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Abstract: In the present paper, we obtained an analytical solution ichdequation for modified Morse potential with tensor
interaction term by similarity transformation and Asyntatdteration Method (AIM). The tensor potential is used tolpe nuclear
properties and provides a theoretical tool to study the miegey of the problem. Similarity transformation is ableonvert the Dirac
equation to a simple form applicable to the Asymptotic ltieraMethod. Thus, the exact solution of the Dirac-Morselyiem can be
obtained by the systematic of AIM. Our results are comparitid the results of other authors and a good agreement isnutai
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1 Introduction One of the interesting approaches for solving the Dirac
equation is to transform it to a second-order differential

The study of exact solution is an important topical equation and then try to convert the resultant equation to

research in quantum mechanics. This solution acquires it§® Schrodinger-like one. If this technique is success th
importance because it is a useful tool to improvethe solution of Dirac equation can be deduced from the

theoretical models and check the validity of numerical Known form of the Schrodinger equation. However, this
methods. The description of a spin-1/2 particle motion'S not always success becguse in most cases the resultant
can be achieved by Dirac equation, which plays a€quation cannot be a S.chrodmge.r—hke equation. Hence, it
fundamental role in relativistic quantum mechanics. One!S Very hard to find solutions by this technique.
task of Dirac equation is to solve problems in high-energy A simple similarity transformation was used in Ref.
physics []. [26] to transform the radial wave equation of
Recent years have witnessed several techniques th&irac-Coulomb problem to a form nearly identical to
have been used to solve the Dirac equation (see Rafs. [those of the Schrodinger equation. Recently, this
3,4,5,6,7,8,9,10,11]). For example, the super-symmetry technique was used ir2§] for Dirac equation in the
(SUSY) technique], shape invariances]4], asymptotic ~ Presence of a vector Coulomb plus scalar linear potential
iteration method (AIM) §,6,7,8,9], factorization method ~ as well as with pure linear potential. Depending on the

[10], and the Nikiforov—Uvarov (NU) techniquel]. potential models, similarity transformation has an apilit
Nevertheless, there are very few exactly solvableto attain a great simplification to the problem by simple
potentials. choice of the parameters of this technique.

The AIM [5] has been used to find solution of the The aim of this work is to use the AIM to obtain an
second-order ordinary differential equation. This methodanalytical solution for the Dirac equation with Morse
gives exact and approximate solution for many problemamodified potential including tensor interaction term by
in physics [12,13,14,15,16,17,18,19,20,21,22,23]. For  similarity transformation. Morse potential is one of the
solutions of Schriodinger and Klein-Gordon equations, thesuitable models for diatomic molecules potential energy.
AIM method is widely used with great success, but for It can be used to model interactions between an atom and
solutions of Dirac equation, it is not used in their original a surface 27]. This potential has been studied by various
form until the recent appearance of similarity methods, such as confluent hyper-geometric functions
transformation24,25]. [28], the algebraic method2p], the super-symmetric
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approach 30,31], Nikiforov—Uvarov method under spin to obtain two coupled equations f&.(r) [the upper
symmetry B2 33], Schrodinger-Morse problem by AIM component] an®@(r) [the lower component] as follows
[34], complex scaling method3p]. Besides that, the
tensor potential has been introduced into the Dirac <H11 le) <Rnk(r)) B E(Rnk(r)) Ko
equation with the substitutiop — p—ifd . T(r) [36, Hz1 Hoo ) \ Quk(r) | — Qnk(r)
37]. It is also used to probe nuclear properti@g][and
provides a theoretical tool to study the degeneracy of thewith
problem B9.

This paper is organized is as follows. In Sezgtwe Hyy = sinh@ (i +
present a brief introduction of the Dirac formalism and
explain how the simple similarity transformation can 4 1 ‘
convert the Dirac equation to a second order differential - :
equation with useful parameters. Theses parameters are 2~ {cosh@ (@ N F) T +msmh6+T(r)] ®)
chosen in such a way that the resulting equation can be
transformed to a form nearly identical to the Ho; = coshd ( 2
Schrodinger-like equation. In Se@®, we give technical dar r
details of obtaining the exact solution and the relatigisti
energy eigenvalue for Dirac-Morse problem by . _ _ {sinhe (i + }> —V(r)+mcosh€] (11)
asymptotic iteration method. In Seat, we present and dar r
discuss our results. Finally, we conclude our results in

1

F) +V(r)+mcosh  (8)

d. 1) +|F<+msinh6—T(r) (10)

wherek = @(j + 1/2) denotes the quantum number for

Sects. states witH = j + @wand® = +1, whereas cosh = (a%+
b?)/(a® — b?), sinh® = 2ab/(a® — b?) andn denotes the
radial quantum number.

2 Dirac equation under Similarity The two coupled equations f&(r) andQ(r) are given

Transformation by

H11Ruk(r) + H12Qnk(r) = ER(r) (12)
The relativistic motion of a particle of mass under the

influence oj vector potentidl (r) and tensor interaption_ Ha1Rk (1) + H22Qmk(r) = EQuk(r). (13)
term|B7 -fT(r) can be presented by Dirac equation (in o )
units of i = c = 1) [1] Multiplying Eq. (12) by sinh@, Eq. (L3) by coshd and
subtracting the resultant equations, we obtain
H(T)y(T) =Ey(T) (1) 1
, Qnk(r) = 5—=D1(r)Ruk(r) (14)
with 4a(r)

- , . where
H(P) =0 - B +Bm+V(T)-ipd -iT(T) (2 Da(r) = o+ Zu(r), (15)

whered andf have their meaning as 4x4 Dirac matrices.

Applying a similarity transformation to Eql), one Zi(r) = }4—I—(Coshe—T(r)CoshG—V(r)sinh9+Esinh6
can gets25,26] rr ’

(16)
H'Y/(r) =E@/(r) 3 and
with Zl(r):m—V(r)coshG+l;sinhe—T(r)sinhBJrEcoshe.
_ . R a7)
H'=FHF 1 ¢/(r) = Fy(r) andF = a+ibpa -f, (4) Further, multiplying Eq. 12) by cosh9, Eq. (13) by
inh tracting th tti ti fi
where r"is the unit vector?/r and a and b are real sinhd and subtracting the getting equations, we find
constants to be determined later. The transformed wave 1
function is given by Ruk(r) = sz(r)an(r), (18)
s (TP [ IRk(N)@}(6,9) where

Yn T = (gnkm) = (anm? ol (0.9 ) © Da(r) = & + Z5(1). (19)

In a straightforward manner one can calculate 1 k ) )
Zo(r)= " + - coshf+T(r)coshf+V(r)sinh@ —Esinhf,

FHF ¢/ —Ey/ (6) (20)
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and Introducing a new variable= e *"/2 yields
k . X 4m? 4Er%k 2
= _Z — —57 + 5%  4C%Z2  8AE 4C
{o(r) =m+V(r)coshd rsth)+T(r)sth) Eco(sérlﬂ;. d, (z)+( A > A2 - )\an+7> a(2)
Substituting by Eq.14) in Eq. (18) and solving for A2
Ruk(r), one gets +kT —0. (28)
1 1 The first order derivative of(z) can be easily removed b
r) = ———D(r)5——D1(r)R(r). 22 y y

Ra(r) a(r) 2 )Zl(r) 1{n)Radr) ( defining(z) = @Y (2); U (2) = 1/z which allows us to

. ) obtain
After a simple algebra, Eq2@) can be rewritten as

R+ (2= ) Rl

r qa(r)
2O _ Enk (Ern|2< +_1)) Yok(2) =0, (29)
+ (- 2PED ) R =0 @3)
! where 2 )
with 1 4 4E
€nk(£nk+1)=—z+v— )\gk (30)
kcoshg +k?  2KT(r) 2 T2
h(r) = - 2 + r —T4(r) The relativistic energy eigenvalues of Dirac-Morse
o Iy Iy problem can be found by applying the asymptotic
S|2nh6V (rz) CoSRIT(r) — 2EV(r) iteration method (AIM) to Eq. 29). A well-known
+VA(r) +E=, (24)  description of the AIM can be found in Ref5][and we

h refer the reader to this paper for more detail. In the
following, we present a short summary of AIM method.
Consider the equation of the form

f7(2) = Ao(2)f'(2) +50(2) (2 31
3 Application of AIM to Dirac-Morse () P12+ =1 &)
problem which can be iterated up té + 1) and to (i +2)"
derivatives, wherei = 1,2,3,... denote the iteration
number, one gets

where the prime notation denotes differentiation wit
respect ta.

In order to compare our results with those obtained by
other techniques3[l,34], we confine our investigations i1 ,
with the modified form of Morse potentiaB]] (@) =212 @ +s5-121(2), (32)

V() =Ae (25) 422 = X2 F'(2) +s (D (2), (33)

where the parameterd and A are real andA > 0. where
Substituting by the Morse potential into EQ.3 yields a
complicated equation which needs to be simplified in%i(? = A-1(2) +5-1(2) +2(2)Ai-1(2),

order to be easily treated by AIM. At this stage, we can §(2) = §_1(2) +S(2)Ai-1(2) . (34)
use the similarity transformation to reach a great ) o e o
simplification by the following choice of cogh and Taking the ratio ofi +2)™ to (i+1)™ derivatives, one
sinh@ in Eq. 23 obtains
- : S
B A fi+2) ¢ (i+1) Ai(f+31)
-2 inB=—2 wi —/B2_A2 — = = 9

coshd == and sinfh=-—= with C=vB?-A o — g A a(f 221) (35)

(26)
which vyields {j(r) = 0 if the tensor potential Forlargei, the asymptotic aspect of the method arises. So
T(r)= Be A+ IF( is taken wherds is a real parameter. So that one can assums][
that the only remaining term of the first order derivatives

of R(r) in Eq. 23) is (2/r)R(r). This term can be easily S_Sa1_, (36)
removed by assuming thR(r) = r~1¢(r). Then one gets A A
(1) + [Eﬁk —mP—C2e 2} L e (CA - 2AEnk)} which yields
X Al(r) =0 (27) dz Aicr’
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After integration, the solution can be obtained 3s [ The resultinge converges for any number of iterations.
_ adz This means that for any valuesfve get
f(z=e (38)

4nt+3  2AEq
and the energy eigenvalueswhich can be determined &k=——%5—— BAZ T BA forn=0,1,2,3,...(47)

from Eq. 34) by imposing the termination condition as
5] d- ©4) by imp g Accordingly, the exact analytical relativistic energy of

the Dirac-Morse potentiak,k, can be obtained from Eq.
d(z,€) = Ai(2)s-1(2) —s(2)Ai-1(2) = 0. (39) (30)as

Hence, the accuracy and convergence rate of AIM ACHiA +C/m2t2 — ChzA 2
depends on the asymptotic behavior of the wave functiorFnk = 2 (48)

Yok in EQ. 29). So that, we need to analyze the asymptotic ) 5 5 . o
behavior ofYy near the singular pointg= 0 andz= .  With t©= A+ C* and 7 = (1+n). This result is in

This investigation suggests thej; takes the form agreement with the result obtained by Alhaidari's
formalism for the Dirac-Morse problen3{].
Yok(2) = Zct1 g B2 frk(2). (40) It should be noted that Eg4{) has a convenient form

of the confluent hyper-geometric differential equation. So
that its solution can be obtained by any conventional
method and one can gets

where the unknown parametg® can be determined
through AIM. By substituting this trial wave function into
Eqg. (29) and after some algebra we find

p 42621+ &) o frk(2) = #AFi(as; a2:857), (49)
k(2 = [ z ] (2 whereg/ is an arbitrary constant ané is the well-known
confluent hyper-geometric functioA(] with
T 4727 BAZ 2B
8AE 4C
- | o (@1) 3
a-2 = V+ _7

where the introduced functiorf(z) satisfies a new B
second-order homogenous linear differential equatlon =2p. (50)
which is now suitable for the use of the AIM. By using Egs.40) and @1), the general solution of the

We Can attain a valuable simplification if we assume wave function of Dirac-Morse problem can be written as
that3 = _X This choice removes theé term in Eq. 61).

The application of AIM is now started by rewriting Eq. Ynk(2) = of 6t e B2 F (ag; 8y 857). (51)
(41) in the AIM format of Eq. 81) to get On the other hand, the non-relativistic energy eigenvalue
472 — 2(1+ &) can be found. It is known that the non-relativistic
Ao(2) = 7 ) Schroddinger-Morse equation f&wave can be written as
8AEy 4C [31]
%0(z) = 6B+ 4Bk + ——— — —. (42)
oAz WA (r)+ [b(A +2a) " — b?e A 4260 yn(r) = 0.(52)

By comparing Eq.%2) with Eqg. (27), one can obtain the
following correspondence between nonrelativistic and
Within the framework of the AIM, the relativistic energy relativistic parameters

eigenvalues of the modified Morse potential can be AEq

calculated by means of Eq89). The conditiond (z, &) & 7 (Ek—m?)/2, b—C, and— — 5 - 3
depends on the two variablesnde.. We found that the
termination condition in Eq.39) is independent of the
choice ofz Thus, the problem is exactly solvable through &, = ((ab/A)? —n?) /2. (54)
AIM. The definition of Ag(z) and sp(z) can be used in
AIM to obtain the energy through the termination
condition. The result of applying AIM forey with

4 Results and discussion

Hence, the energy can be written as

Substituting by the expressionAfrom Eq. @8) and from
the mapping@ = —AE/b yields

different values ofiis 1 112
&=—=(a+m)". (55)
forn:0—>£0k:—§’—22/'\50k+5% (43) " 2
7 2By | C We would like to emphasize that AIM is an effective
forn=1-ew=—3- 5 + 5> (44)  method to obtain exact solutions for second order
_ _ 11 E c. differential equations, like Schroédinger and Klein-Gand
forn=2- ex=-3 S+ (45) equations. But for Dirac equation, AIM is not used
......... ,Etc. (46) directly. By wusing the technique of similarity
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