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Abstract: Multidimensional scaling (MDS) is a class of projective algorithms traditionally used inEuclidean spaceto produce two-
or three-dimensional visualizations of datasets of multidimensional points or point distances. More recently however, several authors
have pointed out that for certain datasets,hyperbolic target spacemay provide a better fit than Euclidean space.
In this paper we develop PD-MDS, a metric MDS algorithm designed specifically for the Poincaré disk (PD) model of the hyperbolic
plane. Emphasizing the importance ofproceeding from first principlesin spite of the availability of various black box optimizers, our
construction is based on an elementary hyperbolic line search and reveals numerous particulars that need to be carefully addressed
when implementing this as well as more sophisticated iterative optimization methods in a hyperbolic space model.
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1 Introduction

Metric multidimensional scaling (MDS) [1,2] is a class of
algorithms that take as input some or all of the inter-object
distances (pair dissimilarities) for n objects and produce as
output apoint configurationof n points specified by their
coordinates in a chosend-dimensionaltarget space.

The goal is to return the point configuration whose
inter-point distances in thed-dimensional space match as
closely as possible the original input distances. Usually,
this goal is pursued by minimizing a scalar badness-of-fit
objective function defined for an arbitraryn-point
configuration in the target space; ideally, the output of an
MDS algorithm should be the configuration that achieves
the global minimum of the objective function.

If the target space dimension is 2 or 3, the output
configuration can be graphically represented, which
makes MDS a visualization tool seeking to preserve the
input distances as faithfully as possible, thus clustering
the objects in the target space by similarity. More
generally, for a given dimension d, metric
multidimensional scaling can be used toembedan input
set of dissimilarities of the original objects into a
d-dimensional metric space.

In order to apply MDS, several design decisions must
be made. One first needs to choose atarget metric space

of appropriate dimensiond and a corresponding distance
function. Anobjective functionshould be chosen so that it
provides a suitable measure of inaccuracy for a given
embedding application. If the objective function is
nonlinear but satisfies some mild general conditions
(smoothness), anumerical optimizationmethod can be
chosen for the implementation.

1.1 Target space

The Euclidean plane is the most common choice of a
target space for visualization and other applications due
to its simplicity and intuitiveness. Spherical surface can
be used, for example, to avoid the edge effect of a planar
representation [3].

In general, MDS on curved subspaces of Euclidean
space can be viewed as MDS in a higher dimensional
Euclidean space constrained to a particular surface [4,5].

A multidimensional scaling algorithm for fitting
distances to constant-curvature Riemannian spaces is
given by [6]. This work uses the hyperboloid model of the
hyperbolic space requiring ann + 1-dimensional
Euclidean space to represent ann-dimensional hyperbolic
space, and is less suitable for visualization purposes. The
reader is referred to [7] or [8] for a review of the history
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of MDS on Riemannian manifolds of constant or
nonconstant curvature.

The use of metric MDS in the hyperbolic plane in the
context of interactive visualization is proposed by [9],
inspired by the focus and context hyperbolic tree viewer
of [10]. The study focuses on the task of embedding
higher-dimensional point sets into 2-dimensional
configurations for the purpose of interactive visualization.
It is demonstrated that the PD has capacity to
accommodate lower stress embedding than the Euclidean
plane. Several important pointers to the difficulties one
encounters in implementing such algorithms are given,
but a definite specification or implementation is not
provided.

The adequacy of the hyperbolic spaces for embedding
of various data is also studied and confirmed in the
contexts of network embedding for path cost estimation
[11] and routing [12,13,14,15].

1.2 Objective function

A least squares formulation of MDS, to be used in
conjunction with an iterative numerical method for
unconstrained optimization is proposed by [16]. The
objective function therein (the Sammon stress criterion) is
defined as a normalized sum of the squared differences
between the original dissimilarities and the embedded
distances of the final point configuration. To minimize
this function, Sammon proposes a descent method with
step components calculated using the first two component
derivatives of the objective function.

[9] adopts Sammon’s badness-of-fit measure for
hyperbolic MDS but observes that applying Sammon’s
iterative procedure in the Poincaré disk (PD) using exact
derivatives is difficult due to the complicated symbolic
expressions of the second derivative of the hyperbolic
distance function in this model. Subsequently, the
Levenberg-Marquardt least squares method is applied in
[9], using only first-order derivatives for the optimization,
but the details of applying this iterative method in the
Poincaré disk are not elaborated.

The proposed method to convert the seemingly
constrained optimization problem to an unconstrained one
by [9] (Eq.12) ensures that the moving configuration
would stay inside the model during the optimization.
However, this transformation fails to follow the distance
realizing (hyperbolic) lines, or even Euclidean lines. The
problem is illustrated in Fig.1. The possibility that the
dissimilarity matrix has missing values is also not
addressed in this work, as the dissimilarities are generated
from higher-dimensional points. Input data, however, may
also be sparse.
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Fig. 1: Comparison of the point trajectories: H-MDS of [9]
(left) vs. PD-MDS hyperbolic lines (right)

1.3 PD-MDS

In this paper we present PD-MDS, a metric
multidimensional scaling algorithm using the Poincaré
disc (PD) model. For didactic purposes, we complement
our exhibition of PD-MDS with a simple steepest decent
method with line search. We show the details of the
steepest descent along hyperbolic lines in the PD and
present a suitable approximate hyperbolic line search
procedure. Based on this development, we show the
particulars of a numerical implementation of PD-MDS.

PD-MDS is applicable in its own right; additionally,
its construction also illustrates some of the specifics that
need to be considered when transferring more
sophisticated iterative optimization methods to the PD or
to other hyperbolic models.

Our numerical experiments indicate that the
performance of a steepest descent method for minimizing
a least squares objective on large configurations in the PD
is notably dependent on the line search method used, and
that binary hyperbolic line search provides markedly
better convergence and cost properties for PD-MDS
compared to more sophisticated or precise methods.

The rest of this paper is organized as follows. Section
2 consolidates the notation and concepts from hyperbolic
geometry that will be used throughout, and proceeds to
develop two of the building blocks of PD-MDS – steepest
descent in the PD and a corresponding hyperbolic line
search. Section3 considers particular objective functions
and gradients and further discusses properties and
applicability of multidimensional scaling in the PD.
Section4 provides results from the numerical evaluation
of the proposed algorithm. Concluding remarks are given
in Section5.

2 A descent method for the Poincaŕe disk

In this section we introduce our notational conventions
and establish some properties of the Poincaré disk that
will be used in what follows. We then proceed to formally
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define a Poincaré-disk specific descent method and a
binary hyperbolic line search, that together make a
simple, yet efficient iterative minimization method for
this model of the hyperbolic plane.

2.1 Preliminaries

The Poincaŕe disk modelof the hyperbolic plane is
convenient for our considerations since it has circular
symmetry and a closed form of the inter-point distance
formula exists [17].

We will be using complex rectangular coordinates to
represent the points of the hyperbolic plane, making the
PD model a subset of the complex planeC:

D= {z∈ C | |z|< 1} . (1)

Thehyperbolic distancebetween two pointszj andzk
in D is given by

dD (zj ,zk) = 2atanh

∣

∣zj − zk

∣

∣

∣

∣1− zjzk

∣

∣

, (2)

wherezdenotes the complex conjugate.
Möbius transformationsare a class of transformations

of the complex plane that preserve generalized circles.
The special Möbius transformations that takeD to D and
preserve the hyperbolic distance have the form

T (z) =
az+b

bz+a
, a,b∈ C, |a|2−|b|2 6= 0. (3)

Given a pointz0 ∈ D and a directionγ ∈ C with
|γ| = 1, we can travel a hyperbolic distances≥ 0 along a
hyperbolic line starting fromz0 in the directionγ, arriving
at the pointz′0.

Lemma 1. For z0 ∈ D, γ ∈ C with |γ| = 1, ands≥ 0,
the point

z′0 =
γ tanhs

2 + z0

z0γ tanhs
2 +1

(i) belongs to the hyperbolic ray passing throughz0 and
having directionγ atz0, and
(ii) dD (z0,z′0) = s.

Proof.Given a pointz0 ∈D and a directionγ ∈C with
|γ| = 1, the hyperbolic ray inD passing throughz0 and
having directionγ at z0 can be parametrized byr ∈ [0,1)
as

f (r) =
rγ + z0

rγz0+1
. (4)

Noting that (4), seen as a function ofz= rγ:

T (z) =
z+ z0

zz0+1

is a Möbius transformation takingD to D and preserving
hyperbolic distances, we see that

dD ( f (r) ,z0) = dD (0, r) = ln
1+ r
1− r

whence it follows that movingz0 along a hyperbolic line
in the direction γ by a hyperbolic distance
s = ln((1+ r)/(1− r)) we arrive at the point
z′0 = f

(

tanhs
2

)

. �

Next, we introduce some of the notation that will be
used throughout.

–Let the point configurationat iterationt = 1,2, . . .T
consist ofn points in the Poincaré diskD

zj (t) , j = 1. . .n

represented by their rectangular coordinates:

zj (t) = y j ,1 (t)+ iy j ,2(t) , i =
√
−1, y j ,1, y j ,2 ∈ R

with
∣

∣zj (t)
∣

∣< 1.
–We also use vector notation to refer to the point
configuration

z(t) =
[

z1 (t) z2 (t) . . . zn (t)
]T

= y1+ iy2 =

=
[

y1,1 (t) y2,1 (t) . . . yn,1 (t)
]T

+

i
[

y1,2 (t) y2,2 (t) . . . yn,2 (t)
]T

,

where [·]T in this work indicates the real matrix
transpose (to be distinguished from the complex
conjugate transpose.)

–The distance matrixfor a given point configurationz
is the real valued symmetric matrixD(z) =

[

d jk
]

n×n
whose entryd jk is the hyperbolic distance between
pointszj andzk in the configurationz:

d jk = dD (zj ,zk) .

–Thedissimilarity matrix∆∆∆ =
[

δ jk
]

n×n is a symmetric,
real-valued matrix containing the desired inter-point
distances of the final output configuration (the
dissimilarities). The diagonal elements areδ j j = 0
and all other entries are positive real numbers:
δ jk = δk j > 0 for j 6= k.

–The indicator matrix I =
[

I jk
]

n×n is a symmetric 0-1
matrix, used to allow for missing dissimilarity values.
The entries ofI corresponding to missing values in∆∆∆
are set to 0. All other entries are set to 1.

–The weight matrix W =
[

wjk
]

n×n is a symmetric,
real-valued matrix introduced to enable weighting of
the error terms for individual pairs of points in the
objective function sum. For convenience,wjk
corresponding to missing dissimilarities are set to
some finite value, e.g. 1.

–The objective function to be minimized is the
embedding error function Et = Et (z,∆∆∆ ,W, I) that,
given the sets of dissimilarities and weights,
associates to a configurationz an embedding errorEt .
An example of an error function is the sum of relative
squared differences

Et (z,∆∆∆ ,W, I) =
n

∑
j=1

n

∑
k= j+1

wjkI jk

(

d jk (t)− δ jk

δ jk

)2

.

(5)
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Fig. 2: An example of moving a 4-point configuration in a
given (descent) direction along distance realizing paths of
the Poincaré disk

The objective function can optionally be normalized
per pair by dividing with the number of summands
(

n2−n
)

/2.

2.2 Descent in the Poincaré disk

Given a configuration of pointsz, matrices∆∆∆ , W, andI ,
the distance functiondD (zj ,zk), and an objective function
E (z,∆∆∆ ,W, I), define

g= ∇E
def
=















∂E
∂y1,1

+ i ∂E
∂y1,2

∂E
∂y2,1

+ i ∂E
∂y2,2

...
∂E

∂yn,1
+ i ∂E

∂yn,2















=









g1
g2
...

gn









. (6)

According to Lemma 1, moving the pointsz1, . . . ,zn
of the configurationz along distance realizing paths in the
PD defined respectively by the directions−g1, . . . ,−gn at
z (Fig. 2) will result in configurationz′ with points

z′j =
−rg j + zj

−rg jzj +1
(7)

wherer ≥ 0 is thestep-size parameterwhich determines
the hyperbolic distancessj traveled byzj :

sj = ln
1+ r

∣

∣g j
∣

∣

1− r
∣

∣g j
∣

∣

. (8)

The PD model (1) implies the constraints
∣

∣zj
∣

∣ < 1 for
the point coordinates. Still, the optimization on the PD
can be viewed as unconstrained by observing that the

constraints
∣

∣

∣
z′j

∣

∣

∣
< 1 will not be violated while moving a

configurationz in D if the distancessj traveled by each
point are always kept finite, i.e.

sM = maxjsj < ∞. (9)

Since (9), according to (8), corresponds tormaxj
∣

∣g j
∣

∣< 1,
we have the constraint onr

r <
1
‖g‖∞

.

When implementing iterative descent minimization
methods with line search in the Poincaré disk, it is
important to specify a hyperbolic distance windowsM
along the descent lines where the next configuration will
be sought. In this case the corresponding value of the
parameterr is

rM =
1
‖g‖∞

· tanh
sM

2
<

1
‖g‖∞

. (10)

Since the Poincaré disk model is conformal, following
the direction−g (the opposite of (6)) corresponds to the
steepest descentoptimization method. Moving the point
configuration along hyperbolic lines (distance realizing
paths), on the other hand, ensures that the steepest descent
direction is exhausted most efficiently given the current
information about the objective function.

2.3 A steepest descent algorithm for the PD

Figure3 shows a framework for PD-MDS.
The input data of PD-MDS consists of the initial

configuration z(1), and the input metric: the
dissimilarities∆∆∆ with the associated weightsW and the
indicators of missing dissimilaritiesI .

The input parametersare the objective error function
E (z,∆∆∆ ,W, I) and the stopping tolerancesεE, ε∆E, εg, εr ,
andTM.

The output of PD-MDS consists of the final point
configurationz(T) and its associated embedding error
ET = E (z(T) ,∆∆∆ ,W, I).

The initialization {3.1} sets the maximum hyperbolic
distancesM that can be traveled by any point of the
configuration, and the previous value of the embedding
errorE−1.

Each iterationstarts by determining the gradient of
the error in the current configuration{3.2} and the
corresponding windowrM {3.3} for the parameterr (Eq.
(10)). A hyperbolic line search (described in Sec.2.4) is
performed{3.5} in the direction of the steepest descent
−g of the embedding error and the resulting step-size
parameterr is used in {3.6} to arrive at the next
configuration as in (7).

Several stopping criteria are used (line{3.4}) to
terminate the search. Ideally, the algorithm exits when the
embedding error is close to 0 (E < εE). Termination also
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Algorithm PD-MDS

Input data:
an initial configurationz(1)
the dissimilarities∆∆∆ , weightsW, indicatorsI

Input parameters:
an objective functionE (z,∆∆∆ ,W, I)
the stopping tolerancesεE, ε∆E, εg, εr , TM

Output:
a final point configurationz(T)
a final embedding errorET

Initialize:
t← 1; sM← 10; E−1← ∞; z← z(1); . . . . . . . . . .{3.1}

Loop:
E← E (z,∆∆∆ ,W, I); g← ∇E (z,∆∆∆ ,W, I); . . . . . . .{3.2}
rM← 1

‖g‖∞
· tanhsM

2 ; . . . . . . . . . . . . . . . . . . . . . . . . . .{3.3}
Break if

E < εE
or E−1−E < ε∆E
or ‖g‖∞ < εg
or rM < εr
or t > TM;



















. . . . . . . . . . . . . . . . . . . .{3.4}

E−1← E;
r←HypLineSearch(E(z,∆∆∆ ,W, I),−g,0, rM); . . .{3.5}
∀ j ∈ {1..n}, zj ← −rg j+zj

−rg j zj+1; . . . . . . . . . . . . . . . . . . .{3.6}
t← t +1;

Return z(T)← z andET ← E (z,∆∆∆ ,W, I).

Fig. 3: PD-MDS

occurs in the cases when the error decreases too slowly
(E−1−E < ε∆E), or when the gradient or the stepping
parameter become too small (‖g‖∞ < εg, rM < εr ).
Finally, TM, the maximum allowed number of iterations,
is used as a guard against infinite looping.

Theline searchsubprogram used in{3.5} is described
next.

2.4 Approximate hyperbolic line search

An exact line searchcould be used in line{3.5} (Fig. 3)
to determine a value for the step sizer such that the
corresponding new configuration{3.6} achieves a local
minimum of the embedding error along the search path
with tight tolerance:

r ≈ argminr∈[0,rM ]q(r) , (11)

whereq(r) is the embedding error as a function ofr.
However, increasing the precision of this computation

is not essential to the convergence performance since the
steepest descent search direction is only locally optimal.
Further, exact line search can fail to converge to a local

r
pq′ (0)

slope q′ (0)

slope

acceptable acceptable

λ (r) q(r)

rM

Fig. 4: Acceptable step lengths for inexact line search
obtained from the sufficient decrease condition.

minimum even for a second degree polynomial due to
finite machine precision [18].

On the other hand,approximate line searchgenerally
provides convergence rates comparable to the exact line
search while significantly reducing the computational cost
per line search. In fact, the step calculation used in [16] is
a “zero-iteration” approximate line search, where the step
size is simply guessed based on the first two derivatives of
the error. Conceivably, the simplest inexact step
calculation would guess the step size based only on the
directional gradient at the current configuration.

Approximate line search procedures aim to reduce the
computational cost of determining the step parameter by
posing weaker conditions on the found solution: Rather
than searching for a local or global minimizer ofq(r) on
(0, rM], a value is returned by the line search function as
satisfactory if it provides sufficient decrease of the
objective function and sufficient progress toward the
solution configuration. A common approach to defining
sufficient decrease is to define the “roof” function

λ (r) = q(0)+ p ·q′ (0) · r, 0< p< 1 (12)

which is a line passing through(0, q(0)) and having a
slope which is a fraction of the slope ofq(r) at r = 0.
With this function, we define that sufficient decrease is
provided by all values ofr such that

q(r)< λ (r) , r ∈ (0, rM] (13)

Fig. 4 shows an example of acceptable step length
segments obtained from the sufficient decrease condition
(13).

To ensure sufficient progress, we adopt a binary search
algorithm motivated by the simple backtracking approach
(e.g. [19]). The details are given in Fig.5.

We start the line search with an initial guessr0 for the
step size parameter, and in the expansion phase{5.1} we
double it until it violates the windowrM or the sufficient
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ProcedureHypLineSearch

Input data:
an initial guess of the step parameterr0
the maximum step valuerM
the functionq(r)

Input parameters:
the slope parameterp for the roof functionλ (r);

Output:
an acceptable step parameterr

Initialize:
r ← r0;

While r < rM and q(r)< λ (r) ,
r← 2 · r; . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .{5.1}

While r < rM or q(r)> λ (r) ,
r← r/2; . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .{5.2}

Return r.

Fig. 5: Line search procedure for PD-MDS

decrease condition. In the reduction phase{5.2}, we halve
r until it finally satisfies both the window requirementr <
rM and the decrease criterionq(r)< λ (r).

We observe that, when started at a point with nonzero
gradient, the line search will always return a nonzero
value for r. Since the returned acceptable stepr is such
that the step 2· r is not acceptable, there will be a
maximum acceptable pointrm from the same acceptable
segment asr, such thatr ≤ rm < 2 · r, whencer > rm/2.
In other words, the returned value is always in the upper
half of the interval[0, rm] and we accept this as sufficient
progress toward the solution, thus eliminating some more
computationally demanding progress criteria that would
require calculation ofq′(r) at points other thanr = 0 or
cannot always return a nonzeror [19,18].

It remains to show how to calculate the slope ofλ (r),
that is pq′ (0) (Eq. 12). Given a configurationz and a
direction−g= −∇E(z,∆∆∆ ,W, I), the configurationz′ as a
function of r (7) can be conveniently represented as a
column-vector function

M (−rg,z) (14)

whosej-th entry is the Möbius transform

M j (r) =
−rg j + zj

−rg jzj +1
.

The associated embedding error as a function ofr is then

q(r) = E (M (−rg,z) ,∆∆∆ ,W, I) , (15)

and it can be easily shown that its slope is given by

q′ (r) =
d
dr

q(r) =

=
(

ReM ′ (−rg,z)
)T

Re∇E (M (−rg,z) ,∆∆∆ ,W, I)

+
(

ImM ′ (−rg,z)
)T

Im∇E (M (−rg,z) ,∆∆∆ ,W, I)

where the entries ofM ′ (−rg,z) are given by

M′j (r) =
d
dr

M j (r) = g j

∣

∣zj
∣

∣

2−1

(1− rg jzj)
2 .

We thus have a general explicit formula for calculating
q′ (r) given a configurationz and the corresponding
gradientg of E at z. In particular, this formula can be
used to calculatepq′ (0), the slope ofλ (r).

3 Multidimensional scaling in the PD

3.1 Objective functions and gradients

The iterative minimization method presented in Sec.2
requires a choice of an embedding error function with
continuous first derivatives. In this work we consider the
least squares error function

E = c
n

∑
j=1

n

∑
k= j+1

c jk
(

d jk−aδ jk
)2
. (16)

We note that (16) is a general form from which several
special embedding error functions can be obtained by
substituting appropriate values of the constantsc, c jk, and
a. Examples include:

–Absolute Differences Squared (ADS)

E =
n

∑
j=1

n

∑
k= j+1

wjk
(

I jk
(

d jk−aδ jk
))2

(17)

–Relative Differences Squared (RDS)

E =
n

∑
j=1

n

∑
k= j+1

wjk

(

I jk
d jk−aδ jk

aδ jk

)2

(18)

–Sammon Stress Criterion (SAM)

E =
1

a
n

∑
j=1

n

∑
k= j+1

I jkδ jk

·
n

∑
j=1

n

∑
k= j+1

wjk

(

I jk
(

d jk−aδ jk
))2

aδ jk

(19)

As the most general case of (16), individual importance
dependent on the input dissimilarities can be assigned to
the pairwise error terms using the weights termswjk.
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PD-MDS also requires calculation of the gradient of
the error function. For a general error function, closed
form symbolic derivatives may or may not exist. In any
case, one can resort to approximating the gradient using
finite difference calculations. Numerical approximation
may also have lower computational and implementation
costs than the formal derivatives. However, the use of
numerical derivatives can introduce additional
convergence problems due to limited machine precision.

For the sum (16), a symbolic derivation of the
gradient of (16), including both the Euclidean and
hyperbolic cases, can be easily carried out and is omitted
here for brevity. From the obtained result, symbolic
derivatives of (17)–(19), as well as any other special cases
derivable from (16) can be obtained by substituting
appropriate constants.

3.2 Local vs. global minima

PD-MDS, being a steepest descent method that terminates
at near-zero progress, can find astationary pointof the
objective function. In the least squares case, if the value at
the returned solution is close to zero (that is,E < εE),
then the final configuration can be considered a global
minimizer that embeds the input metric with no error. In
all other cases, a single run of PD-MDS cannot
distinguish between local and global points of minimum
or between a minimizer and a stationary point. A
common way of getting closer to the global minimum in
MDS is to run the minimization multiple times with
different starting configurations. Expectedly, there willbe
accumulation of the results at several values, and the
more values are accumulated at the lowest accumulation
point, the better the confidence that the minimal value
represents a global minimum i.e. the least achievable
embedding error.

Numerous methods that are more likely to find a
lower minimum than the simplest repeated descent
methods in a single run have been contemplated in the
numerical optimization literature. However, to guarantee
in general that the global minimizer is found is difficult
with any such method. It may be necessary to resort to
running the sophisticated methods several times as well in
order to gain confidence in the final result. Since these
methods are usually computationally more complex or
incorporate a larger number of heuristic parameters, the
incurred computational and implementational costs often
offset the benefits of their sophistication.

3.3 Dissimilarity scaling

The objective functions used in metricEuclideanMDS
are typically constructed to bescale-invariantin the sense
that scaling the input dissimilarities and the coordinates
of the output configuration with the same constant factor

a does not change the embedding error. This is possible
for Euclidean space since the Euclidean distance function
scales by the same constant factor as the point
coordinates:

(

L

∑
s=1

(a ·y js−a ·yks)
2

)1/2

= a ·d jk.

Thus, for example, ifd jk is the Euclidean distance, then
the sums (18) and (19) are scale-invariant, whereas (17) is
not.

However, whend jk is thehyperbolicdistance function
(2), none of the (17)–(19) are scale-invariant. Therefore,
the simplest ADS error function (17) may be a preferable
choice for reducing the computational cost in the
hyperbolic case.

The lack of scale-invariance of the hyperbolic
distance formula (2) implies an additional degree of
freedom in the optimization of the embedding error – the
dissimilarity scaling factor. In Eqs. (16)–(19) this extra
degree of freedom is captured via the parametera that
scales the original entries of the dissimilarity matrix.

4 Numerical results

4.1 A synthetic example

To illustrate the functioning of PD-MDS, we provide an
example random configuration consisting of seven points
in the Poincaré disk.

To carry out this experiment, we populate the input
dissimilarity matrix with the hyperbolic inter-point
distances and start PD-MDS from another
randomly-generated seven point initial configuration in
the PD. Fig. 6 shows the trajectories traveled by the
points during the minimization. The clear points denote
the initial configuration, whereas the solid ones represent
the final point configuration.

The operation of the PD-MDS algorithm as it iterates
over the provided example configuration is examined in
detail in Fig.7. The figure shows the PD-MDS internal
parameters vs. the iteration number: In Fig.7a, the
embedding errorE monotonically decreases with every
iteration; the iterations terminate at the fulfillment of
E < εE = 10−6, which means that likely the output
configuration represents the global minimum and the final
inter-point distances match the input dissimilarities very
closely. The step-size parameterr is initialized with a
value of 1 and assumes only values of the form 2k, for
integralk (Fig. 7b).

The exponential character of the change ofr in accord
with {5.1} and {5.2} (Fig. 5) ensures the low
computational cost of the line search subprogram.

The refining of the step size as the current
configuration approaches a local minimum of the error
function, on the other hand, is achieved by the decrease of
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Fig. 6: The minimization trajectory for a seven point
configuration using PD-MDS. The clear and the solid
points are respectively the initial and the final point
configuration.

the gradient norm. This is further illustrated in Figs.7c
and7d.

In our pool of numerical experiments, we produced
graphs similar to those shown in Fig.7 while using two
other line search strategies: (i) exact search and (ii) line
search using an adaptive approximate step-size parameter.
Both of these strategies showed slower convergence
compared to the binary hyperbolic line search, and were
of higher computational cost.

4.2 Scaling of the Iris dataset in the PD

As a first experiment on real-world data, we apply
PD-MDS to the Iris dataset [20]. This classical dataset
consists of 150 4-dimensional points from which we
extract the Euclidean inter-point distances and use them
as input dissimilarities. The embedding error as a function
of the scaling factora is shown in Fig.8. Each value in
the diagram is obtained as a minimum embedding error in
a series of 100 replicates starting from randomly chosen
initial configurations.

Minimal embedding error overall is achieved for
a ≈ 4. The improvement with respect to the
2-dimensional Euclidean case is 10%. Thus, the Iris
dataset is an example of dimensionality reduction of an
original higher-dimensional dataset that can be done more
successfully using the PD model.

5 Conclusion

In this paper, we elaborated the details of PD-MDS, an
iterative minimization method for metric
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Fig. 7: The PD-MDS internal parameters vs. the iteration
number for the seven point example of Fig.6: (a) the
embedding errorE, (b) the step-size parameterr, (c) the
norm of the gradient‖g‖∞, and (d) the step-size parameter
relative to the maximum allowed valuer/rM.
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Fig. 8: The effect of scaling of the dissimilarities on
the embedding error for the Iris Dataset [20]. The input
dissimilarities are the Euclidean distances between pairs
of original points. This PD-MDS result reveals that the
Iris dataset is better suited for embedding to the hyperbolic
plane that to the Euclidean plane.

multidimensional scaling of dissimilarity data in the
Poincaré disk model of the hyperbolic plane. While our
exposition concentrated on a simple steepest descent
minimization with approximate binary hyperbolic line
search, we believe that elements of the presented material
will also be useful as a general recipe for transferring
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other, more sophisticated iterative methods of
unconstrained optimization to various models of the
hyperbolic space.
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the American Iris Society, 59:2–5, 1935.

Andrej Cvetkovski
is Assistant Professor
at the School of Informatics,
European University,
Republic of Macedonia.
He holds a Dipl. Ing. degree
from Ss. Cyril and Methodius
University, an MSEE degree
from the Polytechnic Institute
of New York University, and

a PhD degreee in Computer Science from Boston
University. His current research interests are in the area of
algorithms applicable to communication and networked
systems.

Mark Crovella is
Professor and Chair of
the Department of Computer
Science at Boston University.
He holds a BS degree
from Cornell University,
an MS degree from the
State University of New York
at Buffalo, and a PhD degreee
in Computer Science from the

University of Rochester. His research interests are in
parallel and networked computer systems, mainly through
the application of data mining, statistics, and performance
evaluation.

c© 2016 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp

	Introduction
	A descent method for the Poincaré disk
	Multidimensional scaling in the PD
	Numerical results
	Conclusion

