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1 Introduction differentiable function onU x |I. The q variables are
generalized coordinates, the variables are the
The numerical solution of initial or boundary value conjugated generalized momenta dtp,q) is the total
problems with special properties is a subject of largemechanical energy. The solution operator of a
research activity (seel] - [9€]). More specifically, Hamiltonian system is a symplectic transformation. A
numerical solution of Hamiltonian systems with symplectic numerical method preserves the symplectic
symplectic single step methods has been considered bstructure in the phase space when applied to Hamiltonian
many authors in the last thirty years. problems.
LetU be an open subset @f?4, | an open subinterval

of U then the hamiltonian system of differential equations  partitioned Runge Kutta (PRK) methods appear in the

is given by literature in 1976 4] in order to use an explicit and an
I I implicit RK method to integrate a system of ODEs
p. f(p.ax). d=o(p.a.x) 1) partitioned into a nonstiff and a stiff part. Recent intéres
with for partiioned methods came up when solving
_ Hamiltonian systems and symplectic PRK (SPRK)
f(a.x) = —a—q(p,q,x), methods have been developed in the past thirty years
OH starting with the work of RuthZ0], Forest and RuthZ]
a(p,x) = a—p(p,q,x) who derived the order conditions using Lie formalisation.

Also Abia and Sanz-Sernd][[ 12] considered symplectic
where(p,q) € U, x € |, the integed is the number of PRK methods and gave the order conditions using graph
degrees of freedom artd(p,q,x) be a twice continously theory according to the formalisation of Butcher, the
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theory of these methods can be found in the book ofthe theory of PRK and RKN methods is given. In section
SanzSerna and Calva]]. 3 we present how the second order EFSRKN method with
We shall consider systems with separable Hamiltoniantwo stages presented i24] can be derived by a EFSPRK
H - Vv method developed by the authors @ §¢nd we construct a
(P,0:X) =T(p,x)+V(a,X) family of second order methods with three stages.
whereT is the kinetic energy and is the potential energy.
In many cases the kinetic energy has the special quadratic

form 2 Classical RKN and PRK methods
1
T(p)= > p'p. An s-stage Partitioned Runge Kutta method for the special
. Hamiltonian system3) is

Then the systeml) can be written as: <

pP=fgx, d=p (2)  Pny1= pn-i-hzicif(xn-kcih,Qi), 4)
=

where

S
Q+1:q +h dP7
n n I; 101

f(q,x>=—%<q,x>.

S
The Hamiltonian systen®{ can be written as asystem P = Pnth > aijf(x+Cjh,Qy),
of second order ODEs =1

S
q'=f(q,x), where f(qg,x)= —%V(qm). ©) Q =0nt hgl/sq,- P

Symplectic Runge-Kutta-Nystrom (SRKN) methods are ~ The associated Butcher arrays are
appropriate methods for the numerical integration of such

systems. Ci|laar -+ a&s D1|A11 -+ Ass
The solution of Hamiltonian systems often has I ERE N EEE

oscillatory or periodic behavior and methods that take Cslas, -+ ass Ds|Ast -+ Ass

into acount this behavior have been developed. Among le1 -+ cs |dp - ds

these methods are exponetially/trigonometrically (ER/TF
fitted methods with variable coefficients depending on thehere
frequency of the specific problem. The idea of combining . & _ -
symplecticity with exponential fitting was first introduced Gi= j;a”’ and Di = j;A”
by Vigo-Aguiar et. al. in 28] they have constructed an - ,
adaptive EFSRKN method and Simos and Vigo-Aguiar Assume that the coefficients of the PRK method satisfy the
[23 they presented a two stages modified second ordefe!ations
EFSRKN. GAjj +djaj —c¢dj =0, i,j=12,...,s

The authors in a series of works developed EFSPR
methods (], [7], [9], [10Q], [11]) and symplectic , L

o . ._problems with separable Hamiltonian.

andltlons forfESFPS;}?K n:ﬁtfliods'?r?ve bge? gIVen.tAIscf) M The advantage of using SPRK is that there exist explicit
[6] a survey o methods with special properties 10r sppk methods. Assume the explicit foayy = 0 fori < j and

the solution of problems with oscillatory or periodic a; —gfori < j. Then due to the symplecticness requirement
behavior has been presented, these methods are of orde

up to fifth with six stages. -
The construction of EFSRKN methods was also &
considered by Van de Vyver2f] who constructed a
second order method with two stages where the fitting is 1€ SPRK method can be denoted by
done at each stage. Tocino and Vigo-Aguiadl[gave  [ci,cp,...,cq)(dy,do, ..., ds)
symplectic conditions for EFSRKN methods without
giving a specific method. Franc8][constructed a second
and a fourth order EFSRKN method with three stages.
The construction of EFSRKN methods is a difficult Po = pn,
pro;ed#re since thg ”Syn;PthiCiW (élqrjditions together Q; = qp,
with the exponentially fitting conditions are very _ . :
complicated. For this reason methods of higher order R =R-athaf(Qux+Gh),
have not been developed. Qita = Qi +hdR,
In this work for first time in the literature we derive Pni1 =P,
EFSRKN methods from EFSPRK methods. In section 2qn,1 = Qs:1.

KI'hen the method is symplectic when applied to Hamiltonian

i i—1
=cj, Aj=dj, Ci:-zlch Di:-zldj.
J= J=

This implies a favourable implementation of the method gisin
only two d-dimensional vectors:
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The authors considered modified PRK methods introducing3 Construction of RKN methods from PRK

the parameterd;, 3 (see p])

P = aiP_1 +h& f(Qi,x,+Dih),
Qiy1 = BQi+hdiR.

methods

5
© 3.1 Two stages methods

In order to present symplecticity the new parameters have tdHere we show how the second order EFSRKN method with two

satisfy the condition

S

‘rlaiBi =1

stages presented i29] can be derived by a EFSPRK method
developed by the authors ifi][ The two stages PRK method can
be written as

(6)
Po = pn

Requiring that the method is exact for the trigonometrical Qi = Qn,

functions sirix) and co$x) we obtain

cos(Ci — D))

% cod(G DY)’

g = UG —Di)v)

' cog(G-Di)v) ’

. _ sin(cv) 1
7TV cod(G D))
q - sin(d; v) 1

v cog(CG—Dj)v)’

An explicit RKN method is
i-1
Yi = yn+yhya+h? Y aij fxa+yihYg),
=1
5 S
Ynt1 = Yn+hy,+h Zlbif(xn""ylhyi%
i=

S
Vi1 = Yn+h Zlbi’f(xn—i—y.h,Yi),
i=

and is associated with a Butcher tableau

i
Y2|021
¥3|031 A32

Ys|Os1 O -+ Oss1
by by ---bs 1 bs
by b by b

The RKN methodT) can be derived by the PRK methog) (

as follows
s
b = Zdjaji7 bl = g,
=1
=D, i=1...,s

S
aij = Y Akdj, hj=1...s
&1

A RKN method is symplectic when applied to Hamiltonian

problems 8) if the coefficients satisfy

bi =b(1-¢), 1<i<s,
bi(b} —aij) = bj(bi—aj), 1<i,j<s

P = Py+hey f(x+c1h,Q1),

Q2 = Q1 +hdyPy,
Pni1 = Pr+hef(x+(c1+c2)h Q2),
Ont+1 = Q2 +hdoP,

We shall consider the classical second order symplectic PRK
method of Yoshidal3] with coefficients

ci=0C =1/2, dy =1, dy=0.

this method gives the RKN method with coefficients

1

2 2

This is the RKN method modified ir2p], [25]. The associated
Butcher arrays are

Yo =1, 021:%7 b1 =021, bpy=0, bj=
(7)

1/2|1/2 0 000 21/2
[1/21/2 10 1217
The TFSPRK method presented 8} [s
Po = pn
Ql = CIn>
P, = a1Py+hé; f (X+C1h,Q1),
Q2 = B1Q1+hd1 Py,
Pni1 = 2P+ he f(X+(c1+C2)h,Q2),
Oni1 = B2Q2 +hdzP,
where
1
ay =coqv/2), ap= ar’ Bi=B=1,
. sin(v/2) . tan(v/2) - sin(v/2) &
G = V2 G = /2 O = /2 =1

Substituting thé}s we derive the following RKN method

Q1 = On,
Q2 = B10n -+ haydy pn +h?61d; fir,
Onir = B2Biln + haa (Bady + aady) pn
+ hz(Bgal + 02&2)61 f1+ hzégag fo
Pni1 = 0201 Pn+hazCy fi +héx fo,
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or
Q1 = 0n,
S
On+1 = Qn+h3iﬂ/pn+h21_zosvfl
\ V
prer = 2 (1, 4 1y

This is the modified RKN method presented 23]

3.2 Three stages methods

The three stages PRK method can be written as
Po = pn
Q1 = On,
P1 = Py+he f(x+c1h,Qy),
Q2 = Q1 +hdi Py,
P, =P+ thf(X+ (Cl + Cz)h7 Qg),
Q3 = Q2 +hchP,,
Pni1 = P2+ hesf(x+ (c1+c2+c3)h, Qs),
Oni1 = Q3 +hdsPs

where
al :CquVL 02: 17 03* ail7
~ cos((z— 3)V) 1 -
Bl*W7 BZ*E> B3fl>
6= = Zsine- ), =Y,
~  sin(v/2) :  sin(v/2) :
dy = (veoszy)’ dy = 7\&05«2_ %)V)7 d3=0.

Substituting thé? s we derive the following TFRKN method

Q1 = n,
Q2 = B10n + haydy pn +h?€1d 1,
Q3 = BoPitn + hay (Bady + azdy) pn
+ 12 ((Badh + a2d2) 1 1+ Cada 7).,

Ons1 = BaB2B10n + hay(BaBads + az(Badz + azds)) pn

+ 2(BaBathy + 0r2(Bady + a3ds) )é f
+ hz(ﬁgdz + a3d3)Eafr + h2d363 f3

Pns+1 = Q30201 Pn +h(azazCy f1+ a3 fo 4 C313)
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