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Abstract: In this work we derive exponentially fitted symplectic Runge-Kutta-Nyström (RKN) methods from symplectic exponentially
fitted partitioned Runge-Kutta (PRK) methods methods. We construct RKN methods from PRK methods with up to five stages and
fourth algebraic order.

Keywords: Partitioned Runge Kutta methods, Runge Kutta Nyström methods, Symplectic methods, Hamiltonian systems, Exponential
fitting.

1 Introduction

The numerical solution of initial or boundary value
problems with special properties is a subject of large
research activity (see [1] - [96]). More specifically,
numerical solution of Hamiltonian systems with
symplectic single step methods has been considered by
many authors in the last thirty years.

Let U be an open subset ofℜ2d, I an open subinterval
of ℜ then the hamiltonian system of differential equations
is given by

p′ = f (p,q,x), q′ = g(p,q,x) (1)

with

f (q,x) = −
∂H
∂q

(p,q,x),

g(p,x) =
∂H
∂ p

(p,q,x)

where(p,q) ∈U , x∈ I , the integerd is the number of
degrees of freedom andH(p,q,x) be a twice continously

differentiable function onU × I . The q variables are
generalized coordinates, thep variables are the
conjugated generalized momenta andH(p,q) is the total
mechanical energy. The solution operator of a
Hamiltonian system is a symplectic transformation. A
symplectic numerical method preserves the symplectic
structure in the phase space when applied to Hamiltonian
problems.

Partitioned Runge Kutta (PRK) methods appear in the
literature in 1976 [4] in order to use an explicit and an
implicit RK method to integrate a system of ODEs
partitioned into a nonstiff and a stiff part. Recent interest
for partitioned methods came up when solving
Hamiltonian systems and symplectic PRK (SPRK)
methods have been developed in the past thirty years
starting with the work of Ruth [20], Forest and Ruth [2]
who derived the order conditions using Lie formalisation.
Also Abia and Sanz-Serna [1] [12] considered symplectic
PRK methods and gave the order conditions using graph
theory according to the formalisation of Butcher, the
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theory of these methods can be found in the book of
SanzSerna and Calvo [21].

We shall consider systems with separable Hamiltonian

H(p,q,x) = T(p,x)+V(q,x)

whereT is the kinetic energy andV is the potential energy.
In many cases the kinetic energy has the special quadratic
form

T(p) =
1
2

pT p.

Then the system (1) can be written as:

p′ = f (q,x), q′ = p (2)

where

f (q,x) =−
∂V
∂q

(q,x).

The Hamiltonian system (2) can be written as a system
of second order ODEs

q′′ = f (q,x), where f (q,x) =−
∂
∂q

V(q,x). (3)

Symplectic Runge-Kutta-Nyström (SRKN) methods are
appropriate methods for the numerical integration of such
systems.

The solution of Hamiltonian systems often has
oscillatory or periodic behavior and methods that take
into acount this behavior have been developed. Among
these methods are exponetially/trigonometrically (EF/TF)
fitted methods with variable coefficients depending on the
frequency of the specific problem. The idea of combining
symplecticity with exponential fitting was first introduced
by Vigo-Aguiar et. al. in [28] they have constructed an
adaptive EFSRKN method and Simos and Vigo-Aguiar
[23] they presented a two stages modified second order
EFSRKN.

The authors in a series of works developed EFSPRK
methods ([5], [7], [9], [10], [11]) and symplectic
conditions for EFSPRK methods have been given. Also in
[6] a survey of SPRK methods with special properties for
the solution of problems with oscillatory or periodic
behavior has been presented, these methods are of order
up to fifth with six stages.

The construction of EFSRKN methods was also
considered by Van de Vyver [25] who constructed a
second order method with two stages where the fitting is
done at each stage. Tocino and Vigo-Aguiar [24] gave
symplectic conditions for EFSRKN methods without
giving a specific method. Franco [3] constructed a second
and a fourth order EFSRKN method with three stages.
The construction of EFSRKN methods is a difficult
procedure since the symplecticity conditions together
with the exponentially fitting conditions are very
complicated. For this reason methods of higher order
have not been developed.

In this work for first time in the literature we derive
EFSRKN methods from EFSPRK methods. In section 2

the theory of PRK and RKN methods is given. In section
3 we present how the second order EFSRKN method with
two stages presented in [25] can be derived by a EFSPRK
method developed by the authors in [6] and we construct a
family of second order methods with three stages.

2 Classical RKN and PRK methods

An s-stage Partitioned Runge Kutta method for the special
Hamiltonian system (2) is

pn+1 = pn+h
s

∑
i=1

ci f (xn+Cih,Qi), (4)

qn+1 = qn+h
s

∑
i=1

diPi ,

Pi = pn+h
s

∑
j=1

ai j f (x+Cjh,Q j),

Qi = qn+h
s

∑
j=1

Ai j Pj .

The associated Butcher arrays are

C1 a11 · · · a1s
...

...
. . .

...
Cs as1 · · · ass

c1 · · · cs

D1 A11 · · · A1s
...

...
. . .

...
Ds As1 · · · Ass

d1 · · · ds

where

Ci =
s

∑
j=1

ai j , and Di =
s

∑
j=1

Ai j

Assume that the coefficients of the PRK method satisfy the
relations

ciAi j +d ja ji −cid j = 0, i, j = 1,2, . . . ,s.

Then the method is symplectic when applied to Hamiltonian
problems with separable Hamiltonian.

The advantage of using SPRK is that there exist explicit
SPRK methods. Assume the explicit formai j = 0 for i < j and
Ai j = 0 for i ≤ j . Then due to the symplecticness requirement

ai j = c j , Ai j = d j , Ci =
i

∑
j=1

c j , Di =
i−1

∑
j=1

d j .

The SPRK method can be denoted by

[c1,c2, . . . ,cs](d1,d2, . . . ,ds)

This implies a favourable implementation of the method using
only twod-dimensional vectors:

P0 = pn,

Q1 = qn,

Pi = Pi−1+hci f (Qi ,xn+Cih),

Qi+1 = Qi +hdiPi ,

pn+1 = Ps,

qn+1 = Qs+1.
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The authors considered modified PRK methods introducing
the parameterŝαi , β̂i (see [6])

Pi = αiPi−1+hĉi f (Qi ,xn+Dih), (5)

Qi+1 = βiQi +hd̂iPi.

In order to present symplecticity the new parameters have to
satisfy the condition

s

∏
i=1

αiβi = 1 (6)

Requiring that the method is exact for the trigonometrical
functions sin(x) and cos(x) we obtain

αi =
cos((Ci −Di)v)

cos((Ci−1−Di)v)
,

βi =
cos((Ci −Di+1)v)
cos((Ci −Di)v)

,

ĉi =
sin(ci v)

v
1

cos((Ci−1−Di)v)
,

d̂i =
sin(di v)

v
1

cos((Ci −Di)v)
.

An explicit RKN method is

Yi = yn+ γihy′n+h2
i−1

∑
j=1

αi j f (xn+ γ jh,Yj ), (7)

yn+1 = yn+hy′n+h2
s

∑
i=1

bi f (xn+ γih,Yi),

y′n+1 = y′n+h
s

∑
i=1

b′i f (xn+ γih,Yi),

and is associated with a Butcher tableau

γ1
γ2 α21
γ3 α31 α32
...

...
...

γs αs1 αs2 · · · αs,s−1
b1 b2 · · · bs−1 bs

b′1 b′2 · · · b′s−1 b′s

The RKN method (7) can be derived by the PRK method (4)
as follows

bi =
s

∑
j=1

d ja ji , b′i = ci ,

γi = Di , i = 1, . . . ,s

αi j =
s

∑
k=1

Aikak j, i, j = 1. . .s.

A RKN method is symplectic when applied to Hamiltonian
problems (3) if the coefficients satisfy

bi = b′i(1−ci), 1≤ i ≤ s,

bi(b
′
j −αi j ) = b′j (bi −α ji ), 1≤ i, j ≤ s.

3 Construction of RKN methods from PRK
methods

3.1 Two stages methods

Here we show how the second order EFSRKN method with two
stages presented in [25] can be derived by a EFSPRK method
developed by the authors in [6]. The two stages PRK method can
be written as

P0 = pn

Q1 = qn,

P1 = P0+hc1 f (x+c1h,Q1),

Q2 = Q1+hd1P1,

pn+1 = P1+hc2 f (x+(c1+c2)h,Q2),

qn+1 = Q2+hd2P2

We shall consider the classical second order symplectic PRK
method of Yoshida [13] with coefficients

c1 = c2 = 1/2, d1 = 1, d2 = 0.

this method gives the RKN method with coefficients

γ2 = 1, α21 =
1
2
, b1 = α21, b2 = 0, b′1 = b′2 =

1
2
.

This is the RKN method modified in [23], [25]. The associated
Butcher arrays are

1/2 1/2 0
1/2 1/2 1/2

1/2 1/2

0 0 0
1 1 0

1 0
→

0
1 1/2

1/2 0
1/2 1/2

The TFSPRK method presented in [6] is

P0 = pn

Q1 = qn,

P1 = α1P0+hĉ1 f (x+c1h,Q1),

Q2 = β1Q1+hd̂1P1,

pn+1 = α2P1+hĉ2 f (x+(c1+c2)h,Q2),

qn+1 = β2Q2+hd̂2P2

where

α1 = cos(v/2), α2 =
1

α1
, β1 = β2 = 1,

ĉ1 =
sin(v/2)

v/2
, ĉ2 =

tan(v/2)
v/2

, d̂1 =
sin(v/2)

v/2
, d̂2 = 1.

Substituting thePis we derive the following RKN method

Q1 = qn,

Q2 = β1qn+hα1d̂1pn+h2ĉ1d̂1 f1,

qn+1 = β2β1qn+hα1(β2d̂1+α2d̂2)pn

+ h2(β2d̂1+α2d̂2)ĉ1 f1+h2ĉ2d̂2 f2
pn+1 = α2α1pn+hα2ĉ1 f1+hĉ2 f2,
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or

Q1 = qn,

Q2 = qn+h
sinv

v
pn+h2 1−cosv

v2 f1,

qn+1 = qn+h
sinv

v
pn+h2 1−cosv

v2 f1

pn+1 = pn+h
tan(v/2)

v
( f1+ f2)

This is the modified RKN method presented in [25].

3.2 Three stages methods

The three stages PRK method can be written as

P0 = pn

Q1 = qn,

P1 = P0+hc1 f (x+c1h,Q1),

Q2 = Q1+hd1P1,

P2 = P1+hc2 f (x+(c1+c2)h,Q2),

Q3 = Q2+hd2P2,

pn+1 = P2+hc3 f (x+(c1+c2+c3)h,Q3),

qn+1 = Q3+hd3P3

We consider the family of three stages second order
symplectic PRK methods proposed by McLachlan [8] with
coefficients

c1 = c3 = z,c2 = 1−2z, d1 = 1/2,d2 = 1/2,d3 = 0.

this method can be written as a RKN method with coefficients

γ2 =
1
2
, γ3 = 1, b1 = z, b2 = 1−2z, b3 = z.

The associated Butcher arrays are

z z 0
1−z z 1−2z
1 z 1−2z z

z 1−2z z

0 0 0
1/2 1/2 0
1 1/2 1/2 0

1/2 1/2 0

→

0
1/2 z/2
1 z 1/2−z

z 1/2−z
z 1−2z z

The optimal value of z suggested in [8] is

z=
a2+6a−2

12a
where a=

(

2
√

326−36
)1/3

,

Franco in [3] considered the casez = 1/6 and constructed a
modified TFRKN method.

Here we shall consider the general case, the three stages TF
PRK method is of the form

P0 = pn

Q1 = qn,

P1 = α1P0+hĉ1 f (x+c1h,Q1),

Q2 = β1Q1+hd̂1P1,

P2 = α2P1+hĉ2 f (x+(c1+c2)h,Q2),

Q3 = β2Q2+hd̂2P2,

pn+1 = α3P2+hĉ3 f (x+(c1+c2+c3)h,Q3),

qn+1 = β3Q3+hd̂3P3,

where

α1 = cos(zv), α2 = 1, α3 =
1

α1
,

β1 =
cos((z− 1

2)v)

cos(zv)
, β2 =

1
β1

, β3 = 1,

ĉ1 =
sin(zv)

v
, ĉ2 =

2
v

sin((z−
1
2
)v), ĉ3 =

tan(zv)
v

,

d̂1 =
sin(v/2)
(vcos(zv)

, d̂2 =
sin(v/2)

vcos((z− 1
2)v)

, d̂3 = 0.

Substituting thePis we derive the following TFRKN method

Q1 = qn,

Q2 = β1qn+hα1d̂1pn+h2ĉ1d̂1 f1,

Q3 = β2β1qn+hα1(β2d̂1+α2d̂2)pn

+ h2((β2d̂1+α2d̂2)ĉ1 f1+ ĉ2d̂2 f2
)

,

qn+1 = β3β2β1qn+hα1(β3β2d̂1+α2(β3d̂2+α3d̂3))pn

+ h2(β3β2d̂1+α2(β3d̂2+α3d̂3))ĉ1 f1
+ h2(β3d̂2+α3d̂3)ĉ2 f2+h2d̂3ĉ3 f3

pn+1 = α3α2α1pn+h(α3α2ĉ1 f1+α3ĉ2 f2+ ĉ3 f3)
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