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Abstract: This paper deals with the derivation of hyperbolic equatitmom a space inhomogeneous thermostatted kinetic equatio
which can be proposed for the modeling of complex systemgesidal to the external actions at the microscopic and mecpis
scales. The particles of the system are able to perform atgethich is modeled by introducing a specific variable €lderivation of
the hyperbolic equations is obtained by performing diffiésealings into the time and space variables and lettingadhkng parameter
goes to zero. Applications and future research directierdacussed into the last section of the paper.
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1 Introduction In this context, in kinetic theory, the asymptotic
analysis has been proposed for deriving macroscopic
The interest in modeling complex systems dates back tanformation (evolution of local density and momenta of
the last century during which scientists coming from the distribution function) by microscopic (kinetic)
different applied sciences, e.g. mathematician, phytsicis interactions, see among others, papedst,p,6,7,8,9,
computer scientist, have spent much research activitl0]. The asymptotic analysis consists in defining an
with the main aim of identifying the fundamental appropriate time and space scaling and letting the
properties of these systems. Specifically the researcinter-particle distances tend to those of the macroscopic
activity has been focused on the understanding of thdevel. Depending on the choice of the scaling the
interactions occurring among the components of theasymptotic limit of kinetic equations leads to parabolic or
system which give rise to the collective behaviors and onhyperbolic equationslfi, 12,13].
how the system interacts and forms relationships with its  This paper deals with the derivation of hyperbolic
environment 1]. Collective behaviors are usually equations for the local density and the first velocity
consequence of the ability of individuals to develop momentum of the system by employing an asymptotic
specific and autonomous strategies. Moreover theanalysis of a kinetic equation that is a generalization of
collective behavior that emerges in complex systems ighe mathematical framework proposed and analyzed in
usually in response to external actions that can affect thg¢14]. Specifically, the underlying equation consists in a
whole dynamics, e.g., tumor growth can be stopped bythermostatted kinetic equation, which includes the role of
vaccine cells, the dynamics of swarms of insect can behe external agents (open systems) at the macroscopic and
modified by the attack of a predator. Different microscopic scales, and a velocity jump-process. The
mathematical and computational approaches have beamderlying equation belongs to the class of nonlinear
developed, adapted and employed in an attempt t@artial integro-differential equation with quadratic
describe collective behaviors and macroscopic features asonlinearity. The derivation of the hyperbolic equations i
the result of microscopic interactions, see the referencesbtained by performing a scaling into the time and space
section of the review papeZ]. variables and, under suitable assumptions on the terms of
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the equation, letting the scaling parameter goes to zerowhere the operatod[f] = J[f](t,X,v,u), which models
The interested reader in the derivation of macroscopiahe gain-loss of particles due to transitions in the agtivit
equations from thermostatted kinetic models for closedvariable, reads:

systems is referred to the recent contributicks 16,17). ,

The present paper is organized into four more sectiond[f] = / o (U, u",u) f(t,Xx,v,uy) f(t,x,v,u”)du, du”
that follow this introduction. Specifically, Section 2 is :
concerned with the derivation of the underlying
thermostatted kinetic equation for open systems and the —f(t,x,v,u) / f(t,x,v,u”)du”. 2
definition of the local macroscopic quantities. Section 3 is
devoted to the derivation of the asymptotic equation by
performing a time-space scaling of the thermostattedwvhere:
kinetic equation introduced in Section 1. In particular
Secti'on 3 conta?ns the main result of the paper which, n models the probability that a particle with
consists in showing the onset of hyperbolic behavior. Theycroscopic statéx, v, u,) interacts instantaneously with
derivation of asymptotic equations by generalized time, particle with microscopic state, v, u*);

and space scalings is performed in Section 4. Finally, of = o (U,,u",u) : Dy x Dy x Dy — R* is the density
Section 5 concludes the paper by focusing on the ) - . . :
applications which include, but are not limited, to function modeling the probability that particle with

biological systems, vehicular traffic, crowds and swarmsMICroSCOpiC statéx,v. u,) interacting with particles with
dynamics. This section highlights also researchMiCroSCopic statex,v,u’) reaches the microscopic state

perspectives from the mathematical and modeling(:V:Y)- In particulare/(u,, u”, u) satisfies the following
viewpoint. identity:

(Du)?

Du

o (U, u",u)du=1 Vu,u" €D,
Du

2 The Thermostatted Kinetic Equation for
Open Systems The operato/[f] = V[f](t,x,v,u) models the velocity-
jump process, and it reads:

This section deals with the derivation of the
space-inhomogeneous thermostatted kinetic equation for VIf] = /T(v*,v)f(t,x,v*,u) dv*
open systems that acts as a general paradigm for the Dy
derivation of specific models.
The system is composed by a large number of
particles whose evolution is described by the distribution —/T(V,V*)f(t7X7V7 u)dv’, 3)
function f = f(t,x,v,u) : [0,0) x Dy x Dy x Dy, wherex Dy
is the space variable,is the velocity variable and is the ) ) . )
variable which models the activity of the particles. TheseWhere T(v*,v) is the turning kernel which gives the
variables constitute the microscopic state of the pasticle Probability that, if a jump occurs, the velocity” € Dy
andQ = Dy x Dy x Dy denotes the domain of all possible Jumps into the velocityv € Dy. The domainDy is
microscopic stategjQ = dxdvdu denotes the Lebesgue @ssumed to be bounded and spherically symmetric with
measure or2. An external force fields# : D, — R acts ~ 'espect to origin (i.ev and —v € Dy). In particularv is
on the system thereby moving the system out ofthe turning rate or turning frequency of the velocity-jump,
equilibrium. Moreover an external agent at the hence ¥visthe mean run time. _
microscopic scale has the ability to modify the variable The operato7z [ f] = 7z[f](t,x,v,u) is the transport
by a particular action related to the variallec Dy; the  term that models the Gaussian thermost# 19], and it
action is modeled by the distribution function reads:
g=g(t,x,v,w) : [0,00) x Dx x Dy x Dy — R™, which is a
known function of its arguments. Tz|f] 1= d, (33 (1_ u/ uf dQ) f) ) (4)
The evolution of the system is obtained by equating Q
the time derivative off to the balance of the particle ] ) ] )
interactions that occur in nonlinear matter. Specifically In particular ¢) is a damping operator adjusted to control

we have: the following moment off related to the energy
(0{ +V- DX) f +(9u<y<1— U/de.Q) f): A U2 f(t,X,V,U)dU.
Q
The operatorQ? = Q[f,g|(t,x,v,u), which models the
nJ[f]+n®Q[f,ql + vV|f], Q) interaction of the system with the external agent, reads:
(@© 2015 NSP

Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci.9, No. 5, 2477-2484 (2015)www.naturalspublishing.com/Journals.asp NS = 2479

3 The Hyperbolic Equations

This section is concerned with the derivation of the

g _ * 5« %
Qr = /@(u*,w ) TV, U)ot X, v, ") du. o hyperbolic equations from the thermostatted kinetic

(Du)? equation for open systems)( Specifically we introduce a
N N scaling parametex and we consider the following scaling
—f{t,x,v,u) /g(t,x,v,w )da, ®)  for the time variable, the space variable and the
Dy macroscopic external force field:
. t x
Where' (t,X,V,U,F)—) (Eagavau78€F)a l 217 (9)
e n®is the inner-outer encounter rate between the agenthat implies that the mean run tim¢\glis small compared
with state(x, v, w*), and the particle with statex, v, u,). to the typical mechanical time Bearing the pape2[] in
e %(u.,w*,u) is the inner-outer transition probability mind, we set:
density which describes the probability density that a ; N 1
particle with state(x,v,u,), falls into the statex,v,u) n=¢&, =&, v=>o0p (10)
after an interaction with the external agent whose state is
(X,V, 0*). where p,q,r > 1. Accordingly the thermostatted kinetic
The densityZ satisfies the following condition: equation for open systeni)(is scaled as follows:

€0 fe+V-Oxfe)+ €' Tr[fe] =
Bu,w u)du=1 Vu,w" €Dy (6) (@fe fe) Flfe]
Dy

1
r q =
The mathematical analysis developed in the present £ J[fe] +£7Q[fe, 0e] + ng[fg], (11)

paper is addressed to obtain the evolution equation of thg here the meaning of each operator can be recovered by

local densityp([f](t,x,u) of the system defined at tinte  gection 2 and where, with a slight abuse of notation, we
in the positiorx and activityu, as follows: have set

fg(t,x,v,u):f(i,f,v,u), (12)
p:=p[fl(t,x,u)= [ f(t,xv,u)dv, (7) €&
Dy

t X
gg(t,x,v,u):g(—,—,v,u). (13)
and the evolution equation of the relative mass velocity of . €&
particlesU(t, x, u) defined or{0, o[ x Dy x Dy by The following lemma holds true.

1 Lemma l.Let fe(t,x,v,u) be a sequence of solutions of
U :=U[f](t,x,u) = m /Vf(t7x7v7 u)dv. (8) the thermostatted kinetic equation (11). Assume that:
Y (A1) (V[f]) = (vV[f]) = 0, VX € Dy, u € Dy.
(Az)For all p € [0,4) and U € R® there exists a unique

The thermostatted kinetic equation for open systems  function
(1) constitutes the underlying equation for the derivation
of the hyperbolic equations. In particular, Ed) (s a Fo.u = Fpu(v) € LY (Dy, (1+ |v[)dv)
nonlinear partial integro-differential equation with
quadratic nonlinearity.

In what follows we assume that the solutions &f (
are bounded and belong to a functional spaces where all VIFoul =0, /DV Fou(vidv=p,

needed convergence results will be true. Moreover the

such that:

average of the functiog with respect to the variableis /
F dv=pU. 14
denoted by va pu(v)dv=p (14)
(@)= [ ¢(v)dv. (Az)When e — 0:
by fe — f aein[0,0)xDyxDyxDy,  (15)
Finally the following Kronecker delta will be used: ge — g ae. in[0,) x Dy x Dy x Dy, (16)
V[fe] — VIf] 17)
lifi=] . -
&)= and the following quantities
0fti#) (fe), (ve), (Ve vEe),
(@© 2015 NSP
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(J[fe]), (T [fe]) , (Qlfe. Gel)

(WI[fe]), (v7z[fe]), (vQ[fe,Qe]),

converge, in the sense of distributions on R x Dy x
Dy, to the corresponding quantities

(f),(vf),(vavf),
(I . (Z=[f]) . (Qlf.g]),
(VI[f]), (vT#(f]), (vQIf,g]).
Then the asymptotic limit f admits the following form

f(taxava U) = Fp(t,x,u),U(t,x,u) (V) (18)

Proof.Multiplying by €P the left and the right hand-sides

of Eq (11) and passing to the limit whea — 0, yields
V|[fo] = 0. Setting

Pe(t,x,u) = fe(t,Xx,v,u)dv, (29)
Dy
pg(t,X,U)US(t,X,U):/ Vfg(t,X,V,U)dV. (20)
Dy

According to(Ay), there exists the unique functidi v,
whereU depends oft, x, u), verifying the conditions4).
Therefore

fo(t,x,v,u) = Fp(t7x7u)7IU(t7x7u) (V). (21)

The main result of this section is the following theorem.

Theorem 1.Let fe(t,X,Vv,u) be a sequence of solutions to
the scaled thermostatted kinetic equation (11). Assume
that (A1-Az-Az) hold true and that every formally small
termin € vanishes. Then p and pU are the weak solutions
of the following equations:

op +divy (pU) + 8,104 (F (1 - uA[p](t)) p) =

&1 (J[f]) + &1 (QIF. 0l),

Proof.Let ¢ € {1,v}. Then multiplying the scaled EqL{)

by ¢ and integrating with respect to the velocity variable

v we have
e/D (G+v-T) fgqjdv+efau/D W T5[fe]dv

_ of q
=& [ @Ity e /Dva[fg,gng

1 ~
+E/DV WY [fe] dv.

Therefore we have

(23)

& (fe) + (v- Oxfe) + €71 (0, Tz [fe]) =

e QI[fe]) + €91 (Q[ e, Ge]) (24)

a (vie) +divg (VR VTe) + e (Vay T 7 [fe]) =

e (VI[fe]) + €91 (vQ[fe, Ge)) - (25)
Since
o (fe) +(v-Oxfe) — ap +divy (pU),

o (vig) +divg (v viy) —
a(pVU) + Ux- </DVV®VFP-,U>7

and
/(v@v)Fp,udv: pURU+P,
we have
o (vfe) +divg (vavie) — a(pU)+0Ox- (pU U+ P).

The last computations refer to the limit of the
thermostatted operator. Specifically, lettingoes to zero
and bearing Lemmain mind, we have:

(uTz[fe]) —> A
£—0

where

Fp = <0u (9(1— u/Q qu,dedvdu> F,,}U)>
— <au<§<1—u/D 5 updxdu) FP,U>>. (26)

A(PU)+ 8104 (F (1 uA[p] (1) pU) + = Gu(F (1= uAlolt)p). @7
Moreover
dive (PU S U+ P) = &a (vI[f]) + &1 (vQI ), Va7 [lel) =5 72
where P := P[f](t,x, u) is the following pressure tensor: where
Pl x U = [v-D)sv-D)fExvudv, (22) e <Va“ <‘§;<l_ o UF”’UdXdVdu> F”’U>>
Dy = <au (gj (1—u/ updxdu)va7U)>
and ) o = 0y(F (1- uA[p]?BX)DSU). (28)
Alp](t) = /DxxDu up(t, x, u) dxdu. Therefore the proof is concluded.
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4 0On the Generalized Time and Space (A;)There exists a bounded equilibrium velocity
Scalings distribution F(v) : Dy — R*, independent of t and X,
such that:

This section is devoted to the problem of deriving X B X X
asymptotic equation by performing different scalings in TVLVFV) =TV VIRV (34)
the time and space variables. Specifically we consider the 4 (VF(V)) = (F(v)) = 0, ¥x € Dy, u € Dy

following scaling (As)The kernel T(v,v*) is bounded, and there exists a
constant g > 0 such that

t
(t,x,v,u,F)—>(

g_C{’ 8%7\/7 u, 8£+a_1|:) 9 (29)

T(v,v*) > 0oF(v), Y(v,v)eDyxDy. (35)
with a,8,I > 1 andf < a. Moreover we set:

Then
1
_ or+a-1 e_ oqt+a-1 _ =
n=¢  M=¢ Ve (30) e The following equality holds
where p,q,r > 1. Accordingly the thermostatted kinetic VIFfE v —
equation for open systeni)(is scaled as follows: - /Dv [f] V=
Ead[fg+sﬁv Dxfg+8£+a_1<7|:[fg] = 1 f* f 2
= * * (- kS )
5 DVXDVT(v,v )F (F* F) dvdv* > 0. (36)
- _ 1 ) . . .
€A1 f,] 4 £4TI1Q[ ., ge] + EVHE]’ (31 ° The null-space of V is spanned by a unique normalized

and nonnegative function F (v):

where, with a slight abuse of notation, we have set
Ker(V) = SparfF}.

fe(t,x,v,u) = f (L X v,u),

ca’ b’ eForanyheH satisfying/D hdv =0, thereexistsa unique

t X fr— f—
ga(t,x,v,u)zg(g—a,g—ﬁ,v,U). f € H such that V/[f] hand/DVfdv 0.

Bearing all above in mind, Eq24) and @5) now read Multiplying Eq. (31) by P and lettinge goes to zero
by Lemma?2 we obtain the existence of a function
W-Oxfe) 4y p = p(t,x,u) : [0,00[xDy x Dy — RT independent of/
at<fg>+w+£‘ (0uTz[fe]) = and such that
f(t,x,v,u) = p(t,x,u)F(v). (37)
e [fe]) + e H(Qlfe, ge]), (32)

Now we compute the asymptotic limit of the transport
term. Let x(v) be the only solution of the equation

divy (V@ V) V[f] =VvF(v), according to Lemma, we have:

d[(Vfg>+T+€£_l<Vduj?[f€]> = (v-Oxfe) - vfe
TegaB T T \ga B
e (VI[fe]) + e (vQ[fe, el - (33) g <Vf F<v>>
_ T gaB T\ P F(v)
In order to perform the limit of Eqs3Q) (33) whene goes
to zero, it is fundamental now to obtain the convergence of _ divy <V[fs] X(v) > . (38)
the terms €a-B F(v)

(v-Oxfe)  divg (vevie)
Ea—ﬁ ’ Ea—ﬁ ’

Moreover, multiplying the right-hand side and the
left-hand side of Eq.31) by j—fﬂ, we obtain

which is a hard problem that requires further assumptions ¢
on the turning operator and whose limit depends on the V([fe]

choice of values ofr e . P ePPa e+ e PP f)
Preliminary to the derivation of the asymptotic

equation is the following result, segq] for the proof. LegPt2B-a-ly O f,

L emma 2.Assume that assumption (A1) holds and: — g PP f,] — e4PHPIQIfL g

(@© 2015 NSP
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Therefore the system biology approach proposed 81,B2], the
whole open system is decomposed into different
v-Dfe) —— 3yi28 g1 Dx- < (M ®v) |:|Xf> functional subsystems whose particles are able to express
ga—B  gn0 PrBa+ F(v) the same activity (function, strategy).

Let fi = fi(t,x,v,u) be the distribution function of thith
= Op+2p,a+1 Dk~ (X (V) @ V) Oxp) - functional subsystem, foi € {1,2,....n}, then the
The above limit shows that the first asymptotic equation isthermostatted kinetic equation for tité open functional
of parabolic type. Then in the cage< a we are not able ~ Systems now reads:
to obtain hyperbolic equations. n
It is easy to show that whemgoes to zero, fof > a, (G +v-Oy) fi+ 0y (g (1_ u Z /u fi d_Q) fi) =
the two following terms =15

B-ayy. B-ad;j
e D), e v i), N3]+ n°Qf.g + vW[fl (39)
vanish and the resulting asymptotic equations now read: wheref = (f1, fo,..., fy) is the vector whose components

are the distribution functions of the functional subsystem

P+ 0104 (Z (1—uAp](t))p) = 0= (91,92, ..,0m) is the vector whose components are the
distribution functions of the external actions, and
S1 (J[f]) + 392 (QLF, 0]

n

Ji[f]:z /Mj(u*,u*,u)fi(t,x,v,u*)x

&(pU) + 8164 (- (1— uA[p](t)) pU) = =
&1 (VI[F]) + 341 (VQIf, ) - xFj (v, u7) du. dur
—fi(t,x,v, fi (t,x,v,u*) du*, 40
(”“’,Zl./ou j(t.x,v,u) du (40)

5 Applications and Future Research

Direction moo
ecions Qlf.g =3 / Zij (U, @0, W) Fi(t, X, v, U0 x
The mathematical analysis developed into the present = %py
paper has been focused on the derivation of macroscopic xgj (t,x,V, w*) du, du*
hyperbolic behaviour from the microscopic interactions m
occurring among the particles of a complex open system —fi(t,x,v,u) Z / g (t,x,v, ") du, (41)
that has been modeled by the thermostatted kinetic theory j=1/Du

approach. The asymptotic analysis has shown that the

genuine hyperbolic dynamics arises when a specific time Vi[fi] = /'ﬁ(v*,v) fi(t,x,v*,u)dv*

and space variables scaling is performed. The hyperbolic Dy

equations for the local density and first velocity

momentum also show a term related to the control action —/Ti(V,V*)fi (t,x,v,u)dv*, (42)

of the thermostatted operator and the role of the
interactions at the macroscopic scale. . . . .
Applications of the asymptotic analysis proposed in with obvious meaning of 'each term into the-oper'ators.
this paper refer to the mathematical modeling of Moreover with special attention to biological and
biological and chemical systems, with particular attemtio chemical systems 3@, the Eq @9) can be further

to the cancer-immune system competiti@i,p2,23,24  9eneralized by including = the possibility — of
where the macroscopic equation is referred to theProliferation/destruction of particles with microscopeo

evolution of the tumor at tissue scal@526,27]. In state(x, v, u), that is modeled by the following operator:

Dy

particular as shown in Section 4, also diffusive behavior no.
can occur depending on the power of the scaling Ni[f] =npu fi(t,x,v,u) Z f(t,x,v,u")du*, (43)
parameter. Moreover applications refer to the modeling of j=1Du

vehicular traffic flow and crowd and swarm dynamics
where the onset of hyperbolic behaviour usually appear
[28,29,30].

From the perspectives point of view, the underlying
thermostatted kinetic equation for open systems can be n -
generalized in order to take into account the modeling ofMi[f] =n Z / bri fr(t, X, v, us) fi(t,x, v,u") du, du”.
complex open systems characterized by heterogeneous hk=1p %p,
particles carrying out different functions. According to (44)

é/vhereu is the net proliferation/destruction rate. Finally
we can also consider the role of mutations that are modeled
by the following operator:
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