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Abstract: Multidimensional scaling (MDS) is a class of projective@ithms traditionally used iftuclidean spacéo produce two-
or three-dimensional visualizations of datasets of mint&hsional points or point distances. More recently howeseveral authors
have pointed out that for certain datasétgerbolic target spacmay provide a better fit than Euclidean space.

In this paper we develop PD-MDS, a metric MDS algorithm destyspecifically for the Poincaré disk (PD) model of the igpéc
plane. Emphasizing the importancepbceeding from first principlem spite of the availability of various black box optimizewar
construction is based on an elementary hyperbolic linecheand reveals numerous particulars that need to be carefudiressed
when implementing this as well as more sophisticated iterafptimization methods in a hyperbolic space model.

Keywords: Dimensionality reduction, hyperbolic multidimensionabBng, Poincaré disk, steepest descent, approximageséarch,
graph embedding

1 Introduction of appropriate dimensiod and a corresponding distance
function. Anobjective functiorshould be chosen so that it

Metric multidimensional scaling (MDS)[2] is a class of ~ provides a suitable measure of inaccuracy for a given
algorithms that take as input some or all of the inter-objectembedding application. If the objective function is
distancesygair dissimilaritie for n objects and produce as nonlinear but satisfies some mild general conditions
output apoint configuratiorof n points specified by their (smoothness), aumerical optimizatiormethod can be
coordinates in a chosehdimensionatarget space chosen for the implementation.

The goal is to return the point configuration whose
inter-point distances in thé-dimensional space match as
closely as possible the original input distances. Usually,1.1 Target space
this goal is pursued by minimizing a scalar badness-of-fit
objective function defined for an arbitraryn-point  The Euclidean plane is the most common choice of a
configuration in the target space; ideally, the output of antarget space for visualization and other applications due
MDS algorithm should be the configuration that achievesto its simplicity and intuitiveness. Spherical surface can
the global minimum of the objective function. be used, for example, to avoid the edge effect of a planar

If the target space dimension is 2 or 3, the outputrepresentationd].
configuration can be graphically represented, which In general, MDS on curved subspaces of Euclidean
makes MDS a visualization tool seeking to preserve thespace can be viewed as MDS in a higher dimensional
input distances as faithfully as possible, thus clusteringEuclidean space constrained to a particular surfacs.|
the objects in the target space by similarity. More A multidimensional scaling algorithm for fitting
generally, for a given dimensiond, metric distances to constant-curvature Riemannian spaces is
multidimensional scaling can be useddmbedan input  given by [6]. This work uses the hyperboloid model of the
set of dissimilarities of the original objects into a hyperbolic space requiring ann + 1-dimensional
d-dimensional metric space. Euclidean space to representradimensional hyperbolic

In order to apply MDS, several design decisions mustspace, and is less suitable for visualization purposes. The
be made. One first needs to choosaret metric space reader is referred tor] or [8] for a review of the history
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of MDS on Riemannian manifolds of constant or
nonconstant curvature.
The use of metric MDS in the hyperbolic plane in the
context of interactive visualization is proposed 8}, [

inspired by the focus and context hyperbolic tree viewer

of [10]. The study focuses on the task of embedding

higher-dimensional point sets into 2-dimensional

configurations for the purpose of interactive visualizatio (

It is demonstrated that the PD has capacity to

accommodate lower stress embedding than the Euclidean

plane. Several important pointers to the difficulties one

encounters in implementing such algorithms are givenFig. 1: Comparison of the point trajectories: H-MDS &f [

but a definite specification or implementation is not (left) vs. PD-MDS hyperbolic lines (right)
provided.

The adequacy of the hyperbolic spaces for embedding

of various data is also studied and confirmed in the

contexts of network embedding for path cost estimation1-3 PD-MDS

[11] and routing [L2,13,14,15].
In this paper we present PD-MDS, a metric
multidimensional scaling algorithm using the Poincaré
disc (PD) model. For didactic purposes, we complement
our exhibition of PD-MDS with a simple steepest decent

1.2 Objective function method with line search. We show the details of the
steepest descent along hyperbolic lines in the PD and
present a suitable approximate hyperbolic line search
procedure. Based on this development, we show the

A least squares formulation of MDS, to be used in particulars of a numerical implementation of PD-MDS.

conjunction with an iterative numerical method for PD-MDS is applicable in its own right; additionally,

unconstrained optimization is proposed by€]f The its construction also illustrates some of the specifics that

objective function therein (the Sammon stress criterien) i need to be considered when transferring more

defined as a normalized sum of the squared differencesophisticated iterative optimization methods to the PD or

between the original dissimilarities and the embeddedg other hyperbolic models.

distances of the final pOint Configuration. To minimize Our numerical experiments indicate that the

this function, Sammon proposes a descent method wittherformance of a steepest descent method for minimizing
step components calculated using the first two componery |east squares objective on large configurations in the PD
derivatives of the objective function. is notably dependent on the line search method used, and
[9] adopts Sammon’s badness-of-fit measure forthat binary hyperbolic line search provides markedly
hyperbolic MDS but observes that applying Sammon’sbetter convergence and cost properties for PD-MDS
iterative procedure in the Poincaré disk (PD) using exaccompared to more sophisticated or precise methods.
derivatives is difficult due to the complicated symbolic ~ The rest of this paper is organized as follows. Section
expressions of the second derivative of the hyperbolic2 consolidates the notation and concepts from hyperbolic
distance function in this model. Subsequently, thegeometry that will be used throughout, and proceeds to
Levenberg-Marquardt least squares method is applied iievelop two of the building blocks of PD-MDS — steepest
[9], using only first-order derivatives for the optimization, descent in the PD and a corresponding hyperbolic line
but the details of applying this iterative method in the search. Sectio considers particular objective functions
Poincaré disk are not elaborated. and gradients and further discusses properties and

The proposed method to convert the seeminglyappl'cab'“ty of multidimensional scaling in the PD.

constrained optimization problem to an unconstrained oneseCt'onA' provides re;ults from the !"“me“ca' evaluat!on
by [9] (Eq.12) ensures that the moving configuration of the proposed algorithm. Concluding remarks are given

would stay inside the model during the optimization. in Sections.

However, this transformation fails to follow the distance

realizing (hyperbolic) lines, or even Euclidean lines. The ) o

problem is illustrated in Figl. The possibility that the 2 A descent method for the Poincag disk
dissimilarity matrix has missing values is also not

addressed in this work, as the dissimilarities are gengrateln this section we introduce our notational conventions
from higher-dimensional points. Input data, however, mayand establish some properties of the Poincaré disk that
also be sparse. will be used in what follows. We then proceed to formally
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define a Poincaré-disk specific descent method and ahence it follows that movingy along a hyperbolic line

binary hyperbolic line search, that together make ain
simple, yet efficient iterative minimization method for s
z,= f (tanh3) . O

this model of the hyperbolic plane.

2.1 Preliminaries

The Poinca& disk modelof the hyperbolic plane is

convenient for our considerations since it has circular
symmetry and a closed form of the inter-point distance

formula exists 17].

We will be using complex rectangular coordinates to
represent the points of the hyperbolic plane, making the

PD model a subset of the complex plabe
D={zeC||7 < 1}. (1)
Thehyperbolic distancéetween two pointg; andz

in D is given by
|z — &

2atan —,
- 7%

dp (ZJ %) = ()

wherez denotes the complex conjugate.

Mobius transformationare a class of transformations
of the complex plane that preserve generalized circles.

The special Mdbius transformations that tdkeo D and
preserve the hyperbolic distance have the form
az+b

T —_-t"
@ bz+a

Given a pointzg € D and a directiony € C with
|yl = 1, we can travel a hyperbolic distanse> 0 along a
hyperbolic line starting fronzg in the directiony, arriving
at the pointz,.

Lemma 1 Forzy € D, y € C with |y| = 1, ands > 0,
the point

2~ b*#0.  (3)

, abeC, [a

4= ytanhs + 7o
~ Zytanhs +1

(i) belongs to the hyperbolic ray passing throughand
having directiory atz, and
(i) cby (20,%y) = s

Proof. Given a pointg € D and a directiory € C with
|yl = 1, the hyperbolic ray ifD passing throughy and
having directiony at zg can be parametrized byec [0,1)
as

ry-+2o
f(r)= . 4
(r) VTl (4)
Noting that @), seen as a function af=ry:
Z+ 2y
T(2) =
@ zZ+1

is a Mobius transformation taking to D and preserving
hyperbolic distances, we see that

1+r

In——
1-r

dp (f(r),2)=0dp(0,r) =

the direction y by a hyperbolic distance
= In((1+r)/(1—r)) we arrive at the point

Next, we introduce some of the notation that will be

used throughout.

—Let the point configurationat iterationt = 1,2,...T
consist ofn points in the Poincaré disk

zi(t), j=1...n
represented by their rectangular coordinates:
zj () =yja(t)+iyj2(t), i=v-1yj1,V2€R

with |z (t)] < 1.
-We also use vector notation to refer to the point
configuration

zt)=[z0) 20) ... ()] =y1+iy2=
= [y11(t) y21(t) ... Yn71(t)]T+
i[y12(t) y22(t) ... Yn2 (t)]T,

where []" in this work indicates the real matrix
transpose (to be distinguished from the complex
conjugate transpose.)

—Thedistance matriXor a given point configuratiom
is the real valued symmetric matrix(z) = [dj], .,
whose entrydji is the hyperbolic distance between
pointszj andz in the configuratiorz:

djk = dp (zj,2) -

—Thedissimilarity matrixA = [y, is a symmetric,
real-valued matrix containing the desired inter-point
distances of the final output configuration (the
dissimilaritieg. The diagonal elements a@; = 0
and all other entries are positive real numbers:
6jk:5Kj > 0forj#k

—Theindicator matrix| = [lj] ., is @ symmetric 0-1
matrix, used to allow for missing dissimilarity values.
The entries of corresponding to missing valuesn
are set to 0. All other entries are set to 1.

—The weight matrixW = [wj] . is a symmetric,
real-valued matrix introduced to enable weighting of
the error terms for individual pairs of points in the
objective function sum. For convenienceyjx
corresponding to missing dissimilarities are set to
some finite value, e.g. 1.

—The objective functionto be minimized is the
embedding error function &= E; (z,A,W,I) that,
given the sets of dissimilarities and weights,
associates to a configuratiaran embedding errdg;.

An example of an error function is the sum of relative
squared differences

AR k() — i\ ?
ZA W | Z :2 W]kljk <T) .
()
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configurationz in D if the distancess; traveled by each
point are always kept finite, i.e.

Sv = maxsj < . 9)

Since ), according to®), corresponds tomax; |g;| < 1,
we have the constraint an

1
r < ——.
/ lalle

When implementing iterative descent minimization
methods with line search in the Poincaré disk, it is
important to specify a hyperbolic distance winde
along the descent lines where the next configuration will

Fig. 2: An example of moving a 4-point configurationina pe sought. In this case the corresponding value of the
given (descent) direction along distance realizing paths oparameter is

the Poincaré disk

1 Sm
v =——-tanh— < ——.
Le][ 2 [lgll

The objective function can optionally be normalized  Since the Poincaré disk model is conformal, following
per pair by dividing with the number of summands the direction—g (the opposite of)) corresponds to the
(nz—n) /2. steepest descewptimization method. Moving the point
configuration along hyperbolic lines (distance realizing
paths), on the other hand, ensures that the steepest descent
2.2 Descent in the Poincardisk direction is exhausted most efficiently given the current
information about the objective function.

(10)

Given a configuration of pointg, matricesA, W, andl,
the distance functiodp (zj, %), and an objective function

E(z,A,W,1), define 2.3 A steepest descent algorithm for the PD
JE i 0E_ Figure3 shows a framework for PD-MDS.
M1 Mz o1 The input data of PD-MDS consists of the initial
o= OE def Wz,ﬁ"@ |92 ©) configuration z(1), and the input metric: the

dissimilaritiesA with the associated weight&/ and the
JE . OE g indicato.rs of missing dissimilaritiels. _ _
dYn1 +i dYn2 " The input parametersre the objective error function
E(z,A,W,l) and the stopping tolerances, &ag, &, &,
According to Lemma 1, moving the poings, ..., z, andTy.
of the configuratiorz along distance realizing paths in the The output of PD-MDS consists of the final point

PD defined respectively by the directiongy,...,—gnat  configurationz(T) and its associated embedding error
z (Fig. 2) will result in configuratiore’ with points Er =E(z(T),A,W,I).
Theinitialization {3.1} sets the maximum hyperbolic
_ ~19i+7 @) distancesy that can be traveled by any point of the
—1gjzj+1 configuration, and the previous value of the embedding
errorg_y.
wherer > 0 is thestep-size parametevhich determines Each iterationstarts by determining the gradient of
the hyperbolic distances traveled byz;: the error in the current configuratiofi3.2} and the
corresponding windowny {3.3} for the parameter (Eq.
1+r|gj (10)). A hyperbolic line search (described in S@c4) is
sj=1In (8) performed{3.5} in the direction of the steepest descent

1-rlg;|’ : : .
‘gj‘ —g of the embedding error and the resulting step-size
parameterr is used in {3.6} to arrive at the next

The PD model ) implies the constraints;| < 1 for configuration as in%).

the point coordinates. Still, the optimization on the PD Several stopping criteria are used (line{3.4}) to

can be.V'EWEd as L.mconstram.ed by obs.ervmg .that tSerminate the search. Ideally, the algorithm exits when the
ConStfamtS’Z’j’ < 1 will not be violated while moving a embedding error is close to & (< &e). Termination also
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Algorithm PD-MDS

Input data:

an initial configuratiorz (1)

the dissimilaritiesd, weightsW, indicatorsl
Input parameters:

an objective functior (z,A, W, 1)

the stopping tolerances, &g, &g, &, Tu

Output:
a final point configuratioz (T) N ‘ slope :
a final embedding errder ) pq (0)
L acceptable 3 3 acceptable 3 "
Initialize: ‘ !
t« 1, su+10; E_g¢ ;24 2z(1);.......... {3.1}
Lo?zp(._ E(z,A,W,1); g+ OE(z,A,W,1); (3.2} Fig. 4: Acceptable step lengths for inexact line search
1 oot A ' obtained from the sufficient decrease condition.
™ < o tanhd . {3.3}
Break if
E<ee
orE 1 —E<éE 34 minimum even for a second degree polynomial due to
(o] g o PO S S {3.4} finite machine precisiontf].
o: th ?_gf On the other handgpproximate line searchenerally
E, : E'> M provides convergence rates comparable to the exact line

search while significantly reducing the computational cost

r «HypLineSearctE(z 4,W.1),—-g,0.rw); ... {3.5} per line search. In fact, the step calculation used 8} is

Vie{l.n}, 7z« %z*ﬁ]l; ------------------ {36}  a“zero-iteration” approximate line search, where the step
t«t+1; size is simply guessed based on the first two derivatives of
Return z(T) « zandEy « E(z,A,W,]I). the error. Conceivably, the simplest inexact step
calculation would guess the step size based only on the
Fig. 3: PD-MDS directional gradient at the current configuration.

Approximate line search procedures aim to reduce the
computational cost of determining the step parameter by
posing weaker conditions on the found solution: Rather

occurs in the cases when the error decreases too slowlhan searching for a local or global minimizerafr) on

(E_1 — E < &4g), or when the gradient or the stepping (0,rm], a value is returned by the line search function as

parameter become too smallg(l, < &, rm < &).  satisfactory if it provides sufficient decrease of the

Finally, Ty, the maximum allowed number of iterations, objective function and sufficient progress toward the

is used as a guard against infinite looping. solution configuration. A common approach to defining
Theline searchsubprogram used if3.5} is described  sufficient decrease is to define the “roof” function

next.
A(r)=q0)+p-d(0)-r, 0<p<1l (12)

which is a line passing througf0, q(0)) and having a
slope which is a fraction of the slope qgfr) atr = 0.

) o ) With this function, we define that sufficient decrease is
An exact line searcltould be used in lind3.5} (Fig. 3) provided by all values of such that

to determine a value for the step sizesuch that the

2.4 Approximate hyperbolic line search

corresponding new configuratiof8.6} achieves a local
minimum of the embedding error along the search path a(r) <A (), re0ru] (13)
with tight tolerance: Fig. 4 shows an example of acceptable step length
segments obtained from the sufficient decrease condition
r= argmir}e[OJM]q(r) ) (11) (13.
To ensure sufficient progress, we adopt a binary search
whereq(r) is the embedding error as a functionrof algorithm motivated by the simple backtracking approach

However, increasing the precision of this computation(e.g. [L9]). The details are given in Fi¢.
is not essential to the convergence performance since the We start the line search with an initial gueggor the
steepest descent search direction is only locally optimalstep size parameter, and in the expansion pk&dg we
Further, exact line search can fail to converge to a localdouble it until it violates the windowy, or the sufficient
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ProcedureHypLineSearch

Input data:

an initial guess of the step parametgr

the maximum step valugy

the functionq(r)
Input parameters:

the slope parametgrfor the roof functiom (r);
Output:

an acceptable step paramater

Initialize:
I < 1o,
While r <ryandq(r) < A(r),
(A {5.1}
While r <ryorq(r) >A(r),
[ 27 {5.2}
Return r.

Fig. 5: Line search procedure for PD-MDS

decrease condition. In the reduction ph§s&}, we halve
r until it finally satisfies both the window requirement:
rm and the decrease criteriopir) < A (r).

and it can be easily shown that its slope is given by

q(1)= () =
= (ReM’(—rg,z))TReDE(M (-rg,z),A,W,I)
+(ImM’(=rg,2))" IMOE (M (—rg,2),4,W, 1)

where the entries d¥l’ (—rg,z) are given by

- j‘zi‘zi_l

(1-rg;z)?
We thus have a general explicit formula for calculating
q (r) given a configurationz and the corresponding

gradientg of E at z. In particular, this formula can be
used to calculated (0), the slope ofA (r).

d
arvi (r)

3 Multidimensional scaling in the PD

3.1 Objective functions and gradients

The iterative minimization method presented in S2c.
requires a choice of an embedding error function with
continuous first derivatives. In this work we consider the

We observe that, when started at a point with nonzerqeast squares error function

gradient, the line search will always return a nonzero

value forr. Since the returned acceptable stejs such

that the step 2r is not acceptable, there will be a
maximum acceptable poimf, from the same acceptable

segment as, such that < rm < 2-r, whencer > ry/2.

In other words, the returned value is always in the upper
half of the intervall0,rm) and we accept this as sufficient
progress toward the solution, thus eliminating some mor
computationally demanding progress criteria that would

require calculation off (r) at points other tham = 0 or
cannot always return a nonzarl9,1§].

It remains to show how to calculate the slope\df),
that is pq (0) (Eg. 12). Given a configuratiorz and a
direction—g= —[0E (z,A,W, 1), the configuratiorz’ as a

E=c
=

n
z Cik (djk — aéjk)z. (16)
lk=]+1

We note that 16) is a general form from which several
special embedding error functions can be obtained by

esubstituting appropriate values of the constantsy, and

a. Examples include:
—Absolute Differences Squared (ADS)

17)

E:i i ik (1x (djk — adik))?

j=1k=]+1

function of r (7) can be conveniently represented as a —Relative Differences Squared (RDS)

column-vector function
M (-rg,2) (14)

whosej-th entry is the Mdbius transform

—I9;+z

Mj(r)= ———.
1) —19jz+1

The associated embedding error as a functionisthen

q(r)=EM (-rg,z),A,W,I), (15)

(). g —ad\®
ik (llk a0 ) (18)

m
I
™M
M >
3

—Sammon Stress Criterion (SAM)

1 n n |'k d-k—a5-k 2
a lixOj 1=+ 1T
glkngrl <

(19)

As the most general case dff), individual importance
dependent on the input dissimilarities can be assigned to
the pairwise error terms using the weights teuns
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PD-MDS also requires calculation of the gradient of a does not change the embedding error. This is possible
the error function. For a general error function, closedfor Euclidean space since the Euclidean distance function
form symbolic derivatives may or may not exist. In any scales by the same constant factor as the point
case, one can resort to approximating the gradient usingoordinates:
finite difference calculations. Numerical approximation 12
may also have lower computational and implementation L )
costs than the formal derivatives. However, the use of (Z(a'ws—a')’ks) ) = a-dk.
numerical derivatives can introduce additional s=1

convergence problems due to limited machine precision. Thus, for example, ifly is the Euclidean distance, then

For the sum 16), a symbolic derivation of the r : :
gradient of (6), including both the Euclidean and ;hoetsumsm) and (L9) are scale-invariant, whereasr is

Eg?gr?gr“cb?gjﬁs’ (l::"’:gmbetﬁzs'gbgggd ?g;j?dslsn%ngﬁgd However, whertjy is thehyperbolicdistance function
derivatives of L%;(lg) as well as any other sp:acigl cases (2), none of the 17)~(19) are'scale-invariant. Therefore,
derivable from 16) éan be obtained by substituting the simplest ADS error functiorl) may be a preferable
appropriate constants choice fpr reducing the computational cost in the
pprop : hyperbolic case.

The lack of scale-invariance of the hyperbolic
L distance formula 3) implies an additional degree of
3.2 Local vs. global minima freedom in the optimization of the embedding error — the
dissimilarity scaling factorIn Egs. (6)—(19) this extra
PD-MDS, being a steepest descent method that terminatefegree of freedom is captured via the paramatéhat
at near-zero progress, can findsttionary pointof the  scales the original entries of the dissimilarity matrix.
objective function. In the least squares case, if the value a
the returned solution is close to zero (that < &),
then the final configuration can be considered a globaly Numerical results
minimizer that embeds the input metric with no error. In
all other cases, a single run of PD-MDS cannot
distinguish between local and global points of minimum
or between a minimizer and a stationary point. A
common way of getting closer to the global minimum in
MDS is to run the minimization multiple times with
different starting configurations. Expectedly, there il
accumulation of the results at several values, and tht%j
more values are accumulated at the lowest accumulatio
point, the better the confidence that the minimal value
represents a global minimum i.e. the least achievabl
embedding error.
Numerous methods that are more likely to find W
lower minimum than the simplest repeated descen&
methods in a single run have been contemplated in the

numerical optimization literature. However, to guarantee " provided example configuration is examined in

in general that the global minimizer is found is difficult detail in Fig.7. The fiqure shows the PD-MDS internal
with any such method. It may be necessary to resort tQ arametersg.v.s the %ceration number: In Figa, the

running the'soph|st'|cated f.“"-‘thOdS several times as well i mbedding erroE monotonically decreases with every
order to gain confidence in the final result. Since these

. iteration; the iterations terminate at the fulfillment of
methods are usually computationally more complex or

incorporate a larger number of heuristic parameters thE < & = 10°°, which means that likely the output
. P 9 P ’ %onfiguration represents the global minimum and the final

ninter-point distances match the input dissimilaritiesyver
closely. The step-size parameteris initialized with a
value of 1 and assumes only values of the forfnfar
A ) integralk (Fig. 7b).
3.3 Dissimilarity scaling The exponential character of the change of accord

with {5.1} and {52} (Fig. 5) ensures the low
The objective functions used in metrieuclideanMDS computational cost of the line search subprogram.
are typically constructed to kszale-invarianin the sense The refining of the step size as the current
that scaling the input dissimilarities and the coordinatesconfiguration approaches a local minimum of the error
of the output configuration with the same constant factorfunction, on the other hand, is achieved by the decrease of

4.1 A synthetic example

To illustrate the functioning of PD-MDS, we provide an
example random configuration consisting of seven points
in the Poincaré disk.

To carry out this experiment, we populate the input
issimilarity matrix with the hyperbolic inter-point
Qistances and stat PD-MDS from another
randomly-generated seven point initial configuration in
$he PD. Fig.6 shows the trajectories traveled by the
points during the minimization. The clear points denote
he initial configuration, whereas the solid ones represent
he final point configuration.

The operation of the PD-MDS algorithm as it iterates

offset the benefits of their sophistication.
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1f (b) Step-size parameter r
(a) Embedding error E 8
0.8 [
6
0.6 B B 10*2
0.4t 4
0.2 /‘\ 107 2
0 i "
’\ i Ty 20 30 40 % 1 2 30 40
-0.2F terations erations
\.4
047 (c) Norm of gradient lg]| (d) Rel. step-size parameter r/r,,
-0.61 : 0.4 0.8
-0.8 0.3t 0.6
71—1 —0.‘8 —OTG —O‘.4 —O‘.2 0 012 0.‘4 076 018 i 0.2} 04
0.1p 0.2
Fig. 6: The minimization trajectory for a seven point o 0
. . . R 0 20 40 60 0 10 20 30 40
configuration using PD-MDS. The clear and the solid Iterations iterations
points are respectively the initial and the final point
configuration.

Fig. 7. The PD-MDS internal parameters vs. the iteration
number for the seven point example of Fi&). (a) the
embedding erroE, (b) the step-size parameter(c) the
the gradient norm. This is further illustrated in Fige  Norm of the gradientg[,, and (d) the step-size parameter
and7d. relative to the maximum allowed valugry,.

In our pool of numerical experiments, we produced
graphs similar to those shown in Fig.while using two

other line search strategies: (i) exact search and (ii) line Hyperbolic Scaling of the Iris Dataset
search using an adaptive approximate step-size parameter. ‘ ‘
Both of these strategies showed slower convergence 0.6
compared to the binary hyperbolic line search, and were 0,551
of higher computational cost. 5
5 o5
%
4.2 Scaling of the Iris dataset in the PD g0
w o0.4r
As a first experiment on real-world data, we apply
PD-MDS to the Iris datase®]. This classical dataset 0.35¢
consists of 150 4-dimensional points from which we 03 ‘ ‘ ‘
extract the Euclidean inter-point distances and use them 10 10" 10° 10!

! c Euclde: : ) nput scaling fact
as input dissimilarities. The embedding error as a function nput seafing factor

of the scaling factom is shown in Fig.8. Each value in

the diagram is obtained as a minimum embedding error inFig, 8: The effect of scaling of the dissimilarities on

a series of 100 replicates starting from randomly chosefthe embedding error for the Iris Datas@O]. The input

initial configurations. _ . dissimilarities are the Euclidean distances between pairs
Minimal embedding error overall is achieved for of original points. This PD-MDS result reveals that the

a ~ 4. The improvement with respect to the |rsdatasetis better suited for embedding to the hypecboli
2-dimensional Euclidean case is 10%. Thus, the lIrispjane that to the Euclidean plane.

dataset is an example of dimensionality reduction of an
original higher-dimensional dataset that can be done more
successfully using the PD model.

multidimensional scaling of dissimilarity data in the
Poincaré disk model of the hyperbolic plane. While our
5 Conclusion exposition concentrated on a simple steepest descent
minimization with approximate binary hyperbolic line
In this paper, we elaborated the details of PD-MDS, ansearch, we believe that elements of the presented material
iterative minimization method for metric will also be useful as a general recipe for transferring
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other, more sophisticated iterative methods of[17]J. W. Anderson. Hyperbolic Geometry Springer, 2nd
unconstrained optimization to various models of the edition, 2007.
hyperbolic space. [18] P. E. Frandsen, K. Jonasson, H. B. Nielsen, and O. Tiingle
Unconstrained OptimizationMM, DTU, 3rd edition, 2004.
[19] J. Nocedal and S. J. Wright. Numerical Optimization
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