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Abstract: A hybrid tenth algebraic order two-step method with vanispease-lag and its first, second, third and fourth derigativ
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1 Introduction instabilities of the method (due to the requirement the
application of the method to be started using using
In the present paper we will investigate the numericalunstable methods (for problems with periodical and /or
solution of special second order initial value problems of oscillating solutions) like Runge-Kutta or
the form: Runge-Kutta-Nystom  methods).  Therefore, the
application of this type methods has serious problems on
p’(x) = f(x,p), p(Xo) =Co and P(xo) =pp (1) computational cost and on the accuracy. The above
described problem is solved since the new method is of
We are interested especially for the problems®fwith  two-step. For the accuracy of the approximate solution of
periodical and/or oscillating solutions. problems with periodical and /or oscillating solutions th
It is easy for one to see, from the mod#),(that the  new obtained method has very critical properties which
main characteristic of the problems of our interest is thatare the elimination of the phase-lag and its derivatives.
their mathematical expressions consist of systems of
ordinary differential equations of second order in which
the first derivativep’ does not appear explicitly.
In this paper we will introduce a hybrid (4-stages) —the development of the method,
two-step tenth algebraic order method is introduced in -the definition of the local truncation error of the new
this paper. In order to achieve high algebraic order the method and based on this the comparative local
numerical methods must have many steps or many stages truncation error analysis using other similar methods
or both of them (se€3]). The above methodology (many of the literature,
steps and/or stages) creates serious computational —the determination of the stability interval (interval of
difficulties since increase the computational time and periodicity) of the obtained method using a scalar test

Our investigation involves:
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equation with frequency different than the frequency of
the scalar test equation used for the phase-lag analysis

—the determination of the Error Estimation based onAx(V) Pnim+ --- +A1(V) Pny1+Ao(V) Pn
methods with similar characteristics but with different +A1(V) Pr1+ ... + A(V) Gn_k = O (5)
algebraic order and

-the examination of the efficiency of the new wherev = gh, his the stepsize andj(v) j = 0(1)mare
developed method by applying it on the numerical polynomials ofv.
solution of the coupled differential equations arising  The characteristic equation associated wihig give
from the Schrodinger equation. We note here that thispy :
problem is a very important problem for the
computational chemistry which is a part of

information sciences. An(V)A™+ ..+ AL(V)A +Ag(V)
+AIVA T+ L+ AR(VATM=0. (6)
2 Phase-lag for Symmetric2k Multistep Definition 2.[16] We say that a symmetr&k-step method
Methods with characteristic equation given b)(has an interval
of periodicity(0,V3) if, for all v € (0,V3), the rootsA;,i =
We use the multistep methods 1(1)2k of Eq. @) satisfy:
k i0(v —i6(v
M= ), =¢e ,and|Ai| <1i=3(1)2k (7
Z G Pnsi = h? z bi f (Xn+i, Pri) (2) ! Al @) @
i=—k i=—k

wheref(v) is a real function of v.

in order to solve numerically the initial value probleft).(

We have the following remarks: Definition 3.[14], [15] For any symmetric multistep
method which is associated to the characteristic equation

1.The method2) is applied within integration intervals. (6) the phase-lag is the leading term in the expansion of
The integration interval is defined using the interval of

interest for the solution of the probleri)( which is t=v—6(V) (8)

equal to[a,b], after its division intok equally spaced

subintervals i.e{xi}g‘z_k € [a,b]. The order of phase-lag is q, if the quantity
2.The quantityh, called stepsize of integration and is t = O(v4*1) asv— o is hold.

given byh = |x11—x|, i=1-k(1)k—1.

3.For the specific multistep method the number of stepsDefinition 4.[2] If for a method the phase-lag is equal to
which are used for the integration, is equal to(2nd  zero, then this method is call@thase-fitted
for this reason can be calleck:tep method).
Theorem 1[14] The symmetric2k-step method with
RemarkWe call a method 4) as symmetric multistep associated characteristic equation given bg) (has

method if and only ifc_j = ¢ andb_j = bj, i=0(1)k. phase-lag order q and phase-lag constant ¢ given by
RemarkThe linear operator
g —cVt2 4 O(vAH) = B 9)
Py
k
L(X) = p(x+ih)—h? S b p’(x+ih) (3)  Where _
i:Zk .,Zk I Po = 2Ac(v) cogkv) + ...+ 2Aj(v) cogjV) + ... + Ag(V)

and R = 2k2Am(V) + ... + 2 j2Aj (V) + ... + 2A1(V).
is associated with the Multistep Metha?) (wherep € C?.

Remarli-or the direct calculation of the phase-lag for any
Definition 1.[1] The multistep method 2) is called  symmetric &-step multistep method we use the formula
algebraic of ordem if the associated linear operathr  (9).
given by @) vanishes for any linear combination of the
linearly independent functions &, x?, ..., x™, RemarkSince in our investigation we study the

) ) ) symmetric two-step methods, with characteristic
Applying the symmetric R-step method & —k(1)K), polynomialsAj(v) j = 0,1, the phase-lag of orderwith

to the scalar test equation phase-lag constantis given by:
— 4
o'p “) ot o) _ 2P0 SO AW o
we obtain the following difference equation: 2A1(v)
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3 The New Tenth Algebraic Order Hybrid

Two-Step Method with Vanished Phase-Lag (1+v2(b boa V2(15 3v?
and Its First, Second, Third and Fourth 1R \26 ~ 208
Derivatives 15 3V L3
+6a0v <26 208)) 2 104 53)))
We consider the family of two-step methods 2
15 63v
) cos(v 2+v2(b0(1+ alvz( + oz
~ 2 2
Pri1 = =5 (3Pnr1+20pn+29pn-1 15 63V 93 63v
2 al ) +6207 (~ 13+ 904 ))) +02 (53~ %36 ))
41f 682f,—271f,_
4992( n+1— n n 1) B 1+v2(b1+boalv2(15 32
p L (Sp +146p,—47p ) 2 2 2208
P1= n+1 h— n—1 15 3v 11 3v
"2 104 +6aV? | = — —— )+bz S )
h2 26 208 104 832
+K92( 59fy,1+ 1438f, + 253fn,1)
B 5 Solving the above system of equatiod®)¢(16), we
Pn= pn—aoh (fn+1 can obtain the coefficients of the new proposed hybrid
~ ~ method :ag, a1, bg, b1, by. For the case that the formulae
—Af 1+t —4f 1+ fn—l) are subject to heavy cancellations for some valuel|of
B ) then Taylor series expansions should be used
Ph=Pn—aih (fn+1 In Figure 1 we present the behavior of the coefficients
~ ~ ~ of the new method.
_4fn+% +6fh—4 fn—% + fn—l) The local truncation error of the new obtained hybrid
method (1) (mentioned aExpTwoStepHY0) is given
Pn+1— 2 P+ Pn-1= h2 [bl (fn+1 + fnfl) by:
_ 47563 12)
LT —_—
hofatb(f, s fn%)] (11) EexpTwostepH0 = ~ 3a2o85853508 (
5 10 10
wheref; = p” (X, pi),i = —1(%)1 anda;, i = 0,1bj j = +5¢ pr” + 109" i + 10¢° pr”
0(1)2 are free parameters. 15¢8p 1+ ¢%p? | 10 (h%)  (17)
Requesting the above hybrid methotil( to have

vanished the phase-lag and its first, second, third and
fourth derivatives, the following system of equations is

obtained : 4 Comparative Error Analysis
1To Let us consider the test problem
Phase- Lag(PL) = 5T = 0 (12)
' p'(%) = (V(X ~VetG) p(x) (18)
APL where
FirstDerivative ofthe PhaselLag = Vi 0 (13 -V (x) is a potential function,
-\ a constant value approximation of the potential for
the specificx,

aZPL -G=V.—E and

Second Derivative ofthe Phasd.ag= —— =0 (14) —E is the energy,

ov2

We will study the local truncation error of the
following methods:

3
Third Derivative ofthe Phase Lag = da%' =0 (15
4.1 Classical Method (i.e. the methdbly with
, constant coefficients)
Fourth Derivative ofthe PhaselLag = 9°PL =0 (16)
oVt _ 47563 12 (12) 14
where LTEcL =~ 3583282803200 ™ O (19
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behavior of the coefficient a_0 behavior of the coefficient b_0

5 v n(b.0) 3
4 2
In(a0) -6 1 ’

that the new obtained formulae are dependent on the
energykE.

—The previous step of the algorithm leads to
expressions of the Local Truncation Error which
contain the parametdd (see (8)). We proceed our
study taking into account two cases for the parameter
G:

UX \ 1.Case wher¥. — E = G~ 0. Is the case where the

Energy and the potential are closed each other.

Consequently, the terms in the formulae of the

: local truncation error which contain powers Gf

! BT T n (i.e. which containG"n > 1) are approximately

* L ‘ equal to zero. Therefore, the expression of the

local truncation error is equal with the term which
contain only the power of° i.e. which is free
from G. Consequently, the local truncation error
for the classical method (constant coefficients) -
which contains only free frong terms - is equal
with the local truncation error of the methods with
vanished the phase-lag and its first, second, third
and fourth derivatives. This is due to the fact that
I the expressions of the terms of the local truncation
' errors which are free fror® are the same in this
case. Therefore, for these values &, the
o2y -4 methods are of comparable accuracy.
2G >> 0 orG << 0. Then|G]| is a large number.
The most accurate methods are the methods with
expressions of the local truncation error which
contain minimum power o.
F|g 1: Behavior of the coefficients of the new proposed method _Flna”y we present the asympto'“c express|0ns of the
for several values of = gh. Local Truncation Errors.

In(a_1)

-4
1 In(b_1)

-6

-8

The following asymptotic expansions of the Local
Truncation Errors are obtained based on the analysis

4.2 The New Proposed Method with Vanished presented above

Phase-Lag and its First, Second, Third and

Fourth Derivatives Produced in Section 3 4.3 Classical Method
47563
47563 12 _ _ K2
LT EexpTwoStepHY0 = —mgn (pﬁ ) LTEcL 3683282803208
15¢?pi% +10¢* p® + 1045 p <|0 (X) G®+ - ) +0(n) (21)

+5¢°ph + 10 p‘n2>> +0(h%)  (20)
_ 4.4 The New Proposed Method with Vanished
We follow the below mentioned procedure : Phase-Lag and its First, Second, Third and
—Since the formulae of the Local Truncation Errors Fourth Derivatives Produced in Section 3

consists of derivatives of the functiop, we the
expressions of these derivatives based on the test

problem (8). In Appendix we present some of these 47563 1
expressions. LT EexpTwostepHyo = —mg
-We produce new formulae of the Local Truncation "
Errors yvhlgh are bas'ed on the above expressions of —g(x) p(x) G3+---+O(h14) (22)
the derivatives given in the above step. We note here dx*
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From the above equations we have the following  Thes— v plane for the method obtained in this paper
theorem: is shown in Figure 2.

Theorem 2. -Classical Method (i.e. the method 1
with constant coefficients): For this method the error
increases as the sixth power of G.

—Eighth Algebraic Order Two-Step Method with
Vanished Phase-lag and its First, Second and Third
Derivatives developed in Section 3: For this method
the error increases as the Third power of G.

So, for the approximate integration of the time
independent radial Scbdinger equation the New
Obtained Tenth Algebraic Order Method with Vanished ,
Phase-Lag and its First, Second, Third and Fourth
Derivatives is the most efficient from theoretical point of
view, especially for large values (| = |V. — E|.

£

Sl 720 e yrdToe S et Vot FraseLag s s, S i e Foun oz

5 Stability Analysis

Let us consider the scalar test equation for the investigati
of the stability of the new proposed hybrid method :

P’ =—w?p. (23)
As one can see the above scalar test equation hz
frequency which is different than the frequency of the !
scalar test equation for the phase-lag analygisvhich is s
investigated above i.ev #~ @.

Application of the new hybrid method to the scalar test _.

. : . .. Fig. 22 s—v plane of the new obtained two-step high order
equation £3) leads to the following difference equation: method with vanished phase-lag and its first, second, thdd a

fourth derivatives

Al (Sv V) (pn+1 + pn—l) + AO (Sa V) Pn= 0 (24)

where

Au(sv) = 1+ by + 15hpays’  3s’hoay RemarkiErom thes— v region presented in Figure 2 we

' 26 208 can have the following conclusions : (1) The method is
45hpa;fag  9Phpayay  11bpys?  3sth, stable within the shadowed area, (2) The method is

13 - 104 104 3832 unstable within the white area.

Ao(s,V) = —2+ by — 15bo2y s’ + 635’02y Remarkin many real problems in Sciences, Engineering

13 104 and Technology the corresponding models consist only
90bpayPag  189Pbpayag  93b,s®  63s'h, one frequency. Therefore, in these cases we are interested

o 13 52 52 416 for the study of the stability of the proposed methods
wheres = wh andv = gh under the condition that the frequency of the scalar test
We have the following definitions (see for more details €quation for the stability analysis is equal with the
within Section 2 of the present paper): frequency of the scalar test equation for the phase-lag

o ) analysis i.e. under the condition that= ¢. For these
Definition 5.(see [L6]) We call P-stable a multistep cases the investigation of tise- v plane is limited on the
method with interval of periodicity equal {@, «). the surroundings of the first diagonal of thes— v plane

Definition 6.We call singularly almost P-stable a i-€. on the areas where = v. An example is the
multistep method with interval of periodicity equal to Schrodinger equation.

_ 1 i i -
(0,00) =S % This term (singularly almost P-stable Based on the above remark, we studied the case where

method) is applied whew = ¢ i.e. only in the cases .
when the frequency of the scalar test equation for thethe frequency of the scalar test equation used for the the

stability analysis is equal with the frequency of the scalar stability analysis is equal with the frequency of the scalar
test equation for the phase-lag analysis. test equation used for phase-lag analysis l.e. we
investigate the case whese-= v (i.e. see the surroundings

1 whereSis a set of distinct points of the first diagonal of the— v plane). Consequently, we

(@© 2016 NSP
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extract the following result: the new obtained method has6.2 Coupled differential equations
interval of periodicity equal to(0, ), i.e. is P-stable.
The above investigation leads to the following In many problemsin

theorem: i
—quantum chemistry,

Theorem 3The proposed method developed in section 3:  —Material science,
—theoretical physics,

—is of tenth algebraic order, —atomic physics,

—has the phase-lag and its first, second, third and fourth —physical chemistry,
derivatives equal to zero —theoretical chemistry and

—has an interval of periodicity equals t@0, ), i.e. is —chemical physics

P-stable when the frequency of the scalar test ] )
equation used for the phase-lag analysis is equal with their mathematical model can be transferred a coupled

the frequency of the scalar test equation used for thedifférential equations of the Schrodinger type.
stability analysis We write the close-coupling differential equations of

the Schrodinger type as:

6 Numerical Resul @ e hlitd) S
umerical Results g T Vi = n;\/imymj (27)
6.1 Error Estimation for1<i<Nandm#i.

For our numerical tests we consider the case in which

In the literature many techniques have been proposed thgj| channels are open. So we have the following boundary
last decades for the estimation of the local truncationrerro conditions (see for detail§§)):

(LTE) on the numerical solution of systems of differential

equations (see for exampl&{53)]). yij=0atx=0 (28)
Our methodology for the local error estimation

technique is based on the algebraic order of the methods 12

and on an embedded pair of multistep methods. More .

specifically our methodology is based on the fact that the ~ Yii ™ kixji; (kiX)&j + (E) Kijkixnyi (kix) (29)

maximum algebraic order of a multistep method produces ) ]

highly accurate approximate solutions for problems withWhere ji(x) and ni(x) are the spherical Bessel and

oscillatory and/or periodical behavior. Neumann functions, respectively.

For the local error estimation, we use as lower OrderRemarkThe produced method can also be used for the
solutionyk. ; the method developed irP], which is of case of closed channels.

eight algebraic order. As higher order solutigﬁ’l+1 we ) . ) .
use the method obtained in this paper - which is of tenth Our investigation is based on the detailed analysis
algebraic order. Now, the local truncation erronyp, is ~ obtained in §5. We define a matrixk’ and diagonal

estimated by matricesM, N as:
LTE =| Yni1— Yret | (25) / K\ /2
The estimated step length for the+ 1) step, which = (k_J> i
would give a local error equal t@acg, is given by Mij = ki, (KiX) &;
ot — b (ﬂ)% - Nij = kixn, (kiX)&j | | )
LTE (82%.;,21 pn the above we can write the asymptotic condition

whereq is the algebraic order of the methdw,is the step
length used for then" step andacc is the requested
accuracy of the local error.

y ~M +NK’

RemarkDetailed description on the problem one can find
in [559). There is described one the most well-known
methods for the numerical solution of the coupled
differential equations arising from the Schrddinger
equation. This is the Iterative Numerov method of Allison

RemarKThe local truncation error estimate is based on
the lower algebraic order solutioy}, ;. However, if the
estimation of the local error is less thanc we adopt the
widely used procedure of performing local extrapolation.
Thus, although an estimation of the local error is [59.

controlled in lower algebraic order solutigh, ., it is the The rotational excitation of a diatomic molecule by
higher algebraic order solutiofy), ; which is accepted at neutral particle impact is a real problem for which its
each point. mathematical model can be transferred to close-coupling
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differential equations of the Schrodinger type. This Table 1: Coupled Differential Equations. Real time of

problem occurs frequently in quantum chemistry, computation (in secor12ds) (RTC) gnd maximum absolute error
Err) to calculate| S|< for the variable-step methods Method

Method V. acc=10"%. We note that hmax is the maximum

theoretical physics, material science, atomic physics ancﬁ'\f'

molecular physics. Denoting, as ihg], the entrance

channel by the quantum numbéisl), the exit channels stepsize
by (j’,I'), and the total angular momentum by Method N hmax RTC MEr
J=j+1=j +I, we find that Method | 4 0014 325 2x10°
d? "'("+1)7 i 9 0014 2351 5x107
{F I — = | Y (x) = 16 0.014 99.15 B8x10'
o X X Method Il 4 0056 155 8x10 7%
T . jl 9 0056 843 #Ax10°
R lez <TGV 9 > i (09 (30) 16 0.056 4332 ®x10 2
where Method Il 4 0.007 45.15 @ x 10°
9
2
i = 2E+ i+ 1)~ + )] G 1o
A 2l Method IV 4 0112 039 1x10°
E is the kinetic energy of the incident particle in the 9 0112 348 Bx10"
center-of-mass systerh,is the moment of inertia of the 16 0112 1931 Bx10°
rotator, andu is the reduced mass of the system. MethodV 4 0448 0.16 2x10°
As analyzed in$5], the potentiaV can be expanded 9 0448 147 &Hx107
as 16 0.448 10.08 Gx10 '

V(% kjikj) = Vo(x)Po(ky jkjj) +Va(x)Pa(kj ki) ),

(32)
and the coupling matrix element may then be written as
< P1IIV |13 > = 811 SuNo(X)+ Fo (117, 717 IV (X As _is described ing5], we ta}keJ = 6 and consider
I3V i Vo) + T2 )(33() ) excitation of the rotator from th¢ = O state to levels up

where thef, coefficients can be obtained from formulas
given by Bernstein et al.5f] and kj/; is a unit vector
parallel to the wave vectokj; and R, i = 0,2 are
Legendre polynomials (see for details$s7]). The
boundary conditions are

to j/ = 2,4 and 6 giving sets ofour, nine and sixteen
coupled differential equations respectively. Following
the procedure obtained by Bernstebir[and Allison [55]

the potential is considered infinite for valuesxdéss than
someXg. The wave functions then zero in this region and
effectively the boundary conditior34) may be written as

j/j||/ (X) =0atx=0 (34) "
Yl (%) =0 (37)
N
Yinr () ~ &5+ drr expl—i (kjjx — 1/2170)] For the numerical solution of this problem we have
ki vz . _ , used the most well known methods for the above
() Simendityx-1/2m) (@) problem:
j

where the scattering S matrix is related to Knenatrix of
(29) by the relation

S=(I+iK)(I —iK)™?t

In order to compute the cross sections for rotational
excitation of molecular hydrogen by impact of various
heavy particles we need an algorithm which must include
a numerical method for step-by-step integration from the
initial value to matching points. The specific algorithm is
based on an similar algorithm which has been obtained
for the numerical tests obf.

For numerical purposes we choose Swatrix which
is calculated using the following parameters

(36)

—the Iterative Numerov method of Alliso®$] which is
indicated asMethod I,

—the variable-step method of Raptis and Ca$H] [
which is indicated aMethod II,

—the embedded Runge-Kutta Dormand and Prince
method 5(4) 49] which is indicated adethod Ill ,

-the embedded Runge-Kutta method ERKA4(2)
developed in Simos 58 which is indicated as
Method IV,

—-the new developed embedded two-step method which
is indicated a®lethod V

In Table 3 we present the real time of computation

required by the methods mentioned above to calculate the

u " B square of the modulus of tf@matrix for sets of 4, 9 and
"R 10000, T 235, E=11, 16 coupled differential equations. We present also the
1 1 maximum error in the calculation of the square of the

Vo(X) = 2 V2(x) = 0.2283/p(X). modulus of theS matrix. In Table 1N indicates the

(@© 2016 NSP
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OE 3¢9 ) ax

5 4
number of equations of the set of coupled differential pr@ = <d—g(x)> p(x)+5 ( d X ) ip(x)

equations.

7 Conclusions

In the present paper, we studied a family of tenth
algebraic order two-step methods. The main subjects of

this investigation was:

1.the study of the elimination of the phase-lag and its

first, second and third derivatives

2.the comparative local truncation error analysis
3.the stability analysis with a scalar test equation which

3

+1L@00+6)P() 32000 +15( 5.9 ) P

2 2
52909+ 13@00+6) (P09 ) a0t

2
+10(509) gp(+9(@-+61p(Y

dx
d 31

900 +(@0+6)°

Ix P(x)

o = (55900) v+ (2900 b0

uses a frequency different than the frequency used by d4

the scalar test equation for the phase-lag analysis
4.the computational behavior of the new obtained
method and its effectiveness on the numerical solution

of the coupled Schrodinger equations.

Based on the above mentioned results, it is easy for
one to see the efficiency of the new produced method for
the numerical solution of the Schrodinger equation rellate

problems..

All computations were carried out on a IBM PC-AT
compatible 80486 using double precision arithmetic with

16 significant digits accuracy (IEEE standard).

Appendix: Formulae of the derivatives of p,

Formulae of the derivatives which presented in the

formulae of the Local Truncation Errors:

P = (V(X) ~ Ve +G) p(x)

i = (e ) P09+ (@09 +G) gp(x
d?

! = (29%) poo+2( 5a00) o

+(@()+6)*p(x)
o = (55900) i +3 (5900 b0
(909 +)p0X) S g+ (X + G2 = p(x)
o = (55900) v+ (5900 b0

+16(@00-+6)P() 3590 +26( 5.9 ) p(¥

3 3
5900+24(@00+0) (P00 ) £r00
2 2
+15( 5000) p00-+48( ga00)

2
(5P 52900 +22@09+6)p(

2 2
52909+ 28(@00+6)p09 (000

+12(g(X) + G)? (%p(x)) %g (X)

+(@xX)+G)* px)...
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