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Abstract: In [9], it was introduced the notion of quasi-2-normed spaces. Inthat paper and the others following it, no example of a
quasi-2-normed space not being a 2-normed space is provided. In this paper it is shown the existence of quasi-2-normed spaces and
also, there are provided theorems that extend in quasi-2-normed spaces some well-known theorems for almost contractions.
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1 Introduction

Gähler [5] initiated the Theory of 2-normed and 2-Banach
spaces. These new spaces have subsequently been studied
by several mathematicians (for example [1], [2], [3], [6],
[7], [8]). In 2006, Park introduced the concepts of
quasi-2-normed spaces and quasi-(2;p)-normed spaces
[9]. In the up today current literature, it is not mentioned
the existence of those spaces. We emphasize the fact that
the examples given in [7] for quasi-2-normed spaces are
not rigorous, those spaces own to the classes of 2-normed
spaces.

In this paper, we construct and provide some
examples which solve the problem of the existence of
quasi-2-normed spaces.

Berinde [11] introduced a large class of contractive
mappings, initially called weak contractions, but for
which Berinde and Pacurar [13] later adopted the more
suggestive term of almost contractions. Kikina et al. [12]
obtained some theorems for almost contractions in
generalized metric spaces.

In this paper, our main aim is to obtain some theorems
for almost contractions in quasi-2-normed spaces.

Let us recall some definitions and results.

Definition 1.[5] Let X be a real linear space of dimension
greater than 1 and let‖·, ·‖be a real valued function on
X×X satisfying the following four conditions:
(2N1) ‖x,y‖ = 0 if and only if x and y are linearly
dependent in X,

(2N2) ‖x,y‖= ‖y,x‖ for all x,y∈ X
(2N3) ‖x,αy‖= |α| · ‖x,y‖ for every real numberα;
(2N4) ‖x,y+ z‖ ≤ ‖x,y‖+ ‖x,z‖ for all x,y,z∈ X

The function‖·, ·‖ is called a 2-norm on X and the pair
(X,‖·, ·‖) is called a linear 2-normed space.

So a 2-norm ‖x,y‖ always satisfies
‖x,y+αx‖= ‖x,y‖, for all x,y∈ X and all scalarsα.

We cite some examples of 2-normed spaces from the
current literature.

Example 1.Let X = R3. Define
‖x,y‖ = max{|x1y2− x2y1| , |x1y3− x3y1| , |x2y3− x3y2|},
wherex= (x1,x2,x3) , y= (y1,y2,y3) ∈ R3. Then‖x,y‖ is
a 2-norm onR3 (see [4]).

Example 2.Let Pn denotes the set of real polynomials of
degree less than or equal ton, on the interval [0, 1]. By
considering usual addition and scalar multiplication,Pn is
a linear vector space. Let{x1,x2, ...,x2n} be distinct fixed
points in [0, 1] and define the 2-norm onPn as‖ f ,g‖ =

∑2n
k=1 | f (xk)g′(xk)− f ′(xk)g(xk)|. Then(Pn,‖ f ,g‖) is a 2-

normed space (see [1]).

Definition 2.[9] Let X be a linear space. A
quasi-2-normed is a real valued function on X× X
satisfying three conditions of Definition 1: (2N1), (2N2),
(2N3) and the condition (2N•4): There is a constant s≥ 1
such that‖x+ y,z‖ ≤ s‖x,z‖+ s‖y,z‖ for all x,y,z∈ X.

The pair(X,‖·, ·‖) is called quasi-2-normed space if
‖·, ·‖ is a quasi-2-norm on X. The smallest possible s is
called the modulus of concavity of‖·, ·‖.
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A quasi-2-norm‖·, ·‖ is called a quasi-(2;p)-norm
(0 < p ≤ 1) if ‖x+ y,z‖p ≤ ‖x,z‖p + ‖y,z‖p for all
x,y,z∈ X.

Every 2-normed space is a special case of
quasi-2-normed spaces (fors = 1). In the following
section we provide some examples of quasi-2-normed
spaces which are not 2-normed spaces.

Definition 3.A sequence{xn} in a quasi-2-normed space
(X,‖·, ·‖) is said to be a Cauchy sequence if
lim

m,n→∞
‖xm− xn,u‖= 0 for all u in X.

Definition 4.A sequence{xn} in a quasi-2-normed space
(X,‖·, ·‖) is said to be convergent if there is a point x in X
such that lim

n→∞
‖xn− x,y‖ = 0 for all y in X. If {xn}

converges to x, we write{xn}→ x asn→ ∞.

Definition 5.A linear quasi-2-normed space(X,‖·, ·‖) is
said to be complete if every Cauchy sequence is convergent
to an element of X.

Definition 6.A complete quasi-2-normed space is called a
quasi-2-Banach space.

Definition 7.Let T : X →X be a mapping where(X,‖·, ·‖)
is a quasi-2-normed space. For each x∈ X, let O(x) =
{x,Tx,T2x, ...} which will be called the orbit of T at x.
(X,‖·, ·‖) is called T-orbitally complete if and only if every
Cauchy sequence which is contained in O(x) converges to
a point in X.

Definition 8.[11] Let (X,d) be a metric space. A map
T : X → X is called an almost contraction if there exist a
constantδ ∈ (0,1) and some L≥ 0 such that

d(Tx,Ty)≤ δd(x,y)+Ld(y,Tx) for all x,y∈ X.

In order to give a more generalizing character to the
main results of this paper, we will use the following class
of implicit functions:

Definition 9.[12] The set of all upper semi-continuous
functions with 5 variables f: R5

+ → R satisfying the
properties:

(a). f is non decreasing in respect with each variable.
(b). f (t, t, t, t, t)≤ t, t ∈ R+

will be notedF5 and every such function will be called a
F5-function.

Some examples ofF5-function are as follows:

1.f (t1, t2, t3, t4, t5) = max{t1, t2, t3, t4, t5}

2.f (t1, t2, t3, t4, t5) = [max{t1t2, t2t3, t3t4, t4t5, t5t1}]
1/2

3.f (t1, t2, t3, t4, t5) = [max{t p
1 , t

p
2 , t

p
3 , t

p
4 , t

p
5}]

1/p , p> 0

4.f (t1, t2, t3, t4, t5) = (a1t
p
1 +a2t

p
2 +a3t

p
3 +a4t

p
4 +a5t

p
5 )

1
p ,

wherep> 0 and 0≤ ai ,∑5
i=1ai ≤ 1

5.f (t1, t2, t3, t4, t5) =
t1+t2+t3

3 or f (t1, t2, t3, t4, t5) =
t1+t2

2
etc.

We state the following lemma which we will use for
the proof of the main theorem.

Lemma 1.Let (X,‖·, ·‖) be a quasi-2-normed space with
the coefficients s≥ 1 and {xn} is a sequence in X. If
‖xn− xn+1,u‖ ≤ cnl, for all u ∈ X and n∈ N, where
0≤ c< 1

s ≤ 1, l ≥ 0, then{xn} is a Cauchy sequence.

Proof.

‖xn− xn+m,u‖ ≤ s‖xn− xn+1,u‖+ s‖xn+1− xn+m,u‖)

≤ s‖xn− xn+1,u‖+ s2‖xn+1− xn+2,u‖

+s2‖xn+2− xn+m,u‖ ≤ ...

≤ s‖xn− xn+1,u‖+ s2‖xn+1− xn+2,u‖

+s3‖xn+2− xn+3,u‖+ ...

+sm−2‖xn+m−3− xn+m−2,u‖+ sm−1‖xn+m−2− xn+m−1,u‖

+sm−1‖xn+m−1− xn+m,u‖

≤ scnl + s2cn+1l + s3cn+2l + ...+ sm−1cn+m−2l + smcn+m−1l

≤ scnl 1−(sc)m

1−sc ≤ scnl 1−(sc)m

1−sc < scnl
1−sc

And so lim
n→∞

‖xn− xn+m,u‖ = 0. It implies that{xn} is a

Cauchy sequence inX.

2 Some quasi-2-normed spaces

Example 3.Let X = R3 andx = x1i + x2 j + x3k, y = y1i +
y2 j + y3k∈ R3. Define

‖x,y‖= s
∣

∣xi0yi0+1− xi0+1yi0

∣

∣+
3

∑
i 6=i0

|xiyi+1− xi+1yi |

where
∣

∣xi0yi0+1− xi0+1yi0

∣

∣ = min{|xiyi+1− xi+1yi | : 1 ≤ i ≤ 3},
x4 = x1,y4 = y1 and s > 1. Then (R3,‖x,y‖) is a
quasi-2-normed space.

Proof.The conditions (2N1), (2N2) and (2N3) are satisfied
and this is evident. Let us prove the condition (2N•

4): If

∣

∣xi0(yi0+1+ zi0+1)− xi0+1(yi0 + zi0)
∣

∣=

min{|xi(yi+1+ zi+1)− xi+1(yi + zi)| : 1≤ i ≤ 3},

c© 2016 NSP
Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci.10, No. 2, 469-474 (2016) /www.naturalspublishing.com/Journals.asp 471

we have

‖x,y+ z‖= s
∣

∣xi0(yi0+1+ zi0+1)− xi0+1(yi0 + zi0)
∣

∣+

3

∑
i 6=i0

|xi(yi+1+ zi+1)− xi+1(yi + zi)|

≤ s(
∣

∣xi0(yi0+1+ zi0+1)− xi0+1(yi0 + zi0)
∣

∣+

3

∑
i 6=i0

|xi(yi+1+ zi+1)− xi+1(yi + zi)|)

≤ s
3

∑
i=1

|xi(yi+1+ zi+1)− xi+1(yi + zi)|

≤ s
3

∑
i=1

|xiyi+1− xi+1yi |+ s
3

∑
i=1

|xizi+1− xi+1zi |

≤ s‖x,y‖+ s‖x,z‖

Thus,(R3,‖x,y‖) is a quasi-2-normed space.
At last, let us show that(R3,‖x,y‖) defined as above,

is not a 2-normed space.
Forx= (0,1,−1) ; y= (0,2,1) andz= (1,0,0) we have

‖x,y+ z‖ = ‖(0,1,−1),(1,2,1)‖= s·1+3+1= s+4

‖x,y‖ = ‖(0,1,−1),(0,2,1)‖= s·0+3+0= 3

‖x,z‖ = ‖(0,1,−1),(1,0,0)‖= 1+ s·0+1= 2

and‖x,y+ z‖= s+4> ‖x,y‖+ ‖x,z‖ = 3+2= 5.
That is, the condition(2N4) is not satisfied. Therefore,

for everys> 1, the quasi-2-normed space(R3,‖x,y‖) is
not a 2-normed space.

Example 4.Let P2 denotes the set of real polynomials of
degree 2, on the interval [0, 1]. By considering usual
addition and scalar multiplication,P2 is a linear vector
space. Let{x1,x2,x3,x4} be distinct fixed points in [0, 1].
Define the quasi-2-norm onP2 as

‖ f ,g‖ = s
∣

∣ f (xi0)g
′(xi0)− f ′(xi0)g(xi0)

∣

∣

+
4

∑
i 6=i0

∣

∣ f (xi)g
′(xi)− f ′(xi)g(xi)

∣

∣ ,

where
∣

∣ f (xi0)g
′(xi0)− f ′(xi0)g(xi0)

∣

∣

= min{
∣

∣ f (xi)g
′(xi)− f ′(xi)g(xi)

∣

∣ : 1≤ i ≤ 4} ands> 1.

Then(P2,‖ f ,g‖) is a quasi-2-normed space.

Proof.The conditions (2N1), (2N2) and (2N3) are satisfied
and this is evident. Let us prove the condition (2N•

4): If

∣

∣ f (xi0)g
′(xi0)− f ′(xi0)g(xi0)

∣

∣

= min{
∣

∣ f (xi)g
′(xi)− f ′(xi)g(xi)

∣

∣ : 1≤ i ≤ 4} we have

‖ f ,g+h‖= s
∣

∣ f (xi0)(g+h)′(xi0)− f ′(xi0)(g+h)(xi0)
∣

∣

+
4

∑
i 6=i0

∣

∣ f (xi)(g+h)′(xi)− f ′(xi)(g+h)(xi)
∣

∣

≤ s(
∣

∣ f (xi0)(g+h)′(xi0)− f ′(xi0)(g+h)(xi0)
∣

∣

+
4

∑
i 6=i0

∣

∣ f (xi)(g+h)′(xi)− f ′(xi)(g+h)(xi)
∣

∣)

= s(
4

∑
i=1

∣

∣ f (xi)(g+h)′(xi)− f ′(xi)(g+h)(xi)
∣

∣)

≤ s(
4

∑
i=1

∣

∣ f (xi)g
′(xi)− f ′(xi)g(xi)

∣

∣

+
4

∑
i=1

∣

∣ f (xi)h
′(xi)− f ′(xi)h(xi)

∣

∣)≤ s‖x,y‖+ s‖x,z‖

Thus,(P2,‖ f ,g‖) is a quasi-2-normed space.
At last, let us show that(P2,‖ f ,g‖) defined as above,

is not a 2-normed space.
Let us consider the casex1 = 1,x2 =

1
2,x3 =

1
3 andx4 =

0. For f = x,g= x2andh= (x−1)2, we have
∣

∣ f (x1)(g+h)′(x1)− f ′(x1)(g+h)(x1)
∣

∣ = |2 ·0−2 ·1|= 2
∣

∣ f (x2)(g+h)′(x2)− f ′(x2)(g+h)(x2)
∣

∣ =
∣

∣

5
4 · (−1)−1 · 5

4

∣

∣

= 5
2

∣

∣ f (x3)(g+h)′(x3)− f ′(x3)(g+h)(x3)
∣

∣ =
∣

∣

10
9 · (− 4

3)−
2
3 ·

13
9

∣

∣

= 66
27 =

22
9

∣

∣ f (x4)(g+h)′(x4)− f ′(x4)(g+h)(x4)
∣

∣ = |1 · (−2)−0 ·2|= 2

and‖ f ,g+h‖= s·2+ 5
2 +

22
9 +2= s·2+ 125

18 .
In similar way, we get

| f (x1)g′(x1)− f ′(x1)g(x1)|= |2 ·0−2 ·0|= 0
| f (x2)g′(x2)− f ′(x2)g(x2)|=

∣

∣

5
4 · (−1)−1 · 1

4

∣

∣= 3
2

| f (x3)g′(x3)− f ′(x3)g(x3)|=
∣

∣

10
9 · (− 4

3)−
2
3 ·

4
9

∣

∣= 48
27 =

16
9

| f (x4)g′(x4)− f ′(x4)g(x4)|= |1 · (−2)−0 ·1|= 2

and‖ f ,g‖= s·0+ 3
2 +

16
9 +2= 95

18.
Also, we have

| f (x1)h′(x1)− f ′(x1)h(x1)|= |2 ·0−2 ·1|= 2
| f (x2)h′(x2)− f ′(x2)h(x2)|=

∣

∣

5
4 ·0−1 ·1

∣

∣= 1
| f (x3)h′(x3)− f ′(x3)h(x3)|=

∣

∣

10
9 ·0− 2

3 ·1
∣

∣= 2
3

| f (x4)h′(x4)− f ′(x4)g(x4)|= |1 ·0−0 ·1|= 0

and‖ f ,h‖= 2+1+ 2
3 + s·0= 11

3 .
From the above results, we get:

‖ f ,g+h‖= s·2+ 125
18 > ‖ f ,g‖+‖ f ,h‖= 95

18+
11
3 = 161

18 .

Therefore, for everys > 1, the quasi-2-normed space
(P2,‖ f ,g‖) is not a 2-normed space.

Remark 1. The Examples 3 and 4 can be generalized
analogously for the case ofRn and Pn respectively.
Remark 2. The examples we provided above, show that
for everys> 1, there exist quasi-2-normed spaces which
are not 2-normed spaces.
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3 Main theorems

Definition 10.Let (X,‖·, ·‖) be a quasi-2-normed space
with the coefficients s≥ 1 and f ∈ F5. A map T: X → X
is called an almost f -contraction if there exist a constant
δ ∈ [0, 1

s) and some L≥ 0 such that

‖T(x)−T(y),u‖ ≤ δ f (‖x− y,u‖ ,‖x−Tx,u‖ ,‖y−Ty,u‖ ,
∥

∥y−T2x,u
∥

∥ ,‖y−Tx,u‖)+L‖y−Tx,u‖ (1)

for all x,y,u∈ X.

Theorem 1.Let (X,‖·, ·‖) be a quasi-2-normed space
with the coefficients s≥ 1 and T : X → X an almost
f -contraction. If(X,‖·, ·‖) is T -orbitally complete, then

1.Fix(T) = {x∈ X : Tx= x} 6= /0
2.For any x0 ∈ X, the Picard iteration{xn} converges to

someα ∈ Fix(T).

Proof.Let x0 be an arbitrary point inX. Define the
sequences{xn} as follows:

xn = Txn−1 = Tnx0,n= 1,2, ...

Takeu∈ X. Denote

dn(u) = ‖xn− xn+1,u‖ , n= 0,1,2, ...

By the inequality (1) we get:

dn(u) = ‖xn− xn+1,u‖=
∥

∥Tnx0−Tn+1x0,u
∥

∥

≤ δ f (
∥

∥Tn−1x0−Tnx0,u
∥

∥ ,
∥

∥Tn−1x0−Tnx0,u
∥

∥ ,
∥

∥Tnx0−Tn+1x0,u
∥

∥ ,
∥

∥Tnx0−Tn+1x0,u
∥

∥ ,

‖Tnx0−Tnx0,u‖)+L‖Tnx0−Tnx0,u‖

= δ f (dn−1(u),dn−1(u),dn(u),dn(u),0)+0≤ δdn−1(u)

And so, inductively, we obtain

dn(u)≤ δ nd0(u) = δ nl ,n∈ N (2)

wherel = d0(u) = ‖x0− x1,u‖.
Then, from (2) and Lemma 1 is derived that{xn} is a

Cauchy sequence inX and hence is convergent inX. Let
lim
n→∞

xn = lim
n→∞

Tnx0 = α ∈ X. The limit α is unique:

Assume thatα ′ 6= α is also lim
n→∞

xn. Then by condition

(2N•
4) of Definition 2, we obtain

∥

∥α −α ′,u
∥

∥≤ k‖α − xn,u‖+ k
∥

∥xn−α ′,u
∥

∥

Letting n tend to infinity we get‖α −α ′,u‖ = 0 for all
u∈ X and soα = α ′.

Let we prove now thatα is a fixed point ofT. Assume
that α 6= Tα. Then, by Definition 2, we obtain
‖α −Tα,u‖ ≤ s‖α − xn,u‖+ s‖xn−Tα,u‖

And so, ifn→ ∞, we get

‖α −Tα,u‖ ≤ s lim
n→∞

‖xn−Tα,u‖ (3)

From (1),

‖xn−Tα,u‖= ‖Txn−1−Tα,u‖

≤ δ f (‖xn−1−α,u‖ ,‖xn−1−Txn−1,u‖ ,‖α −Tα,u‖ ,
∥

∥α −T2xn−1,u
∥

∥ ,‖α −Txn−1,u‖)+L‖α −Txn−1,u‖

= δ f (‖xn−1−α,u‖ ,‖xn−1− xn,u‖ ,‖α −Tα,u‖ ,

‖α − xn+1,u‖ ,‖α − xn,u‖)+L‖α − xn,u‖ .

Lettingn tend to infinity we have

lim
n→∞

‖xn−Tα,u‖ ≤ δ f (0,0,‖α −Tα,u‖ ,0,0)

≤ δ ‖α −Tα,u‖ . (4)

From (3) and (4),

‖α −Tα,u‖ ≤ s lim
n→∞

‖xn−Tα,u‖ ≤ sδ ‖α −Tα,u‖

Since 0≤ sδ < 1 we have‖α −Tα,u‖ = 0 for all u∈ X.
Soα is a fixed point ofT and this completes the proof.

Theorem 2.Let (X,‖·, ·‖) be a quasi-2-normed space
with the coefficients s≥ 1 and T : X → X be a mapping. If
(X,‖·, ·‖) is T -orbitally complete, Fix(T) 6= /0 and
satisfies the following inequality:

‖T(x)−T(y),u‖ ≤ δ1 f (‖x− y,u‖ ,‖x−Tx,u‖ ,‖y−Ty,u‖,
∥

∥y−T2x,u
∥

∥ ,‖y−Tx,u‖)+L1‖x−Tx,u‖ (5)

for all x,y,u∈ X, whereδ1 ∈ [0, 1
s) and L1 ≥ 0, then T has

a unique fixed point.

Proof.Let α ∈ Fix(T). Assume thatα ′ 6= α is also a fixed
point ofT. From (5),
∥

∥α −α ′,u
∥

∥=
∥

∥T(α)−T(α ′),u
∥

∥

≤ δ1 f (
∥

∥α −α ′,u
∥

∥ ,‖α −Tα,u‖ ,
∥

∥α ′−Tα ′,u
∥

∥ ,
∥

∥α ′−T2α,u
∥

∥ ,
∥

∥α ′−Tα,u
∥

∥)+L1‖α −Tα,u‖

= δ1 f (
∥

∥α −α ′,u
∥

∥ ,0,0,
∥

∥α ′−α,u
∥

∥ ,
∥

∥α ′−α,u
∥

∥)+L1 ·0

≤ δ1
∥

∥α −α ′,u
∥

∥

Since 0< δ1 < 1, we haveα = α ′. This completes the
proof.

Theorem 3.Let (X,‖·, ·‖) be a quasi-2-normed space
with the coefficients s≥ 1 and T : X → X be a mapping. If
(X,‖·, ·‖) is T-orbitally complete, T: X → X is an almost
f -contraction and satisfies the inequality (5), then:

1.T has a unique fixed point, i.e. Fix(T) = {α}.
2.For any x0 ∈ X, the Picard iteration{xn} converges to

α.

Proof.The conditions of Theorem 1 hold, and soFix(T) 6=
/0. By Theorem 2Fix(T) = {α} and for anyx0 ∈ X, the
Picard iteration{xn}, xn = Txn−1,n ∈ N, converges toα.
This completes the proof of the theorem.
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Example 5.Let (X,‖., .‖) be a quasi-2-normed space with
the coefficients ≥ 1. Let T : X → X be the identity
mapping such thatTx= x for all x∈ X.

Actually, the quasi-2-normed space(X,‖., .‖) is
T-orbitally complete.

We verify the conditions of Theorem 3 in case
f (t1, t2, t3, t4, t5) = t1. The inequality (1) takes the form

‖T(x)−T(y),u‖ ≤ δ ‖x− y,u‖+L‖y−Tx,u‖ (6)

The above inequality takes the form

‖T(x)−T(y),u‖= ‖x− y,u‖ ≤ δ ‖x− y,u‖+L‖y− x,u‖

and consequently it is satisfied for anyδ ∈ [0, 1
s) andL≥ 1.

All the conditions of Theorem 3 are satisfied. The
Fix(T) = X and, for anyx∈ X, the Picard iteration{Tnx}
converges tox.

Example 6.Let X = P2 be the set of real polynomials of
degree 2 on the interval [0, 1]. Let(X,‖., .‖) be the quasi-
2-normed space with the coefficientss= 3

2 > 1 of Example
4. LetT : X → X be a mapping such thatTx= 1

2x.
We verify the conditions of Theorem 2 in case

f (t1, t2, t3, t4, t5) = t1. The quasi-2-normed space
(X,‖., .‖) is T-orbitally complete, sinceTnx = (1

2)
nx and

lim
n→0

Tnx = 0 ∈ X. The mapT has at least one fixed point

(0∈ Fix(T) 6= /0), the condition (5) takes the form:

‖T(x)−T(y),u‖ =
∥

∥

1
2x− 1

2y,u
∥

∥= 1
2 ‖x− y,u‖

≤ δ1‖x− y,u‖+L1
∥

∥x− 1
2x,u

∥

∥

and consequently it is satisfied for anyδ1 ∈ [1
2,

1
s = 2

3)
andL1 ≥ 0. All the conditions of Theorem 2 are satisfied.
TheFix(T) = {0} and, for anyx∈ X, the Picard iteration
{Tnx} converges to 0.

4 Corollaries

For different expressions off in the Theorems 1, 2 and 3
we get different Theorems. We give some of them:

1) If f (t1, t2, t3, t4, t5) = t1, then by Theorem 1 we
obtain a fixed point Theorem that extends the well-known
Berinde weak (almost) contraction principle (Theorem 1
in [11]) in a quasi-2-normed space.

2) By Theorem 1, withL = 0 it follows Theorem 2
with L1 = {0} and conversely. So, the caseL = 0 orL1 = 0
implies the existence and uniqueness of the fixed point.

3) If f (t1, t2, t3, t4, t5) = t1 andL = 0, then by Theorem
1 we obtain a fixed point Theorem that extends the well-
known Banach’s contraction principle in a quasi-2-normed
space.

4) If f (t1, t2, t3, t4, t5) = t2+t3
2 and L = 0, then by

Theorem 1 we obtain a fixed point Theorem that extends
the well-known Kannan contraction principle in a
quasi-2-normed space.

5) If f (t1, t2, t3, t4, t5) = max{t2, t3} andL = 0, then by
Theorem 1 we obtain a fixed point Theorem that extends
the well-known Bianchini Contraction principle [15] in a
quasi-2-normed space.
Remark 3. For suitable forms off we can obtain several
other corollaries that extend well-known theorems of
Rhoades classifications [14] in a quasi-2-normed space
(or in a 2-normed space fors= 1).

Acknowledgement

The authors wish to express their warmest thanks to the
referees for a careful reading of manuscript and for very
useful suggestions and remarks that contributed to the
improvement of initial version of the manuscript.

References
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