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Abstract: In the present paper, we obtained an analytical solution of Dirac equation for modified Morse potential with tensor
interaction term by similarity transformation and Asymptotic Iteration Method (AIM). The tensor potential is used to probe nuclear
properties and provides a theoretical tool to study the degeneracy of the problem. Similarity transformation is able toconvert the Dirac
equation to a simple form applicable to the Asymptotic Iteration Method. Thus, the exact solution of the Dirac-Morse problem can be
obtained by the systematic of AIM. Our results are compared with the results of other authors and a good agreement is obtained.
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1 Introduction

The study of exact solution is an important topical
research in quantum mechanics. This solution acquires its
importance because it is a useful tool to improve
theoretical models and check the validity of numerical
methods. The description of a spin-1/2 particle motion
can be achieved by Dirac equation, which plays a
fundamental role in relativistic quantum mechanics. One
task of Dirac equation is to solve problems in high-energy
physics [1].

Recent years have witnessed several techniques that
have been used to solve the Dirac equation (see Refs. [2,
3,4,5,6,7,8,9,10,11]). For example, the super-symmetry
(SUSY) technique [2], shape invariance [3,4], asymptotic
iteration method (AIM) [5,6,7,8,9], factorization method
[10], and the Nikiforov–Uvarov (NU) technique [11].
Nevertheless, there are very few exactly solvable
potentials.

The AIM [5] has been used to find solution of the
second-order ordinary differential equation. This method
gives exact and approximate solution for many problems
in physics [12,13,14,15,16,17,18,19,20,21,22,23]. For
solutions of Schrödinger and Klein-Gordon equations, the
AIM method is widely used with great success, but for
solutions of Dirac equation, it is not used in their original
form until the recent appearance of similarity
transformation [24,25].

One of the interesting approaches for solving the Dirac
equation is to transform it to a second-order differential
equation and then try to convert the resultant equation to
the Schrödinger-like one. If this technique is success, then
the solution of Dirac equation can be deduced from the
known form of the Schrödinger equation. However, this
is not always success because in most cases the resultant
equation cannot be a Schrödinger-like equation. Hence, it
is very hard to find solutions by this technique.

A simple similarity transformation was used in Ref.
[26] to transform the radial wave equation of
Dirac-Coulomb problem to a form nearly identical to
those of the Schrödinger equation. Recently, this
technique was used in [25] for Dirac equation in the
presence of a vector Coulomb plus scalar linear potential
as well as with pure linear potential. Depending on the
potential models, similarity transformation has an ability
to attain a great simplification to the problem by simple
choice of the parameters of this technique.

The aim of this work is to use the AIM to obtain an
analytical solution for the Dirac equation with Morse
modified potential including tensor interaction term by
similarity transformation. Morse potential is one of the
suitable models for diatomic molecules potential energy.
It can be used to model interactions between an atom and
a surface [27]. This potential has been studied by various
methods, such as confluent hyper-geometric functions
[28], the algebraic method [29], the super-symmetric
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approach [30,31], Nikiforov–Uvarov method under spin
symmetry [32,33], Schrödinger-Morse problem by AIM
[34], complex scaling method [35]. Besides that, the
tensor potential has been introduced into the Dirac
equation with the substitutionp → p− iβ−→α .r̂ T (r) [36,
37]. It is also used to probe nuclear properties [38] and
provides a theoretical tool to study the degeneracy of the
problem [39].

This paper is organized is as follows. In Sect.2, we
present a brief introduction of the Dirac formalism and
explain how the simple similarity transformation can
convert the Dirac equation to a second order differential
equation with useful parameters. Theses parameters are
chosen in such a way that the resulting equation can be
transformed to a form nearly identical to the
Schrödinger-like equation. In Sect.3, we give technical
details of obtaining the exact solution and the relativistic
energy eigenvalue for Dirac-Morse problem by
asymptotic iteration method. In Sect.4, we present and
discuss our results. Finally, we conclude our results in
Sect.5.

2 Dirac equation under Similarity
Transformation

The relativistic motion of a particle of massm under the
influence of vector potentialV (r) and tensor interaction
term iβ−→α · r̂ T (r) can be presented by Dirac equation (in
units of h̄ = c = 1) [1]

H(−→r )ψ(−→r ) = Eψ(−→r ) (1)

with

H(−→r ) =−→α ·
−→p +β m+V(−→r )− iβ−→α · r̂ T (−→r ) (2)

where−→α andβ have their meaning as 4x4 Dirac matrices.
Applying a similarity transformation to Eq. (1), one

can gets [25,26]

H ′ψ ′(r) = Eψ ′(r) (3)

with

H ′ = FHF−1,ψ ′(r) = Fψ(r) andF = a+ ibβ−→α · r̂, (4)

where ˆr is the unit vector−→r /r and a and b are real
constants to be determined later. The transformed wave
function is given by

ψ ′

nk(
−→r ) =

(
fnk(

−→r )
gnk(

−→r )

)
=

(
iRnk(r)Φ l

jm(θ ,φ)
Qnk(r)

−→σ · r̂Φ l
jm(θ ,φ)

)
(5)

In a straightforward manner one can calculate

FHF−1ψ ′ = Eψ ′ (6)

to obtain two coupled equations forRnk(r) [the upper
component] andQnk(r) [the lower component] as follows

(
H11 H12
H21 H22

)(
Rnk(r)
Qnk(r)

)
= E

(
Rnk(r)
Qnk(r)

)
(7)

with

H11 = sinhθ
(

d
dr

+
1
r

)
+V(r)+mcoshθ (8)

H12 =−

[
coshθ

(
d
dr

+
1
r

)
−

k
r
+msinhθ +T (r)

]
(9)

H21 = coshθ
(

d
dr

+
1
r

)
+

k
r
+msinhθ −T (r) (10)

H22 =−

[
sinhθ

(
d
dr

+
1
r

)
−V(r)+mcoshθ

]
(11)

wherek = ω̃( j + 1/2) denotes the quantum number for
states withl = j+ ω̃ andω̃ =±1, whereas coshθ = (a2+
b2)/(a2

− b2), sinhθ = 2ab/(a2
− b2) andn denotes the

radial quantum number.
The two coupled equations forR(r) andQ(r) are given

by
H11Rnk(r)+H12Qnk(r) = ERnk(r) (12)

H21Rnk(r)+H22Qnk(r) = EQnk(r). (13)

Multiplying Eq. (12) by sinhθ , Eq. (13) by coshθ and
subtracting the resultant equations, we obtain

Qnk(r) =
1

ζ1(r)
D1(r)Rnk(r) (14)

where
D1(r) = ∂r +Z1(r) , (15)

Z1(r)=
1
r
+

k
r

coshθ −T (r)coshθ −V (r)sinhθ +E sinhθ ,

(16)
and

ζ1(r)=m−V(r)coshθ +
k
r

sinhθ −T (r)sinhθ +E coshθ .

(17)
Further, multiplying Eq. (12) by coshθ , Eq. (13) by

sinhθ and subtracting the getting equations, we find

Rnk(r) =
1

ζ2(r)
D2(r)Qnk(r) , (18)

where
D2(r) = ∂r +Z2(r) , (19)

Z2(r)=
1
r
+

k
r

coshθ +T (r)coshθ +V (r)sinhθ −E sinhθ ,

(20)
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and

ζ2(r)=m+V(r)coshθ −
k
r

sinhθ +T (r)sinhθ −E coshθ .

(21)
Substituting by Eq. (14) in Eq. (18) and solving for

Rnk(r), one gets

Rnk(r) =
1

ζ2(r)
D2(r)

1
ζ1(r)

D1(r)Rnk(r) . (22)

After a simple algebra, Eq. (22) can be rewritten as

R′′

nk(r)+

(
2
r
−

ζ ′

1(r)
ζ1(r)

)
R′

nk(r)

+

(
h(r)−

Z1(r)ζ ′

1(r)
ζ1(r)

)
Rnk(r) = 0, (23)

with

h(r) = −
k coshθ + k2

r2 +
2kT (r)

r
−m2

−T 2(r)

−sinhθV ′(r)− coshθT ′(r)−2EV(r)

+V 2(r)+E2 , (24)

where the prime notation denotes differentiation with
respect tor.

3 Application of AIM to Dirac-Morse
problem

In order to compare our results with those obtained by
other techniques [31,34], we confine our investigations
with the modified form of Morse potential [31]

V (r) = Ae−λ r (25)

where the parametersA and λ are real andλ > 0.
Substituting by the Morse potential into Eq. (23) yields a
complicated equation which needs to be simplified in
order to be easily treated by AIM. At this stage, we can
use the similarity transformation to reach a great
simplification by the following choice of coshθ and
sinhθ in Eq. (23)

coshθ =
B
C

and sinhθ =−
A
C

with C =
√

B2−A2

(26)
which yields ζ ′

1(r) = 0 if the tensor potential
T (r) = Be−λ r + k

r is taken whereB is a real parameter. So
that the only remaining term of the first order derivatives
of R(r) in Eq. (23) is (2/r)R′(r). This term can be easily
removed by assuming thatR(r) = r−1φ(r). Then one gets

φ ′′

nk(r)+
[
E2

nk −m2
−C2 e−2rλ + e−rλ (Cλ −2AEnk)

]

×φnk(r) = 0. (27)

Introducing a new variablez = e−λ r/2 yields

φ ′′

nk(z)+



−
4m2

λ 2 +
4E2

nk
λ 2

z2 −
4C2z2

λ 2 −
8AEnk

λ 2 +
4C
λ



φnk(z)

+
φ ′

nk(z)

z
= 0. (28)

The first order derivative ofφ(z) can be easily removed by
definingφ(z) = eu(z)Y (z); u′(z) = 1/z which allows us to
obtain

Y ′′

nk(z)+

(
4C
λ

−
8AEnk

λ 2 −
4C2z2

λ 2

−
εnk (εnk +1)

r2

)
Ynk(z) = 0, (29)

where

εnk (εnk +1) =−
1
4
+

4m2

λ 2 −
4E2

nk

λ 2 . (30)

The relativistic energy eigenvalues of Dirac-Morse
problem can be found by applying the asymptotic
iteration method (AIM) to Eq. (29). A well-known
description of the AIM can be found in Ref. [5] and we
refer the reader to this paper for more detail. In the
following, we present a short summary of AIM method.

Consider the equation of the form

f ′′(z) = λ0(z) f ′(z)+ s0(z) f (z) (31)

which can be iterated up to(i + 1)th and to (i + 2)th

derivatives, wherei = 1,2,3, . . . denote the iteration
number, one gets

f (i+1)(z) = λi−1(z) f ′(z)+ si−1(z) f (z) , (32)

f (i+2)(z) = λi(z) f ′(z)+ si(z) f (z) , (33)

where

λi(z) = λ ′

i−1(z)+ si−1(z)+λ0(z)λi−1(z) ,

si(z) = s′i−1(z)+ s0(z)λi−1(z) . (34)

Taking the ratio of(i+2)th to (i+1)th derivatives, one
obtains

f (i+2)

f (i+1)
=

d
dz

ln( f (i+1)) =
λi( f ′+ si

λi
f )

λi−1( f ′+ si−1
λi−1

f )
. (35)

For largei, the asymptotic aspect of the method arises. So
that one can assume [5]

si

λi
=

si−1

λi−1
≡ α (36)

which yields
d
dz

ln( f (i+1)) =
λi

λi−1
. (37)
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After integration, the solution can be obtained as [5]

f (z) = e−
∫

αdz (38)

and the energy eigenvaluesε which can be determined
from Eq. (34) by imposing the termination condition as
[5]

δi(z,ε) = λi(z)si−1(z)− si(z)λi−1(z) = 0. (39)

Hence, the accuracy and convergence rate of AIM
depends on the asymptotic behavior of the wave function
Ynk in Eq. (29). So that, we need to analyze the asymptotic
behavior ofYnk near the singular points;z = 0 andz = ∞.
This investigation suggests thatYnk takes the form

Ynk(z) = zεnk+1 e−β z2
fnk(z) . (40)

where the unknown parameterβ can be determined
through AIM. By substituting this trial wave function into
Eq. (29) and after some algebra we find

f ′′nk(z) =

[
4z2β −2(1+ εnk)

z

]
f ′nk(z)

+

[
6β +4β εnk + z2

(
4C2

λ 2 −4β 2
)

+
8AEnk

λ 2 −
4C
λ

]
fnk(z), (41)

where the introduced functionfnk(z) satisfies a new
second-order homogenous linear differential equation
which is now suitable for the use of the AIM.

We can attain a valuable simplification if we assume
thatβ =−

C
λ . This choice removes thez2 term in Eq. (41).

The application of AIM is now started by rewriting Eq.
(41) in the AIM format of Eq. (31) to get

λ0(z) =
4z2β −2(1+ εnk)

z
,

s0(z) = 6β +4β εnk +
8AEnk

λ 2 −
4C
λ

. (42)

4 Results and discussion

Within the framework of the AIM, the relativistic energy
eigenvalues of the modified Morse potential can be
calculated by means of Eq. (39). The conditionδi(z,εnk)
depends on the two variables,z andεnk. We found that the
termination condition in Eq. (39) is independent of the
choice ofz. Thus, the problem is exactly solvable through
AIM. The definition of λ0(z) and s0(z) can be used in
AIM to obtain the energy through the termination
condition. The result of applying AIM forεnk with
different values ofn is

for n = 0→ ε0k =−
3
2 −

2AE0k
β λ 2 + C

β λ , (43)

for n = 1→ ε1k =−
7
2 −

2AE1k
β λ 2 + C

β λ , (44)

for n = 2→ ε2k =−
11
2 −

2AE2k
β λ 2 + C

β λ , (45)

. . . . . . . . . ,etc. (46)

The resultingεnk converges for any number of iterations.
This means that for any values ofn we get

εnk =−
4n+3

2
−

2AEnk

β λ 2 +
C

β λ
, for n = 0,1,2,3, . . .(47)

Accordingly, the exact analytical relativistic energy of
the Dirac-Morse potential,Enk, can be obtained from Eq.
(30) as

Enk =
ACnλ +C

√
m2t2−Cn2λ 2

t2 (48)

with t2
≡ A2 +C2 and n ≡ (1+ n). This result is in

agreement with the result obtained by Alhaidari’s
formalism for the Dirac-Morse problem [31].

It should be noted that Eq. (41) has a convenient form
of the confluent hyper-geometric differential equation. So
that its solution can be obtained by any conventional
method and one can gets

fnk(z) = A1F1(a1;a2;a3z2), (49)

whereA is an arbitrary constant and1F1 is the well-known
confluent hyper-geometric function [40] with

a1 =
3
4
+

γ
2
+

AEnk

β λ 2 −
C

2β λ

a2 = γ +
3
2
,

a3 = 2β . (50)

By using Eqs. (40) and (41), the general solution of the
wave function of Dirac-Morse problem can be written as

Ynk(z) = A zεnk+1 e−β z2

1F1(a1;a2;a3z2). (51)

On the other hand, the non-relativistic energy eigenvalue
can be found. It is known that the non-relativistic
Schrödinger-Morse equation forS-wave can be written as
[31]

ψ ′′

n (r)+
[
b(λ +2a)e−rλ

− b2e−2rλ +2εn

]
ψn(r) = 0.(52)

By comparing Eq. (52) with Eq. (27), one can obtain the
following correspondence between nonrelativistic and
relativistic parameters

εn → (E2
nk −m2)/2, b →C, anda →−

AEnk

b
. (53)

Hence, the energy can be written as

εn = ((ab/A)2
−m2)/2. (54)

Substituting by the expression ofA from Eq. (48) and from
the mappinga =−AEnk/b yields

εn =−
1
2
(a+ nλ )2. (55)

We would like to emphasize that AIM is an effective
method to obtain exact solutions for second order
differential equations, like Schrödinger and Klein-Gordon
equations. But for Dirac equation, AIM is not used
directly. By using the technique of similarity
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transformation one can covert Dirac equation to a form of
a second order Dirac equation. Then the application of
AIM can be achieved easily where the eigenvalues and
eigenfunctions can be deduced directly without the
traditional technique for Dirac equation of other
formalism (see, for example, Ref. [31]).

The results obtained in this work are found to be in
agreement with the well-known nonrelativistic bound
state spectrum for Schrödinger-Morse problem [31]. In
addition, the results for the eigenvalues are obtained
directly through the systematic of AIM itself, and not by
the traditional procedure of inferring the solution by the
similarity to other equations as given in Ref. [31].

5 Conclusion

In this work, we an analytical solution of the Dirac-Morse
problem with tensor interaction term is obtained by
Asymptotic Iteration Method with the aid of similarity
transformation. Similarity transformation converted Dirac
equation to be ready in use for AIM with the advantage
that an accurate choice of parameters can simplify the
resultant equation. So, that the application of the AIM
method to solve the problem becomes simple. The
nonrelativistic bound states spectrum for
Schrödinger-Morse equation is obtained directly through
the systematic of AIM itself. Comparing with the results
of other authors, agreement with the results of Ref. [31] is
obtained. In the latter, the eigenvalues were obtained by
the traditional procedure of inferring the solution by the
similarity to other equations. The combination of
Asymptotic Iteration Method and similarity
transformation is a valuable and powerful technique if the
problem under consideration is exactly solvable. Future
extensions to complex problems are also of interest.
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