
Information Sciences Letters Information Sciences Letters 

Volume 12 
Issue 7 Jul. 2023 Article 22 

2023 

Some Coincidence Point Theorems and an Application to Integral Some Coincidence Point Theorems and an Application to Integral 

Equation in Partially Ordered Metric Spaces Equation in Partially Ordered Metric Spaces 

N. Seshagiri Rao 
Department of Mathematics & Statistics, School of Applied Science & Humanities, Vignan’s Foundation 
for Science, Technology & Research, Vadlamudi-522213, Andhra Pradesh, India, 
seshu.namana@gmail.com 

Follow this and additional works at: https://digitalcommons.aaru.edu.jo/isl 

Recommended Citation Recommended Citation 
Seshagiri Rao, N. (2023) "Some Coincidence Point Theorems and an Application to Integral Equation in 
Partially Ordered Metric Spaces," Information Sciences Letters: Vol. 12 : Iss. 7 , PP -. 
Available at: https://digitalcommons.aaru.edu.jo/isl/vol12/iss7/22 

This Article is brought to you for free and open access by Arab Journals Platform. It has been accepted for 
inclusion in Information Sciences Letters by an authorized editor. The journal is hosted on Digital Commons, an 
Elsevier platform. For more information, please contact rakan@aaru.edu.jo, marah@aaru.edu.jo, 
u.murad@aaru.edu.jo. 

https://digitalcommons.aaru.edu.jo/isl
https://digitalcommons.aaru.edu.jo/isl/vol12
https://digitalcommons.aaru.edu.jo/isl/vol12/iss7
https://digitalcommons.aaru.edu.jo/isl/vol12/iss7/22
https://digitalcommons.aaru.edu.jo/isl?utm_source=digitalcommons.aaru.edu.jo%2Fisl%2Fvol12%2Fiss7%2F22&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.aaru.edu.jo/isl/vol12/iss7/22?utm_source=digitalcommons.aaru.edu.jo%2Fisl%2Fvol12%2Fiss7%2F22&utm_medium=PDF&utm_campaign=PDFCoverPages
https://www.elsevier.com/solutions/digital-commons
mailto:rakan@aaru.edu.jo,%20marah@aaru.edu.jo,%20u.murad@aaru.edu.jo
mailto:rakan@aaru.edu.jo,%20marah@aaru.edu.jo,%20u.murad@aaru.edu.jo


Inf. Sci. Lett. 12, No. 7, 2951-2959 (2023) 2951

Information Sciences Letters
An International Journal

http://dx.doi.org/10.18576/isl/120722

Some Coincidence Point Theorems and an Application

to Integral Equation in Partially Ordered Metric Spaces

N. Seshagiri Rao∗

Department of Mathematics & Statistics, School of Applied Science & Humanities, Vignan’s Foundation for Science, Technology &

Research, Vadlamudi-522213, Andhra Pradesh, India

Received: 12 Mar. 2023, Revised: 2 May 2023, Accepted: 12 Jun. 2023

Published online: 1 Jul. 2023

Abstract: In ordered metric space, the results on coincidence point of the mappings satisfying generalized rational contractions are

investigated. Also discussed the integral contractions of the mappings in the same context to obtain the coincidence points. Two

numerical examples are presented to justify the results obtained. Apart from in view of an application, the existence and the unique

solution of an integral equation is discussed.

Keywords: Monotone g-nondecreasing, rational contraction, coincidence point, compatable and weakly compatiable mappings,

ordered metric spaces.

1 Introduction

First, Banach [1] introduced the contraction condition for a self-mapping in complete metric space for the existence of a
fixed point. It has many applications in nonlinear analysis, applied mathematics and also in sciences. Later, it has been
enhanced by many researcher in several directions by considering weaker conditions on either a space or on the mappings.
Some generalizations and extensions of the Banach’s contraction principle can be found from the works of [2,3,4,5,6,7,
8,9,10,11].

Ran and Reurings [12] investigated a result on a fixed point of the mapping in partial order set and also provided some
applications in matrix algebra. While Nieto et al. [13,14] generalized the results of [12] in partially ordered sets and also
explored applications on ordinary differential equations. In the same context, several authors have developed important
results in different spaces which have many applications in applied sciences and nonlinear analysis. On various ordered
spaces, fixed point results have been obtained by considering different contraction conditions, some of such works can be
found from [15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44], which
creates natural interest to work more on it.

The work in this paper presents the results on coincidence point for the mappings satisfying rational contractions in
partially ordered metric spaces. These results extended the results of [13,14,23,24,32]and other well known results in
literature. Also discussed integral contractions of the mappings in the same context for the similar conclusions. Further,
some numerical illustrations and the existence of a unique solution of an integral equation are discussed.

2 Main Results

This section starts with the following theorem in partially ordered metric spaces.

Theorem 21The two continuous self-mappings B and g defined in a complete partially ordered metric space (c.p.o.m.s)

G have a coincidence point if

(i).B is a monotone g non-decreasing,
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(ii).B(G)⊆ g(G),
(iii).

Ω(Bϑ ,Bζ ) ≤a
Ω(gϑ ,Bϑ) Ω(gζ ,Bζ )

Ω(gϑ ,gζ )

+b [Ω(gϑ ,Bϑ)+Ω(gζ ,Bζ )]

+c [Ω(gϑ ,Bζ )+Ω(gζ ,Bϑ)]

+dΩ(gϑ ,gζ ),

(1)

for all ϑ ,ζ ∈G with g(ϑ) 6= g(ζ ) are comparable and 0 ≤a+ 2(b+c)+d< 1 for 0 ≤a,b,c,d < 1,

(iv).gϑ0 �Bϑ0, for certain ϑ0 ∈G and g, B are compatible.

Proof.If certain ϑ0 ∈G with gϑ0 �Bϑ0, then there is a point ϑ1 ∈G such that gϑ1 =Bϑ0 by the hypotheses. Since
Bϑ1 ∈ g(G), then there exists another point ϑ2 ∈G such that gϑ2 = Bϑ1. Repeating the same process, we obtain a
sequence {ϑn} ⊂G such that gϑn+1 =Bϑn,n ≥ 0.

As we know from the hypothesis that gϑ0 � Bϑ0 = gϑ1. Hence from the condition (1), we obtained that Bϑ0 �
Bϑ1. Consequently, we have

Bϑ0 �Bϑ1 � ...�Bϑn �Bϑn+1 � ... .

Now, the remaining proof will be discussed in the following two cases.
Case:(i): If for certain n ∈ N, Ω(Bϑn,Bϑn+1) = 0, then Bϑn+1 =Bϑn. Therefore, B and g have a coincidence point
ϑn+1.
Case:(ii): Suppose that Ω(Bϑn,Bϑn+1) 6= 0,∀n ∈ N. Then equation (1) becomes

Ω(Bϑn+1,Bϑn)

≤a
Ω(gϑn+1,Bϑn+1) Ω(gϑn,Bϑn)

Ω(gϑn+1,gϑn)

+b [Ω(gϑn+1,Bϑn+1)+Ω(gϑn,Bϑn)]

+c [Ω(gϑn+1,Bϑn)+Ω(gϑn,Bϑn+1)]

+dΩ(gϑn+1,gϑn),

which implies that

Ω(Bϑn+1,Bϑn)

≤aΩ(Bϑn,Bϑn+1)

+b [Ω(Bϑn,Bϑn+1)+Ω(Bϑn−1,Bϑn)]

+c [Ω(Bϑn,Bϑn)+Ω(Bϑn−1,Bϑn+1)]

+dΩ(Bϑn,Bϑn−1).

Thus we have

Ω(Bϑn+1,Bϑn)≤

(

b+c+d

1−a−b−c

)

Ω(Bϑn,Bϑn−1).

Finally, we arrive by induction that

Ω(Bϑn+1,Bϑn)≤ Γ nΩ(Bϑ1,Bϑ0), (2)

where Γ = b+c+d
1−a−b−c

< 1.

For m ≥ n, and then by the triangular inequality of a metric, we have

Ω(Bϑm,Bϑn)

≤ Ω(Bϑm,Bϑm−1)+Ω(Bϑm−1,Bϑm−2)

+ ......+Ω(Bϑn+1,Bϑn)

≤
(

Γ m−1 +Γ m−2 + ...+Γ n
)

Ω(Bϑ1,Bϑ0)

≤
Γ n

1−Γ
Ω(Bϑ1,Bϑ0),
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as m,n → +∞, Ω(Bϑm,Bϑn) → 0, which implies that {Bϑn} is a Cauchy sequence. Hence by the completeness of G
there exists µ ∈G such that Bϑn → µ .

Moreover from the continuity property of B, we have

lim
n→+∞

B(Bϑn) =B

(

lim
n→+∞

Bϑn

)

=Bµ .

Therefore, lim
n→+∞

gϑn+1 = µ as gϑn+1 =Bϑn.

Also from the condition (iv), we have

lim
n→+∞

Ω(Bhϑn,gBϑn) = 0.

Therefore, the metric triangular inequality suggest that

Ω(Bµ ,gµ) = Ω(Bµ ,Bgϑn)+Ω(Bgϑn,gBϑn)

+Ω(gBϑn,gµ).
(3)

By letting n →+∞ in (3) and the continuity of B and g, we obtained that Ω(Bµ ,gµ) = 0. Therefore,Bµ =gµ . Hence
the result.

From Theorem 21, we have the following corollary by setting c= 0 and b = 0 in equation (1)

Corollary 22A coincidence point exists for the continuous self-mappings B and g defined on G, where G is c.p.o.m.s

with the following assumptions:

(i).B(G)⊆ g(G),
(ii).B is a monotone g non-decreasing,

(iii).(a).

Ω(Bϑ ,Bζ ) ≤a
Ω(gϑ ,Bϑ) Ω(gζ ,Bζ )

Ω(gϑ ,gζ )

+b [Ω(gϑ ,Bϑ)+Ω(gζ ,Bζ )]

+dΩ(gϑ ,gζ ),

for 0 ≤a,b,d < 1 with 0 ≤a+ 2b+d < 1,

(b).

Ω(Bϑ ,Bζ ) ≤a
Ω(gϑ ,Bϑ) Ω(gζ ,Bζ )

Ω(gϑ ,gζ )

+c [Ω(gϑ ,Bζ )+Ω(gζ ,Bϑ)]

+dΩ(gϑ ,gζ ),

for 0 ≤a,c,d < 1 such that 0 ≤a+ 2c+d< 1,

for all ϑ ,ζ ∈G with g(ϑ) 6= g(ζ ) are comparable and

(iv).gϑ0 �Bϑ0, for certain ϑ0 ∈G and g and B are compatible.

Corollary 23A continuous self-mapping B defined on a comparable set G has a fixed point in Theorem 21 and Corollary

22, if B(Bϑ) �Bϑ ,ϑ ∈G and ϑ0 �Bϑ0 for certain ϑ0 ∈G.

Proof.The proof can be obtained by letting g= IG in Theorem 21.

Relaxing the continuity property of B and G and satisfy the following condition still have the same conclusion of the
mappings in Theorem 21:

A sequence {ϑn} in G is non decrasing with ϑn → ϑ then

ϑn � ϑ , (n ≥ 0).
(4)

Theorem 24If G has the property of (4) in Theorem 21, then

(a).A coincidence point for B and g exists, if g(G)⊂G is complete,

c© 2023 NSP
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(b).A common fixed point for B and g exists, if B and g are weakly compatible,

(c).B and g have only one common fixed point if B and g have well ordered common fixed points set.

Proof.If g(G) is complete then from Theorem 21, there exists a Cauchy sequence {gϑn} such that

lim
n→+∞

Bϑn = lim
n→+∞

gϑn = gu, for gu ∈ g(G). (5)

Since {Bϑn} and {gϑn} are non-decreasing sequences then as a result we obtained that Bϑn � gu and gϑn � gu.
Therefore, Bϑn �Bu,(n ≥ 0) by the monotone property of B. As by limiting case, we arrive at gu �Bu.

Assume that gu ≺Bu. Let u0 = u and define a sequence {un} in G by gun+1 =Bun,(n ≥ 0). Hence, by Theorem 21
there exists a convergent non-decreasing Cauchy sequence {gun} such that lim

n→+∞
g(un) = lim

n→+∞
Bun =gv,v ∈G. Hence,

we have supgun � gv and supBun � gv, n ≥ 0 from the hypotheses.

Thus,

gϑn � gu � gu1 � ...� gun � ...≤ hv. (6)

The conclusions will see from the following cases:
Case:(a) Suppose gϑn0

= gun0
for certain n0 ≥ 1. Then

gϑn0
= gu = gun0

= gu1 =Bu. (7)

From (7), B and g have a coincidence point u.
Case:(b) Suppose gϑn0

6=gun0
,∀n ∈ N then from (1), we have

Ω(gϑn+1,gun+1) = Ω(Bϑn,Bun)

≤a
Ω(gϑn,Bϑn) Ω(gun,Bun)

Ω(gϑn,gun)

+b [Ω(gϑn,Bϑn)+Ω(gun,Bun)]

+c [Ω(gϑn,Bun)+Ω(gun,Bϑn)]

+dΩ(gϑn,gun).

(8)

Letting n →+∞ in (8), we get

Ω(gu,gv)≤ (2c+d)Ω(gu,gv)

< Ω(gu,gv), since 2c+d< 1.
(9)

Therefore,

gu = gv = gu1 =Bu,

Hence, the mappings B and g have a coincidence point.

Suppose that q is a coincidence point and, B and g are weakly compatible mappings, then

Bq =Bgz = gBz = gq, since q=Bz = gz, for some

z ∈G.

Therefore (1) becomes,

Ω(Bz,Bq) ≤a
Ω(gz,Bz) Ω(gq,Bq)

Ω(gz,gq)

+b [Ω(gz,Bz)+Ω(gq,Bq)]

+c [Ω(gz,Bq)+Ω(gq,Bz)]

+dΩ(gz,gq)

≤ (2c+d)Ω(Bz,Bq).

(10)

Finally we arrive at Ω(Bz,Bq) = 0 as 2c+d < 1 from (10). Hence, Bz = Bq = gq = q and suggest that q is a
common fixed point of B and g.

c© 2023 NSP
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Next, suppose that B and g have well ordered common fixed point set. For uniqueness, let u and v be any two distinct
common fixed points. Then from (1),

Ω(u,v)≤a
Ω(gu,Bu) Ω(gv,Bv)

Ω(gu,gv)

+b [Ω(gu,Bu)+Ω(gv,Bv)]

+c [Ω(gu,Bv)+Ω(gv,Bu)]+dΩ(gu,gv)

≤ (2c+d) Ω(u,v)

< Ω(u,v), since 2c+d< 1.

(11)

This is a contradiction in (11). Conversely, suppose that B and g have only one common fixed point. Therefore, the set
of common fixed points of B and g being a singleton. Hence it is well ordered set.

One can have the same conclusions as of Theorem 21 and Corollary 22 by omitting the continuity property of a
mapping B and implementing the condition (4) on G.

Corollary 25A self-mapping B defined on c.p.o.m.s G has a fixed point, if it satisfies the contraction condition (1),
B(Bϑ) �Bϑ ,∀ϑ ∈G, for any non-decreasing sequence {ϑn} with ϑn → ϑ ∈G such that ϑn � ϑ ,(n ≥ 0) and ϑ0 �
Bϑ0, for certain ϑ0 ∈G.

Proof.Setting g= IG in Theorem 24, the required proof can be obtained.

Remark 26 (i).Theorems 2.1 & 2.3 of Chandok [23] can be obtained by replacing b = c= 0 in Theorems 21 & 24.

(ii).Theorems 2.1 & 2.3 of Harjani et al. [24] will be getting by letting b = c= 0 and g= I in Theorems 21& 24

The following is a consequence of Theorem 21, which comprise an integral contraction.
A self-mapping ν(t) defined on [0,+∞) be such that

(a).
∫ ε

0 ν(t)dt > 0, for ε > 0, t ∈ [0,+∞) and
(b).ν is Lebesgue integrable on any compact subset of [0,+∞).

Denote all such functions defined above by Θ .

Corollary 27A coincidence point exists for the continuous self-mappings B and g on c.p.o.m.s. G with the following

assumptions:

(i).B(G)⊆ g(G),
(ii).B is a monotone g non-decreasing,

(iii).

∫ Ω(Bϑ ,Bζ )

0
ν(t)dt ≤a

∫

Ω(gϑ ,Bϑ) Ω(gζ ,Bζ )
Ω(gϑ ,gζ )

0
ν(t)dt

+b

∫ Ω(gϑ ,Bϑ )+Ω(gζ ,Bζ )

0
ν(t)dt

+c

∫ Ω(gϑ ,Bζ )+Ω(gζ ,Bϑ )

0
ν(t)dt

+d

∫ Ω(gϑ ,gζ )

0
ν(t)dt,

(12)

for all ϑ ,ζ ∈G with g(ϑ) 6= g(ζ ) are comparable and 0 ≤a+ 2(b+c)+d< 1 for 0 ≤a,b,c,d < 1, ν ∈Θ ,

(iv).gϑ0 �Bϑ0, for certain ϑ0 ∈G and, g and B are compatible.

Remark 28(i). One can acquire the same conclusions as in Corollary 27 by setting c= 0 and b = 0 in (12).
(ii). By putting b = c= 0 in Corollary 27, we get Corollary 2.5 of [23].

We illustrate few examples for Theorem 21.

Example 29A coincidence point for the self-mappings B and g exists on G = [0,1] with Bϑ = ϑ 2

2
, gϑ = 2ϑ 2

1+ϑ by a

metric Ω(ϑ ,ζ ) = |ϑ − ζ |.

c© 2023 NSP
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Proof.By definition of the mappings and a metric, the assumptions (i), (ii) and (iv) of Theorem 21 are fulfilled with
ϑ0 = 0 ∈G. For condition (iii), let ϑ < ζ , for ϑ ,ζ ∈G. Then

Ω(Bϑ ,Bζ ) =
1

2
|ϑ 2 − ζ 2|=

1

2
(ϑ + ζ )|ϑ − ζ |

≤
2(ϑ + ζ +ϑζ )

(1+ϑ)(1+ ζ )
|ϑ − ζ |

≤
a

4

ϑ 2ζ 2

(ϑ + ζ +ϑζ )

|ϑ − 3||ζ − 3|

|ϑ − ζ |

+
b

2

ϑ 2(1+ ζ )|ϑ − 3|+ ζ 2(1+ϑ)|ζ − 3|

(1+ϑ)(1+ ζ )

+c
(1+ ζ )|4ϑ 2− ζ 2(1+ϑ)|+(1+ϑ)|4ζ 2−ϑ 2(1+ ζ )|

2(1+ϑ)(1+ ζ )

+d
2(ϑ + ζ +ϑζ )

(1+ϑ)(1+ ζ )
|ϑ − ζ |,

which implies that

Ω(Bϑ ,Bζ ) ≤a

ϑ 2|ϑ−3|
2(1+ϑ ) .

ζ 2|ζ−3|
2(1+ζ )

2|ϑ − ζ | ϑ+ζ+ϑζ
(1+ϑ )(1+ζ )

+b

[

ϑ 2|ϑ − 3|

2(1+ϑ)
+

ζ 2|ζ − 3|

2(1+ ζ )

]

+c

[∣

∣

∣

∣

ϑ 2

(1+ϑ)
−

ζ 2

2

∣

∣

∣

∣

+

∣

∣

∣

∣

2ζ 2

(1+ ζ )
−

ϑ 2

2

∣

∣

∣

∣

]

+d
2(ϑ + ζ +ϑζ )

(1+ϑ)(1+ ζ )
|ϑ − ζ |

≤a
Ω(gϑ ,Bϑ) Ω(gζ ,Bζ )

Ω(gϑ ,gζ )

+b [Ω(gϑ ,Bϑ)+Ω(gζ ,Bζ )]

+c [Ω(gϑ ,Bζ )+Ω(gζ ,Bϑ)]

+dΩ(gϑ ,gζ ).

Hence the condition (iii) holds in Theorem 21 for 0 ≤a,b,c,d < 1. Therefore, 0 is a coincidence point of the mappings
B and g in G.

Example 210The self-mappings B and g defined on G = [0,1] are such that Bϑ = ϑ 3 and gϑ = ϑ 4 have two

coincidence points 0,1 with ϑ0 =
1
4

from the metric d(ϑ ,ζ ) = |ϑ − ζ | on G.

3 Applications

Consider the integral equation below:

ĥ(ϑ) =

∫ V

0
µ(ϑ ,ζ , ĥ(ζ ))dζ + g(ϑ), ϑ ∈ [0,V],V > 0. (13)

Let G =C[0,V] be the set of all continuous functions defined on [0,V]. Define a function Ω : G×G→ R
+ by

Ω(u,v) = sup
ϑ∈[0,V]

{|u(ϑ)− v(ϑ)|}

andG=C[0,V] denote the set of all continuous functions on [0,V]. Thus with usual order≤, (G,≤) is a partially ordered
set.

Now, we discuss the solution of (13) in the following theorem.

c© 2023 NSP
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Theorem 31Assume the following:

(a).µ : [0,V]× [0,V]×R
+ → R

+ and g : R→ R are continuous,

(b).for ϑ ,ζ ∈ [0,V],

µ(ϑ ,ζ ,

∫ V

0
µ(ϑ ,z, ĥ(z))dz+ g(ϑ))≤ µ(ϑ ,ζ , ĥ(ζ )),

(c).there is a continuous function N : [0,V]× [0,V]→ [0,+∞] with

|µ(ϑ ,ζ ,a)− µ(ϑ ,ζ ,b)| ≤ N(ϑ ,ζ )|a− b| and

(iv).

sup
ϑ∈[0,V]

∫ V

0
N(ϑ ,ζ )dζ ≤ c

where c< 1. Then, for a ∈C[0,V], (13) has a solution.

Proof.Define B : C[0,V]→C[0,V] by

Bw(ϑ) =
∫ V

0
µ(ϑ ,ζ ,w(ϑ))dϑ + g(ϑ), ϑ ∈ [0,V].

Now, we have

B(Bw(ϑ)) =

∫ V

0
µ(ϑ ,ζ ,Bw(ϑ))dϑ + g(ϑ)

=

∫ V

0
µ(ϑ ,ζ ,

∫ V

0
µ(ϑ ,z,w(z))dz+ g(ϑ))dϑ + g(ϑ)

≤

∫ V

0
µ(ϑ ,ζ ,w(z))dz+ g(ϑ)

=Bw(ϑ).

Therefore, we have B(Bϑ)≤Bϑ for any ϑ ∈C[0,V]. Let ϑ ∗ ≤ ζ ∗ for ϑ ∗,ζ ∗ ∈C[0,V] then,

Ω(Bϑ ∗
,Bζ ∗) = sup

ϑ∈[0,V]

|Bϑ ∗(ϑ)−Bζ ∗(ζ )|

= sup
ϑ∈[0,V]

|
∫ V

0
µ(ϑ ,ζ ,ϑ ∗(ϑ))− µ(ϑ ,ζ ,ζ ∗(ϑ))dϑ |

≤ sup
ϑ∈[0,V]

|
∫ V

0
µ(ϑ ,ζ ,ϑ ∗(ϑ))− µ(ϑ ,ζ ,ζ ∗(ϑ))|dϑ

≤ sup
ϑ∈[0,V]

|
∫ V

0
N(ϑ ,ζ )|ϑ ∗(ϑ)− ζ ∗(ϑ)|dϑ

≤ sup
ϑ∈[0,V]

|ϑ ∗(ϑ)− ζ ∗(ϑ)| sup
ϑ∈[0,V]

∫ V

0
N(ϑ ,ζ )dϑ

= Ω(ϑ ∗
,ζ ∗) sup

ϑ∈[0,V]

∫ V

0
N(ϑ ,ζ )dϑ

≤ cd(ϑ ∗
,ζ ∗).

Also the sequence {ϑ ∗
n } is a non-decreasing in C[0,V] with ϑ ∗

n→ ϑ ∗ and suggest that ϑ ∗
n ≤ ϑ ∗,(n ≥ 0). Hence from

Corollary 25, the equation (13) has a solution for some a ∈ [0,V].

4 Conclusion

In this work, some coincidence point results of the self mappings satisfying generalized rational contractions with/without
continuity property of the mappings are discussed. In obtaining the coincidence point of these results some topological
properties are assumed on the space as well as on the self mappings. Few suitable numerical examples are given to support
the findings. These results generalize and extend the well known results in the literature. Furthermore, the existence and
the uniqueness of a solution of an integral equation is discussed at the end in view of an application of these obtained
results.
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