introduction

Power series is a special type of series of a function. The
applications to power series can be found in mathematics,
computer science, physics and in information theory. We
will study the power series related to inequalities. Using a
refinement of the Cauchy-Bunyakovsky-Schwarz
inequality, Cerone and Dragomir in [12], established
some inequalities concerning functions defined by
convergent power series with real or nonnegative
coefficients. The technique to find other inequalities of
functions using power series was given by Ibrahim and
Dragomir in [3], Mortici in [ 11] and Ibrahim, Dragomir
and Darus in [4]. This method is important because can
be improved and extended some of the known
inequalities, which have applications in many fields.

We consider an analytic function defined by the power
series

f (z) =
∞

∑
n=0

anzn

with real coefficients and convergent on the disk
D(0,R), R > 0. As in [4] the weighted version of
Hölder’s inequality can be stated as below:

| f (xy)|=
∣

∣

∣

∣

∣

∞

∑
n=0

anxnyn

∣

∣

∣

∣

∣

≤
(

∞

∑
n=0

|an||x|pn

) 1
p
(

∞

∑
n=0

|an||x|qn

) 1
q

= f
1
p

A (|x|p) f
1
q

A (|y|q)

for any x,y ∈ C with xy, |x|p, |y|q ∈ D(0,R) and fA(z) is
a power series defined by∑∞

n=0 |an|zn. The power series
fA(z) have the same radius of convergence as the original
power seriesf (z).

In the case when all coefficients of the seriesf (z) are
positive we havef (z) = fA(z).

Next, we present several results related to inequalities,
that will be useful in our study.
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We consider the following inequality, which represents
an improvement of Young’s inequality:

Lemma 1. ([8]) For 0< a,b≤ 1 andλ ∈ (0,1) we have

r(
√

a−
√

b)2+A(λ )ablog2
(a

b

)

≤ λa+(1−λ )b−aλb1−λ

≤ (1− r)(
√

a−
√

b)2+B(λ )ablog2
(a

b

)

wherer = min{λ ,1−λ}, A(λ ) = λ (1−λ )
2 − r

4 andB(λ ) =
λ (1−λ )

2 − 1−r
4 .

If we take hereλ = 1
p and replaceaλ by a andb1−λ by

b then 1−λ = 1
q and we obtain:

ab+ r(a
p
2 −b

q
2 )2+A(

1
p
)apbq log2

(

ap

bq

)

≤ ap

p
+

bq

q

≤ ab+(1− r)(a
p
2 −b

q
2 )2+B(

1
p
)apbq log2

(

ap

bq

)

. (1)

We also need the inequality from below which is given
in [5], Lemma 2.

Lemma 2. For ai j ≥ 0, p j > 0, i ∈ {1,2, ...,n} and j ∈
{1,2, ...,m} such that1

p1
+ 1

p2
+ ..+ 1

pm
≥ 1 we have

n

∑
i=1

ai1ai2...aim≤
(

n

∑
i=1

ap1
i1

) 1
p1
(

n

∑
i=1

ap2
i2

) 1
p2

...

(

n

∑
i=1

apm
im

) 1
pm

.

Next inequality is given in [2], Proposition 5.1 and will
be used in Theorem 4.

Proposition 1. ([2]) Let a1, ...,an ≥ 0 and p1, ..., pn ≥ 0
with ∑n

j=1 p j = 1 we have

n

∑
i=1

piai −ap1
1 ...apn

n ≥ nλ

(

1
n

n

∑
i=1

ai −a
1
n
1 ...a

1
n
n

)

,

with equality if and only if a1 = ... = an, where
λ = min{p1, ..., pn}.

Using the above results in this paper we give by
Theorem 1, Theorem 2 and Theorem 3 several
refinements of Young’s inequality presented in [4] for
functions defined by power series with real coefficients
and by Theorem 4 a generalization of a sharp Hölder’s
inequality for functions defined by power series with real
coefficients is presented. Then motivated by some results
from [6,7], a generalization of Young’s inequality form
pair of complex numbers in the case of the functions
defined by power series is given in Remark 1, and a
variant of Muirhead’s inequality for functions defined by

power series with real coefficients is given in Proposition
3.

These results are important due to their applications
for special functions such as polylogarithm,
hypergeometric and Bessel and modified Bessel functions
for the first kind. Moreover, in information sciences,
many applications of Hölder’s inequality have also been
studied by many authors as [22]. In section 3 an
application related to the average information is
presented.

2 Main results

The following three results were obtained using a
refinement of Young’s inequality given in [8] for two
positive numbersa andb in (0,1) for power series with
real coefficients, and the same method as in [4], Theorem
1, 2 and 3.

Theorem 1. Let f (z) = ∑∞
n=0 pnzn, g(z) = ∑∞

n=0qnzn be
the power series with real coefficients and convergent on
the open diskD(0,R), 0< R< 1. If p,q are real numbers
with p > 1, 1

p + 1
q = 1 and a,b ∈ C, a,b 6= 0,

|a| < 1, |b| < 1 so that |ab|, |a|p, |a|q, |b|p, |b|q,
|a| q

2 |b| p
2 , |a| p

2 |b| q
2 , |a|p|b|q, |a|q|b|p ∈ D(0,R), then we

have

| f (ab)g(ab)|+ rM1+A(
1
p
)T1

≤ fA(|ab|)gA(|ab|)+ rM1+A(
1
p
)T1

≤ 1
p

fA(|a|p)gA(|b|p)+
1
q

fA(|b|q)gA(|a|q) (2)

≤ fA(|a||b|)gA(|a||b|)+ (1− r)M1+B(
1
p
)T1,

and

| f (a|b|p−1)g(a|b|q−1)|+ rM2+A

(

1
p

)

log2 |a|
|b|T2 (3)

≤ fA(|a||b|p−1)gA(|a||b|q−1)+ rM2+A

(

1
p

)

log2 |a|
|b|T2

≤ 1
p

fA(|a|p)gA(|b|q)+
1
q

fA(|b|p)gA(|a|q)

≤ fA(|a||b|p−1)gA(|a||b|q−1)+(1− r)M2 +B

(

1
p

)

log2 |a|
|b|T2,

if in this case|a|< |b|, and|a||b|p−1, |a||b|q−1, |a|p, |a|q,
|b|p, |b|q, |a| p

2 |b| p
2 , |a| q

2 |b| q
2 ∈ D(0,R), where

M1 = fA(|a|p)gA(|b|p)+ fA(|b|q)gA(|a|q)−

−2 fA(|a|
p
2 |b|

q
2 )gA(|a|

q
2 |b|

p
2 ),
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M2 = fA(|a|p)gA(|b|q)+ fA(|b|p)gA(|a|q)−

−2 fA(|a|
p
2 |b|

p
2 )gA(|a|

q
2 |b|

q
2 ),

T1 = gA(|a|q|b|p)S1(|a|p|b|q) log2 |a|p
|b|q+

+ fA(|a|p|b|q)S2(|a|q|b|p) log2 |a|q
|b|p −2[pq(log2 |a|+ log2 |b|)−

−(p2+q2) log|a| log|b|]S3(|a|p|b|q)S4(|a|q|b|p),

T2 = p2gA(|a|q)S1(|a|p)+q2 fA(|a|p)S2(|a|q)−

−2pqS3(|a|p)S4(|a|q),

S1(x) = x f
′
A(x)+ x2 f

′′
A(x), S2(x) = xg

′
A(x)+ x2g

′′
A(x),

S3(x) = x f
′
A(x), S4(x) = xg

′
A(x).

Proof.
In the first case we replacea by |a| j |b|k, and b by

|a|k|b| j
, j,k ∈ {0,1, ...,n} in (1) and then we have

|a| j |b|k|a|k|b| j + r[(|a| j |b|k)
p
2 − (|a|k|b| j)

q
2 ]2+

+A(
1
p
) log2

( |a| jp|b|kp

|a|kq|b| jq

)

|a| jp|b|kp|a|kq|b| jq ≤

≤ |a| jp|b|kp

p
+

|a|kq|b| jq

q
≤

≤ |a| j |b|k|a|k|b| j +(1− r)[(|a| j|b|k)
p
2 − (|a|k|b| j)

q
2 ]2+

+B(
1
p
) log2

( |a| jp|b|kp

|a|kq|b| jq

)

|a| jp|b|kp|a|kq|b| jq

for any j,k ∈ {0,1,2, ...,n}. We take into account that
|a jbkakb j | = |a jb j ||bkak| = |a| j |b|k|a|k|b| j and if we
multiply the inequality with positive quantities|p j ||qk|
and sum overj andk from 0 ton, we obtain

n

∑
j=0

|p j ||ab| j
n

∑
k=0

|qk||ab|k+ r
n

∑
j=0

|p j |
n

∑
k=0

|qk|[|a| jp|b|kp+

+|a|kq|b| jq −2|a| j p
2 |a|k

q
2 |b|k

p
2 |b| j q

2 ]+

+A(
1
p
)

n

∑
j=0

|p j |
n

∑
k=0

|qk| log2
( |a| jp−kq

|b| jq−kp

)

(|a|p|b|q) j (|a|q|b|p)k ≤

≤
n

∑
j=0

|p j |
n

∑
k=0

|qk|
( |a| jp|b|kp

p
+

|a|kq|b| jq

q

)

≤ (4)

≤
n

∑
j=0

|p j ||ab| j
n

∑
k=0

|qk||ab|k+(1− r)
n

∑
j=0

|p j |
n

∑
k=0

|qk|[|a| jp|b|kp+

+|a|kq|b| jq −2|a| j p
2 |a|k

q
2 |b|k

p
2 |b| j q

2 ]+

+B(
1
p
)

n

∑
j=0

|p j |
n

∑
k=0

|qk| log2
( |a| jp−kq

|b| jq−kp

)

(|a|p|b|q) j (|a|q|b|p)k.

Denoting byP1 the quantity

n

∑
j=0

|p j |
n

∑
k=0

|qk| log2
( |a|ip−kq

|b| jq−kp

)

(|a|p|b|q) j(|a|q|b|p)k

by computation we have,

P1 =
n

∑
j=0

|p j |
n

∑
k=0

|qk|[( jp− kq) log|a|−

−( jq− kp) log|b|]2(|a|p|b|q) j(|a|q|b|p)k =

=
n

∑
j=0

|p j |
n

∑
k=0

|qk|[( jp−kq)2 log2 |a|+( jq−kp)2 log2 |b|−

−2( jp−kq)( jq−kp) log|a| log|b|](|a|p|b|q) j(|a|q|b|p)k =

=
n

∑
j=0

|p j |
n

∑
k=0

|qk|[ j2(plog|a|−qlog|b|)2+

+k2(qlog|a|− plog|b|)2−2 jk(pq(log2 |a|+ log2 |b|)−
−(p2+q2) log|a| log|b|)](|a|p|b|q) j(|a|q|b|p)k =

=
n

∑
j=0

|p j |
n

∑
k=0

|qk|[ j2 log2 |a|p
|b|q + k2 log2 |a|q

|b|p−

−2 jk(pq(log2 |a|+ log2 |b|)− (p2+q2) log|a| log|b|)]·
·(|a|p|b|q) j (|a|q|b|p)k

.

All the series whose partial sums which appear here in
inequality (4) are convergent on the diskD(0,R) therefore
we can take the limit whenn tends to∞ in (4) and obtain
the inequality (2) taking into account that becauseT1 is
the limit whenn tends of∞ of P1.

In the second case, if we replace in (1) a by |a| j
|b| j andb

by |a|k
|b|k then we have

|a| j |a|k
|b| j |b|k + r

[

|a|p j

|b|p j +
|a|qk

|b|qk −2
|a| jp

2 |a| qk
2

|b| jp
2 |b| qk

2

]

+

+A(
1
p
) log2

( |a| jp|b|kq

|b| jp|a|kq

) |a| jp|a|kq

|b| jp|b|kq ≤

≤ 1
p
|a| jp

|b| jp +
1
q
|a|qk

|b|qk ≤ (5)

≤ |a| j |a|k
|b| j |b|k +(1− r)

[

|a|p j

|b|p j +
|a|qk

|b|qk −2
|a| jp

2 |a| qk
2

|b| jp
2 |b| qk

2

]

+

+B(
1
p
) log2

( |a| jp|b|kq

|b| jp|a|kq

) |a| jp|a|kq

|b| jp|b|kq

for any|b| j , |b|k 6= 0, j, k∈ {0,1,2, ...,n}.
Simplifying (5) we get

|a| j |a|k|b| j(p−1)|b|k(q−1)+ r[|a|p j|b|qk+ |a|qk|b| jp−
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−2|a| j p
2+kq

2 |b| j p
2+kq

2 ]+A(
1
p
) log2

( |a| jp−kq

|b| jp−kq

)

|a| jp|a|kq≤

≤ 1
p
|a| jp|b|qk+

1
q
|a|qk|b| jp ≤ (6)

≤ |a| j |a|k|b| j(p−1)|b|k(q−1)+(1−r)[|a|p j|b|qk+ |a|qk|b| jp−

−2|a| j p
2+kq

2 |b| j p
2+kq

2 ]+B(
1
p
) log2

( |a| jp−kq

|b| jp−kq

)

|a| jp|a|kq

for any j,k∈ {0,1,2, ...,n}.
Now we multiply (6) by |p j ||qk| ≥ 0,

j,k ∈ {0,1,2, ...,n} and summing overj andk from 0 to
n, we have

n

∑
j=0

n

∑
k=0

|p j ||qk|(|a||b|p−1) j(|a|b|q−1)k+

+r
n

∑
j=0

n

∑
k=0

|p j ||qk|[|a|p j|b|qk+ |a|qk|b| jp −2|a| j p
2+k q

2 |b| j p
2+k q

2 ]+

+A(
1
p
) log2 |a|

|b|
n

∑
j=0

n

∑
k=0

|p j ||qk|( jp− kq)2|a| jp|a|kq ≤

≤ 1
p

n

∑
j=0

|p j ||a| jp
n

∑
k=0

|qk||b|qk+
1
q

n

∑
k=0

|qk||a|qk
n

∑
j=0

|p j ||b| jp

(7)

≤
n

∑
j=0

n

∑
k=0

|p j ||qk|(|a||b|p−1) j(|a|b|q−1)k+(1− r)·

·
n

∑
j=0

n

∑
k=0

|p j ||qk|[|a|p j|b|qk+ |a|qk|b| jp −2|a| j p
2+k q

2 |b| j p
2+k q

2 ]+

+B(
1
p
) log2 |a|

|b|
n

∑
j=0

n

∑
k=0

|p j ||qk|( jp− kq)2|a| jp|a|kq
.

In this case

P2 =
n

∑
j=0

n

∑
k=0

|p j ||qk|( jp− kq)2|a| jp|a|kq =

=
n

∑
j=0

n

∑
k=0

|p j ||qk|( j2p2+ k2q2−2pq jk)|a| jp|a|kq
.

Taking into account that all the series whose partial sums
are involved in previous inequality are convergent on the
disk D(0,R), and lettingn to ∞ in the inequality (7), we
notice that the desired inequality (3) takes place, because
T2 is the limit whenn tends of∞ of P2. �.

Theorem 2.Let f (z) =∑∞
n=0 pnzn, g(z)=∑∞

n=0qnzn be the
power series with real coefficients and convergent on the
open diskD(0,R), 0< R< 1. If p,q are real numbers with
p> 1, 1

p +
1
q = 1 anda,b∈ C, a,b 6= 0, |a|< 1, |b|< 1

such that|a||b|, |a|2, |a|q, |b|p, |b|2, |a| q
2 |b| p

2 , |a|
2
p |b|

2
q ∈

D(0,R), then we have

| f (ab)g(|a|
2
p |b|

2
q )|+ rM3+A(

1
p
)T3 ≤

≤ fA(|ab|)gA(|a|
2
p |b|

2
q )+ rM3+A(

1
p
)T3 ≤

≤ 1
p

fA(|b|p)gA(|a|2)+
1
q

fA(|a|q)gA(|b|2)≤ (8)

≤ fA(|a||b|)gA(|a|
2
p |b|

2
q )+ (1− r)M3+B(

1
p
)T3,

where

M3 = fA(|a|2)gA(|b|p)+ fA(|a|q)gA(|b|2)−

−2 fA(|a|
q
2 |b|

p
2 )gA(|a||b|),

T3 = 4log2 |a|
|b| · fA(|a|q|b|p)S1(|a|2|b|2)+

+ log2 |b|p
|a|q gA(|a|2|b|2)S2(|a|q|b|p)+

+4log
|a|
|b| log

|b|p
|a|q S3(|a|q|b|p)S4(|a|2|b|2).

Proof.
Now, we replacea by |a|k

2
p |b| j

, andb by |a| j |b|k
2
q in

inequality (1), we multiply by |p j ||qk| ≥ 0 and then
summing overj andk from 0 ton we get

n

∑
j=0

n

∑
k=0

|p j ||qk||a|k
2
p |b| j |a| j |b|k

2
q+

+r
n

∑
j=0

n

∑
k=0

|p j ||qk|[|a|2k|b| jp+ |a| jq|b|2k−2|a|k|b| j p
2 |a| j q

2 |b|k]

+A(
1
p
)

n

∑
j=0

n

∑
k=0

|p j ||qk| log2
( |a|2k|b| jp

|a| jq|b|2k

)

|a|2k|b| jp|a| jq|b|2k

≤ 1
p

n

∑
j=0

n

∑
k=0

|p j ||qk||a|2k|b| jp+
1
q

n

∑
j=0

n

∑
k=0

|p j ||qk||a| jq|b|2k

(9)

≤
n

∑
j=0

n

∑
k=0

|p j ||qk||a|k
2
p |b| j |a| j |b|k

2
q+

+(1− r)
n

∑
j=0

n

∑
k=0

|p j ||qk|[|a|2k|b| jp+ |a| jq|b|2k−

−2|a|k|b| j p
2 |a| j q

2 |b|k]+

+B(
1
p
)

n

∑
j=0

n

∑
k=0

|p j ||qk| log2
( |a|2k|b| jp

|a| jq|b|2k

)

|a|2k|b| jp|a| jq|b|2k

whereP3 is the quantity

n

∑
j=0

n

∑
k=0

|p j ||qk| log2
( |a|2k|b| jp

|a| jq|b|2k

)

|a|2k|b| jp|a| jq|b|2k
.
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By computation, we find,

P3 =
n

∑
j=0

n

∑
k=0

|p j ||qk| log2
( |a|2k− jq

|b|2k− jp

)

|a|2k|b| jp|a| jq|b|2k =

=
n

∑
j=0

n

∑
k=0

|p j ||qk|(2k log
|a|
|b| − jq log|a|+

+ jp log|b|)2|a|2k|b| jp|a| jq|b|2k =

=
n

∑
j=0

n

∑
k=0

|p j ||qk|(4k2 log2 |a|
|b| + j2 log2 |b|p

|a|q+

+4 jk log
|a|
|b| log

|b|p
|a|q )|a|

2k|b| jp|a| jq|b|2k
.

Since all the series whose partial sums are involved in the
inequality (9) are convergent on the diskD(0,R), lettingn
tend to∞ in (9), we deduce the desired inequality, because
T3 is the limit whenn tends to∞ of P3. �.

Theorem 3. Let f (z) and g(z) be as in Theorem 1. If

|a|2, |b|p, |b|q, |a|
2
p |b|, |a|

2
q |b|, |a||b| q

2 , |a||b| p
2 ∈ D(0,R)

then one has the following inequality

| f (|a|
2
p b)g(|a|

2
q b)|+ rM4+A(

1
p
)T4 ≤

≤ fA(|a|
2
p |b|)gA(|a|

2
q |b|)+ rM4+A(

1
p
)T4 ≤

≤ 1
p

fA(|a|2)gA(|b|p)+
1
q

fA(|b|q)gA(|a|2)≤

≤ fA(|a|
2
p |b|)gA(|a|

2
q |b|)+ (1− r)M4+B(

1
p
)T4,

where

M4 = fA(|a|2)gA(|b|p)+ fA(|b|q)gA(|a|2)−

−2 fA(|a||b|
q
2 )gA(|a||b|

p
2 ),

T4 = log2
( |a|2
|b|q

)

gA(|a|2|b|p)S1(|a|2|b|q)+

+ log2
( |b|p
|a|2

)

fA(|a|2|b|q)S2(|a|2|b|p)+

+2S3(|a|2|b|q)S4(|a|2|b|p) log

( |a|2
|b|q

)

log

( |b|p
|a|2

)

.

Proof. Using again the inequality (1) with |a| j 2
p |b|k instead

of a and |a|k
2
q |b| j instead ofb we obtain for anyj,k ∈

{0,1,2, ...,n} the following inequality

(|a|
2
p |b|) j(|b||a|

2
q )k+ r[|a|2 j |b|pk+ |a|2k|b| jq−

−2|a| j |b|k
p
2 |a|k|b| j q

2 ]+

+A(
1
p
) log2

( |a|2 j |b|pk

|a|2k|b| jq

)

(|a|2 j |b|q j)(|a|2k|b|kp)≤

≤ 1
p
|a|2 j |b|pk+

1
q
|a|2k|b| jq ≤ (10)

≤ (|a|
2
p |b|) j(|b||a|

2
q )k+(1− r)[|a|2 j|b|pk+ |a|2k|b| jq−

−2|a| j |b|k
p
2 |a|k|b| j q

2 ]+

+B(
1
p
) log2

( |a|2 j |b|pk

|a|2k|b| jq

)

(|a|2 j |b|q j)(|a|2k|b|kp).

By the same method as in Theorem 1 we find the desired
inequality.�.

Remark 1. Let r1, r2, ..., rm 6= 0 be real numbers such that
1
r1

+ 1
r2

+ ... + 1
rm

= 1 and f (z) = ∑∞
n=0 pnzn,

g(z) = ∑∞
n=0qnzn be the power series with real

coefficients and convergent on the open disk
D(0,R), 0 < R. If a1,a2, ...,am,b1,b2, ...,bm ∈ C, such
that a1a2...am, b1b2...bm, |ai |r i , |bi |r i ∈ D(0,R), i ∈
{1,2, ...,m} then we have

| f (a1a2...am)gA(b1b2...bm)| ≤

≤ fA(|a1||a2|...|am|)gA(|b1||b2|...|bm|)≤

≤ 1
r1

fA(|a1|r1)gA(|b1|r1)+
1
r2

fA(|a2|r2)gA(|b2|r2)+ ...+

+
1
rm

fA(|am|rm)gA(|bm|rm).

Proof. We use the well-known inequality

α1x1+α2x2+ ...+αmxm ≥ xα1
1 xα2

2 ...xαm
m

which takes place for anyx1,x2, ..,xm > 0 and
α1,α2, ...,αm real numbers such that

α1 +α2+ ...+αm = 1 and replacingαi by 1
r i

andx
1
ri
i by

xi we obtain

1
r1

xr1
1 +

1
r2

xr2
2 + ...+

1
rm

xrm
m ≥ x1x2...xm.

Taking above x1 = |a1| j |b1|k, x2 = |a2| j |b2|k, ...
xm = |am| j |bm|k for j,k ∈ {0,1,2, ...,n} and using the
same method like in Theorem 1 we find the desired
inequality.�.

Proposition 2. Let a j be complex numbers and
p j > 0, j ∈ {1,2, ...,m} such that 1

p1
+ 1

p2
+ ...+ 1

pm
≥ 1.

If f (z) = ∑∞
n=0 p

′
nzn is the power series with real

coefficients and convergent on the open disk
D(0,R), 0 < R and a1a2...am, |a1||a2|...|am|,
|a1|p1, |a2|p2, ..., |am|pm ∈ D(0,R), and |p′

i | ≥ 1 for all
i ∈ N then the following inequality holds:

| f (a1a2...am)| ≤ fA(|a1||a2|...|am|) (11)
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≤ f
1
p1

A (|a1|p1) f
1
p2

A (|a2|p2)... f
1

pm
A (|am|pm).

Proof. If we considerai j = |p′
i |

1
pj |a j |i with i ∈ {1, ...,n}

and j ∈ {1, ...,m} in Lemma 2, see [5] page 743, the
inequality

n

∑
i=1

ai1ai2...aim≤
(

n

∑
i=1

ap1
i1

) 1
p1
(

n

∑
i=1

ap2
i2

) 1
p2

...

(

n

∑
i=1

apm
im

) 1
pm

becomes:

n

∑
i=1

|p′
i |

1
p1

+ 1
p2

+..+ 1
pm |a1|i |a2|i ...|am|i ≤

≤
(

n

∑
i=1

|p′
i ||a1|ip1

)
1
p1
(

n

∑
i=1

|p′
i ||a2|ip2

)
1
p2

...

(

n

∑
i=1

|p′
i ||am|ipm

)
1

pm

or

n

∑
i=1

|p′
i ||a1a2...am|i ≤

n

∑
i=1

|p′
i |

1
p1

+ 1
p2

+..+ 1
pm |a1|i |a2|i ...|am|i ≤

≤
(

n

∑
i=1

|p′
i ||a1|ip1

)
1
p1
(

n

∑
i=1

|p′
i ||a2|ip2

)
1
p2

...

(

n

∑
i=1

|p′
i ||am|ipm

)
1

pm

.

Taking into account that a1a2...am, |a1||a2|...|am|,
|a1|p1, |a2|p2, ..., |am|pm ∈ D(0,R), whenn tends to∞ we
get inequality (11). �.

Using a refinement of the weighted
arithmetic-geometric mean inequality forn real numbers,
see [2], we find the following:

Theorem 4. Let a1,a2, ...,an,b1,b2, ...,bn > 0,
p1, p2, ..., pn > 0 with ∑n

j=1 p j = 1 and
λ = min{p1, ...pn}. If we assume that the multiplicity
attainingλ is 1, then we have the following inequality:

n

∑
i=1

pi fA(ai)gA(bi)−| f (ap1
1 ap2

2 ...apn
n )g(bp1

1 bp2
2 ...bpn

n )| ≥

≥
n

∑
i=1

pi fA(ai)gA(bi)−

− fA(a
p1
1 ap2

2 ...apn
n )gA(b

p1
1 bp2

2 ...bpn
n )≥

≥ nλ [
1
n

n

∑
i=1

fA(ai)gA(bi)− fA(a
1
n
1 ..a

1
n
n )gA(b

1
n
1 ...b

1
n
n )],

where f , g, fA andgA are as in Theorem 1 andap1
1 ...apn

n ,

bp1
1 ...bpn

n , ai, bi , b
1
n
1 ...b

1
n
n , a

1
n
1 ...a

1
n
n ∈ D(0,R).

Proof. We replace ai > 0 by a j
i b

k
i for

j,k ∈ {1,2, ...,m}, i ∈ {1, ...,n} in inequality from below
and write again this inequality

n

∑
i=1

piai −ap1
1 ap2

2 ...apn
n ≥ nλ

(

1
n

n

∑
i=1

ai −a
1
n
1 ...a

1
n
n

)

from Proposition 5.1 (Proposition 1), see [2] obtaining:

n

∑
i=1

pia
j
i b

k
i −ap1 j

1 bp1k
1 ...apn j

n bpnk
n ≥

≥ nλ [
1
n
(a j

1bk
1+ ...+a j

nb
k
n)−

−a
j
n
1 b

k
n
1 a

j
n
2 b

k
n
2 ...a

j
n
n b

k
n
n ]

which by multiplication by|p′
j ||qk| and summing overj

and k will give the desired inequality from conclusion
whenm tend to infinity.�.

For finite sequences of real numbers we use the
majorization relation from [6]. Let a = (a1,a2, ..,an) and
b = (b1,b2, ...,bn) two finite sequences of real numbers.
We say that the sequencea majorizes the sequenceb and
we write

a>>b or b<<a,

if after rearranging terms of the sequencea andb satisfy
the following three conditions:

a1 ≥ a2 ≥ ...≥ an andb1 ≥ b2 ≥ ...≥ bn

a1+a2+ ...+ak≥ b1+b2+ ..+bk, for eachk, 1≤ k≤ n−1;

a1+a2+ ...+an = a1+b2+ ..+bn.

As in [6], Definition 2, letF(x1,x2, ...,xn) be a function
in n nonnegative real variables. Define

!

∑F(x1,x2, ...,xn)

as the sum ofn! summands, obtained from the expression
F(x1,x2, ...,xn) as all the possible permutations of the
sequencex= (xi)

n
i=1.

Particularly, if for some sequence of nonnegative
exponentsa = (ai)

n
i=1, the function F is of the form

F(x1,x2, ..,xn) = xa1
1 xa2

2 ...xan
n , then instead of

!

∑F(x1,x2, ...,xn)

we shall write also

T[a1,a2, ...,an](x1,x2, ...,xn)

or justT[a1,a2, ...,an] if it is clear which is the sequencex
used here.

Using the technique given in [3] for Muirhead’s
theorem, we find the following inequality:

Proposition 3. If a << b and yi ,zi ∈ C, yi ,zi 6= 0, i ∈
{1, ..,n} then

!

∑ fA(|y1|a1|y2|a2...|yn|an)gA(|z1|a1|z2|a2...|zn|an)≤
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Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci.9, No. 4, 1823-1832 (2015) /www.naturalspublishing.com/Journals.asp 1829

≤
!

∑ fA(|y1|b1|y2|b2...|yn|bn)gA(|z1|b1|z2|b2...|zn|bn),

where f , g, fA and gA are as in Theorem 1,
|yσ(1)|a1|yσ(2)|a2...|yσ(n)|an,
|zσ(1)|b1|zσ(2)|b2...|zσ(n)|bn ∈ D(0,R) for any σ , σ being
an arbitrary permutation of the numbers{1,2, ...,n}.

Proof. We consider in Muirhead’s inequality instead ofxi ,

|yi | j |zi |k, i ∈ {1,2, ...,n} we multiply by |p j ||qk|, and
summing over j,k ∈ {0, ...,m} we get the desired
inequality whenm tends to infinity.�.

3 Applications related to the average
information

1. Next, we present an application related to the average
information for two messages.

Forn= 2 in Theorem 4, withf (z) =∑n≥0anzn
, g(z) =

∑n≥0bnzn, an,bn ≥ 0, for all n = 1,2, ..., we deduce the
following inequality:

λ f (a)g(c)+ (1−λ ) f (b)g(d)− f (aλb1−λ )g(cλ d1−λ )≥

≥min{λ .1−λ}[ f (a)g(c)+ f (b)g(d)−2 f (
√

ab) f (
√

cd)].
(12)

If we takeg(x) = 1 in inequality (12), we obtain the
inequality:

λ f (a)+ (1−λ ) f (b)− f (aλb1−λ )≥

≥ min{λ ,1−λ}[ f (a)+ f (b)−2 f (
√

ab)]. (13)

But, we have

f (a)+ f (b) = ∑
n≥0

anan+ ∑
n≥0

anbn = ∑
n≥0

an(a
n+bn)≥

≥ 2 ∑
n≥0

(
√

ab)n = 2 f (
√

ab),

so we find the inequality

f (a)+ f (b) = ∑
n≥0

anan+ ∑
n≥0

anbn = ∑
n≥0

an(a
n+bn)≥

≥ 2 ∑
n≥0

(
√

ab)n = 2 f (
√

ab).

Thereforeλ f (a) + (1− λ ) f (b)− f (aλ b1−λ ) ≥ 0 for all
λ ∈ [0,1] and 0< a,b< 1, i.e. f is an GA-convex function.

From Information Theory and Coding, let messages be
m1 and m2 and they have probabilities of occurrence as
p and 1− p. Suppose that a sequence ofn messages is
transmitted. Ifn is sufficiently large, then we say thatnp

messages ofm1 are transmitted andn(1− p) messages of
m2 are transmitted.

The information due to messagem1 will be

I1 = log2

(

1
p

)

and the information due to messagem2 will

be I2 = log2

(

1
1−p

)

. Then the total information carried

due to the sequence ofn message will be

I = npI1+n(1− p)I2 =

= n[plog2

(

1
p

)

+(1− p) log2

(

1
1− p

)

].

Average informationis the ratio betweenI and n, so is
represented by Shannon entropyH given by

H = plog2

(

1
p

)

+(1− p) log2

(

1
1− p

)

.

This function denoted byΩ(.) is also called asHorseshoe
function, where

Ω(p) = plog2

(

1
p

)

+(1− p) log2

(

1
1− p

)

.

In inequality (13), we consider
f (x) = ln

( 1
1−x

)

= ln2 · log2
1

1−x, λ = p, a = 1− p and
b= p.

Therefore we obtain the following inequality

H = ln2 ·Ω(p)≥

≥ ln
1

1− (1− p)pp1−p + r ln
(1−

√

p(1− p))2

p(1− p)
≥

≥ ln
1

1− (1− p)pp1−p , (14)

wherer = min{p,1− p}.
2. Using a similar method as in [19,20] we present an

application of such inequalities in Information Theory. For
that we consider the inequality

AB+ r(Ap+Bq−2A
p
2 B

q
2 )≤

1
p

Ap+
1
q

Bq ≤ AB+(1− r)(Ap+Bq−2A
p
2 B

q
2 ),

wherer is as in [8], inequality (1.5). In this inequality we
put, as in the proof of the classical Hölder’s inequality,
A = ai

(∑n
i=1 ap

i )
1
p

and B = bi

(∑n
i=1bq

i )
1
q

where

ai , bi > 0, i ∈ {1,2, ...,n} (herep> 1) and summing over
i from 1 ton we get

∑n
i=1aibi

(

∑n
i=1ap

i

) 1
p
(

∑n
i=1bq

i

) 1
q

+

+2r



1− (∑n
i=1a

p
2
i b

q
2
i

(

∑n
i=1ap

i

) 1
2
(

∑n
i=1bq

i

) 1
2



≤ 1
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1≤ ∑n
i=1aibi

(

∑n
i=1ap

i

) 1
p
(

∑n
i=1bq

i

) 1
q

+

+2(1− r)



1− (∑n
i=1a

p
2
i b

q
2
i

(

∑n
i=1ap

i

) 1
2
(

∑n
i=1bq

i

) 1
2





or
(

n

∑
i=1

ap
i

) 1
p
(

n

∑
i=1

bq
i

) 1
q

{1−2r[1−

− (∑n
i=1a

p
2
i b

q
2
i

(

∑n
i=1ap

i

) 1
2
(

∑n
i=1bq

i

) 1
2

]} ≥
n

∑
i=1

aibi

n

∑
i=1

aibi ≥
(

n

∑
i=1

ap
i

) 1
p
(

n

∑
i=1

bq
i

) 1
q

{1−2(1− r)[1−

− (∑n
i=1a

p
2
i b

q
2
i

(

∑n
i=1ap

i

) 1
2
(

∑n
i=1bq

i

) 1
2

]}. (15)

We will replace from nowr by r1 in previous inequalities.
If ai = hr

i t
r
i , bi = t−r

i , p = 1
r ,

1
s +

1
r = 1 then by calculus

we obtain:

n

∑
i=1

hiti{1−2r1[1−
∑n

i=1h
1
2
i t

s+1
2

i

(∑n
i=1hiti)

1
2 (∑n

i=1 ts
i )

1
2

]} 1
r ≤

≤
(

n

∑
i=1

hr
i

) 1
r
(

n

∑
i=1

ts
i

) 1
s

≤

≤
n

∑
i=1

hiti{1−2(1− r1)[1−
∑n

i=1h
1
2
i t

s+1
2

i

(∑n
i=1hiti)

1
2 (∑n

i=1ts
i )

1
2

]} 1
r ,

where 0< r < 1, s< 0.
Let Λ be the utility information scheme, as in Remark

3.2, see [19,20] whereX = (x1,x2, ...,xn) is the alphabet;

Pβ = (pβ
1 , p

β
2 , ..., p

β
n ) is the power probability

distribution;U = (u1,u2, ...,un) is the utility distribution

uk > 0 for all k= 1,2,3, ...,n; β 6= 1, β > 0, ∑n
k=1 pβ

k = 1.
Then, for every uniquely decipherable code, Singh et al.
[21] obtained

α
1−α

logD







n

∑
k=1

pβ
k u

1
α
k Dlk

1−α
α

(

∑n
i=1 pβ

i ui

) 1
α






≥

log2 ∑n
k=1

(

pβ α
k uk

∑n
i=1 pβ

i ui

)

(1−α) log2D

where α > 0, α 6= 1, D ≥ 2, lk integers, pk ≥ 0,
k = 1,2, ..,n and ∑n

i=1D−lk ≤ 1. According to [21] the
”useful” information of orderα for power distributionPβ

is defined as

1
1−α

log
n

∑
k=1

(

pβ α
k uk

∑n
i=1 pβ

i ui

)

and the exponential ”useful” mean lengths of codewords
weighted with the function of power probabilities and
utilities is defined as

α
1−α

n

∑
k=1

pβ
k

(

uk

∑n
i=1 pβ

i ui

) 1
α

D
(1−α)lk

α .

The last inequality is a generalization of Shannon
inequality.
Theorem 5. Let α > 0, β > 0, α, β 6= 1,
pk ≥ 0, k = 1,2,3, ...,n and∑n

k=1 pβ
k = 1, let D(D ≥ 2) is

the size of the code alphabet. Iflk,k = 1,2,3, ...,n are the
lengths of the codewords satisfying∑n

k=1D−lk ≤ 1 then
for every uniquely decipherable code, the ”useful”α-
average length of codewords satisfies

α
1−α

logD







n

∑
k=1

pβ
k u

1
α
k Dlk

1−α
α

(

∑n
i=1 pβ

i ui

)
1
α






+

α
α −1

logD M(pk,uk;α)

≥
log2 ∑n

k=1

(

pβα
k uk

∑n
i=1 pβ

i ui

)

(1−α) log2D
(16)

where
M(pk,uk;α) =

= 1−2(1− r1)









1− ∑n
k=1D− lk

2 p
αβ
2

k u
1
2
k

(∑n
k=1D−lk)

1
2

(

∑n
k=1 pαβ

k uk

) 1
2









,

whenα > 1.

Proof. Using the substitutionr = α−1
α > 0, s= 1−α < 0,

hk = p
αβ

α−1
k

(

uk

∑n
i=1ui p

β
i

) 1
α−1

D−lk

and

tk = p
αβ

1−α
k

(

uk

∑n
i=1ui p

β
i

) 1
1−α

in (15) and after suitable calculus we obtain inequality (16)
whenα > 1.

4 Conclusions

This paper has proposed several inequalities concerning
functions defined by convergent power series with real or
nonnegative coefficients. This method is useful, because
many difficult inequalities can be easily solved and often
they can be extedded.
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As in [4], there exist some inequalities for special
functions such as polylogarithm, hypergeometric, Bessel
and modified Bessel functions for the first kind. It is
known that Lin(z), 2F1(a,b;c;z), Ja(z) and Ia(z) are
power series with real coefficients and convergent on the
open diskD(0,1). Therefore, like in [4], we can think to
rewrite the inequalities given before under conditions
from our theorems.

In addition, as in [4], because the functions
exp(z), z ∈ C,

1
1−z, z ∈ D(0,1), ln( 1

1−z), z ∈
D(0,1), sinh(z), z ∈ C are power series with real
coefficients and convergent on the open diskD(0,1) we
can think to rewrite the inequalities given before under
conditions from our theorems.

Also many inequalities involving the polylogarithm,
hypergeometric, Bessel and modified Bessel functions
can be found in the literature, see [13,14,15,16,17,18]
and references therein, and on the other hand it is
wellknown that the power series and special functions
have important applications in engeneering sciences and
applied mathematics as parts of Information Sciences,
therefore new questions will arise from new applications.

Moreover, in Information Theory appear many
inequalities and concepts such as Singh’s inequality
([21]) and Shannon entropy which can be obtained from
generalizations of Hölder’s inequality as in Remark 3.2
and Remark 3.4 from [19,20]. Therefore considering
particular suitable functions in our results, new
inequalities can be deduced for some of these concepts.
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