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Abstract: In [9], it was introduced the notion of quasi-2-normed spaceshdin paper and the others following it, no example of a
quasi-2-normed space not being a 2-normed space is provitéais paper it is shown the existence of quasi-2-normettep and
also, there are provided theorems that extend in quasiH2etbspaces some well-known theorems for almost contrectio
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1 Introduction (2N) [1%,y]| = ||y, x| for all x,y € X

(2Ng) |1, ay|| = |a] - [|x,y]| for every real numbea;
Gahler P initiated the Theory of 2-normed and 2-Banach (2Na) [[X.y+2|| < [[xy[| +[|x,Z]| for all x,y,z € X _
spaces. These new spaces have subsequently been studied The functior]|-, || is called a 2-norm on X and the pair
by several mathematicians (for exampld [2], [3], [6],  (X.|l,-[]) is called a linear 2-normed space.
[7], [8]). In 2006, Park introduced the concepts of So
quasi-2-normed spaces and qugxip)-normed spaces
[9]. In the up today current literature, it is not mentioned
the existence of those spaces. We emphasize the fact th@ﬁr
the examples given in7] for quasi-2-normed spaces are
not rigorous, those spaces own to the classes of 2-normeldxample 1Let X = R Define
spaces. XYl = max{[xwy2 — XeYa|, [X1Ys — Xay1|, [X2Y3 — Xa¥2|},

In this paper, we construct and provide somewherex= (x1,X2.Xs), Y= (y1,Y2.y3) € R®. Then||x,y|| is
examples which solve the problem of the existence ofa 2-norm orR® (see f]).
guasi-2-normed spaces.

Berinde [L1] introduced a large class of contractive
mappings, initially called weak contractions, but for
which Berinde and Pacurafd §] later adopted the more
suggestive term of almost contractions. Kikina et ag][
obtained some theorems for almost contractions mZﬁQlIf(Xk)g/(Xk) — (x)g()|. Then (B || .g|) is a 2-

generalized metric spaces. hormed space (sed]]
In this paper, our main aim is to obtain some theorems P '

for almost contractions in quasi-2-normed spaces. Definition 2.[9] Let X be a linear space. A
Let us recall some definitions and results. quasi-2-normed is a real valued function on XXX
satisfying three conditions of Definition 1: (2N (2No),
Definition 1.[5] Let X be a real linear space of dimension (2Ns) and the condition (2[): There is a constant & 1
greater than 1 and lef-,-||be a real valued function on such that|x+vy,z|| < s||x,Z| +s||y,Z| for all x,y,z € X.

a 2-norm |Ixy] always  satisfies
IIX,y+ ax|| = |Ixy|, for all x,y € X and all scalarsr.

We cite some examples of 2-normed spaces from the
rent literature.

Example 2.et P, denotes the set of real polynomials of
degree less than or equal noon the interval [0, 1]. By
considering usual addition and scalar multiplicatiBgis

a linear vector space. L€k, X2, ...,Xon} be distinct fixed
points in [0, 1] and define the 2-norm &h as||f,g|| =

X x X satisfying the following four conditions: The pair (X, ||-,-||) is called quasi-2-normed space if
(2Np) [Ixy|l = 0 if and only if x and y are linearly |-,-|| is a quasi-2-norm on X. The smallest possible s is
dependentin X, called the modulus of concavity [pf, - ||.
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A quasi-2-norm||-,-|| is called a quasi2;p)-norm 5.f (tr, o, ta, ta, t5) = 2528 or f(ty, b, 13, e, t5) = 252
O < p<)if |x+y2° < x2Z|°+ [ly,z|P for all etc.
X,y,ze X.

We state the following lemma which we will use for

Every 2-normed space is a special case Ofthe proof of the main theorem.

quasi-2-normed spaces (far= 1). In the following
section we provide some examples of quasi-2-normed

spaces which are not 2-normed spaces. Lemma 1Let (X, ||-,-]|) be a quasi-2-normed space with

Definition 3.A sequencéx,} in a quasi-2-normed space the coefficients & 1 and {x} is a sequence in X. If

(X,|I-,-]) is said to be a Cauchy sequence if X0 —ni1,u < €', for all u € X and ne N, where
im [ Xm— Xn, u|| = O for all uin X. 0<c< % <1,1 >0, then{x,} is a Cauchy sequence.
m,n—oo

Definition 4.A sequencéx,} in a quasi-2-normed space Proof.
(X, |I-,-]|) is said to be convergent if there is a point x in X
such thatAi_r}n IXh—xy|| =0 for all y in X. If {x,}

converges to X, we Writfx,} — X asn— co. [P0 =, U = S{X = X2, U+ 81X = X m, Ul

< 8[1% — Xng1, Ull + S| X1 — Xng2, U]

Definition 5.A linear quasi-2-normed spade, ||, -) is 42 X2 — X U] < oo
said to be complete if every Cauchy sequence is convergent
to an element of X. < 81X — X1, Ul| + 57 [[Xn 11— Xn 2, U]

. . +8% X2 — Xna, Ul + ...
Definition 6.A complete quasi-2-normed space is called a P2 =il

quasi-2-Banach space. +5"2 X m-3— Xopm-2,Ull + 8™ X4 m-2 = Xn4m-1, U

Definition 7.Let T: X — X be a mapping whergX, ||-,-||) o g2 = Yo, |
. . PRI n+1 n+2 —1.n+m—2 n+m-—1
is a quasi-2-normed space. For eachexX, let O(x) = < SO+ H + 80 4 ST |+ l

{x, Tx T2x,...} which will be called the orbit of T at x. < sdl 11£ssc2:m < s 1897 o s

1— 1—
(X, |I-,-]|) is called T -orbitally complete if and only if every > >
Cauchy sequence which is contained ifx{oconverges to
a pointin X. And so nirg”xn—xnm,u” = 0. It implies that{x,} is a

Definition 8.[11] Let (X,d) be a metric space. A map Cauchy sequence .

T : X — X is called an almost contraction if there exist a
constant € (0,1) and some > 0 such that

d(Tx Ty) < ad(x,y) +Ld(y, Tx) for all x,y € X. 2 Some quasi-2-normed spaces

In order to give a more generalizing character to the
main results of this paper, we will use the following class

of implicit functions: Example d.et X = R® andx = xqi +Xoj + X3k, y = y1i +

y2j +ysk € R®. Define

Definition 9.[12] The set of all upper semi-continuous

functions with 5 variables f Ri — R satisfying the 3

properties: %Y1l = S|XiYig+1 — Xig+1Yio| + ; XiYi+1 — Xit1¥i]
i o

(a).f is non decreasing in respect with each variable.
(b).f(t,t,t,t,t) <t, t e R, where

will be notedFs and every such function will be called a [XigYig+1 — Xio+1Yio| = MiN{|XiYir1 —Xi41yi| 1 1 <i < 3},
Fs-function. X4 = X1,Y4 = y1 and s > 1. Then (R3|xy|) is a

] guasi-2-normed space.
Some examples dfs-function are as follows:

L1t 12,1, . t5) = max{ty, tz, 13, a, ts} 1 ProofThe conditions (21), (2N,) and (Ns) are satisfied
2.1 (t,t2,t3, g, ts) = [maX{tltz,tzts,t3t4,t4t517t5t1}] 2 and this is evident. Let us prove the conditiolg}: If
3.f(ty, b, e, ta, ts) = [max{ty, t5,t8, t2 1P} 7P p> 0
1
4.1 (t1,t2,t3,ta,t5) = (st + agth + agt] + aat} + astd) 7, [Xio (Yig-+1 + Zig+1) — Xig+1(Yio +2o)| =
wherep > 0 and 0< a,z?:lai <1 min{|x(Yit1+7Z+1) —X+1(Yi +2)] : 1 <i <3},
(@© 2016 NSP
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we have

1%,Y+ 2|l = $|Xig (Vig+1 + Zig+1) — Xig+1(Yig + Zo)| +
3
> it +z1) =X (Vi +2)]
i;ﬁlo
< S(|Xig (Yig1 + Zig+1) — Xig+1(Yip + Zo) | +
3
; X (Yit1+2z1) —Xir1(Yi+2)|)
i o

3
< Szim (Yit1+Zi+1) —Xi+1(Yi +2)]
i=

3 3

< Szl|XiYi+1 — Xip1Yi| + szllmzm — Xi+17]
i= i=

< s|Ix,y[| +s|x, Z|

Thus,(R3,||x,y||) is a quasi-2-normed space.

At last, let us show thatR®, ||x,y||) defined as above,
is not a 2-normed space.
Forx=(0,1,—-1);y=(0,2,1) andz= (1,0,0) we have

I%y+2z| =1(0,1,-1),(1,21)[|=s-1+3+1=s+4
Iyl = [(0,1,~1),(0,2,1)|| = s-0+3+0=3
2] =1/(0,1,-1),(1,0,0)| = 1+s-0+1=2

and|[x,y+2z| = s+4> x|+ |x.2| = 3+2=5.

That is, the conditioi2N,) is not satisfied. Therefore,
for everys > 1, the quasi-2-normed spacg®, ||x,y||) is
not a 2-normed space.

Example 4.et P, denotes the set of real polynomials of
degree 2, on the interval [0, 1]. By considering usual

addition and scalar multiplicatior, is a linear vector
space. Let{xq,X2,%3,X4 } be distinct fixed points in [0, 1].
Define the quasi-2-norm dd as

1,91l = s[f(xi0)g (o) — ' (%i0)9(%o )|

4
+; [f(x)g' () — T(x)g(%)

)

where

[ (%io)d (%ig) — '(%i0) 9(%i) |
=min{|f(x)g () — f'(x)g(x)| : 1 <i <4} ands> 1.

Then(P,, || f,qd]|) is a quasi-2-normed space.

ProofThe conditions (2I), (2N2) and (2\3) are satisfied
and this is evident. Let us prove the conditioNg: If

[ (%i0)g (%) — F'(%i0) 9%, )|
=min{|f(x)g (%) — f'(x)g(x)| : 1 <i < 4} we have

1,94 hil = S]F04) (@+h) (%) — ' (%o) (9 + 1) (%) |
4
+; [ £06)(g+h) (%) = F(6)(g+h) (x)]

< S(| F(Xig) (g+ ) (Xig) — ' (Xig) (9 + h) (Xig) |

4

+; [F(xi)(g+h) (%) — () (g+h)(x)])
4

= S(_;\ f(x)(g+h) (%) — () (g+h)(x)])
4

< S(_;\ F(xi)g' () — '(x)g(%)|

4
+;\ F ()R (4) — £'(x)h(x)]) < sx.yll +s][x 2|

Thus, (P, || f,q]|) is a quasi-2-normed space.

At last, let us show thatP,, || f,g||) defined as above,
is not a 2-normed space.

Letus consider the cage=1,x, = 3,x3 = 3 andx, =
0. Forf = x,g = x?andh = (x— 1)?, we have

[f0a)(g+h) (xa) = f'(xa) (@ +h)(x)| = [2:0-2-1] =2

£ (%) (g+h) (%) — F'(x2)(@+ D) (xe)| = |§-(~1) —1-5|
_ 5
-2
|(xa)(g+h)'(xs) — f'(xa)(g+h)(xa)| = |- (—4) - 2-
__ 66 _ 22
— 27— 9

[ (xa)(9+h)'(xa) — f'(xa) (g+ 1) (xa)| = |1 (-2) = 0-2] =2

and||f,g+h|=s2+3+%+2=s-2+1%.
In similar way, we get

[f(x0)g' (x) — F'(x1)g(x1)| = |2:0—2-0 =0

[ (2)d' (x2) = F'(x2)902)| = %(—1) ~1-g[=3
|f(x)g (xa) — T'(xa)g(%e)| = | F - (=3) —5- 5[ =37 = ¢
[f(xa)g (xa) — T'(xa)g(%a)| = [1-(=2) = 0-1 =2

and||f,g|=s-0+3+%42=2
Also, we have

[f(x1)h' (x1) — f'(x)h(xy)| =12-0—-2-1| =2
1)1 (1) — /(1)) = |50~ 1.1 1
|f(Xa)N (x3) — f'(x3)N(Xs)| = | 20— 3 1| = 2
[T (xa)N (xa) — f'(x4)9(x4)| = [1-0—0-1|=0

and||f,h| =2+1+2%+s.0=21L

From the above results, we get:
If, g+l =s-2+% > |If, g + .0 = 35+ % = 4.
Therefore, for everys > 1, the quasi-2-normed space
(P, || f,g]]) is not a 2-normed space.

Remark 1. The Examples 3 and 4 can be generalized
analogously for the case oR" and P, respectively.
Remark 2. The examples we provided above, show that
for everys > 1, there exist quasi-2-normed spaces which
are not 2-normed spaces.
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3 Main theorems

Definition 10.Let (X,]|-,-||) be a quasi-2-normed space
with the coefficientss 1and fe Fs. Amap T: X — X

is called an almost f-contraction if there exist a constant
5 €[0,1) and some L> 0 such that

[TX) =T (y),ull <Sf([x=yull,[[x=Txul,[ly—Tyul,
Ly =Txul)+Lly—Txul 1)
forall x,y,u e X.

ly—T?xu

Theorem 1Let (X,]-,-]|) be a quasi-2-normed space
with the coefficients & 1 and T: X — X an almost
f-contraction. If(X, ||-,-||) is T-orbitally complete, then

LFiX(T)={xeX:Tx=x} #0
2.For any % € X, the Picard iteration{x,} converges to
someqa € Fix(T).

ProofLet Xp be an arbitrary point inX. Define the
sequenceséx,} as follows:

Xn=TX_1=T"%,n=1,2,...
Takeu € X. Denote
dn(u) = HXn _Xn+17u|| , N= 07 17 27
By the inequality (1) we get:
dn(U) = [[X0 — X 2,Ul| = [ T"0 — T™ X0, |
< S| T" %0 — T™o,ul[, || T" %0 — T"o, |,
||Tnxo_-|—n+lx0’u , Tnxo_-l—nJrlXO’u

[IT™%0 — T™o, ul|) + L ||T™0 — T"xo, ul|
— 3 (An_1(U), dn_1(U), dn(U), dn(U),0) + 0 < dcl_1(U)

And so, inductively, we obtain

)

dn(u) < 3"do(u) =9d"I,neN (2)
wherel = do(u) = |[Xo — Xg, ul|.

Then, from @) and Lemma 1 is derived thék,} is a
Cauchy sequence M and hence is convergent K. Let

limx, = lim T"xg = a € X. The limit a is unique:
n—oo n—oo

Assume thata’ # o is also niqun. Then by condition
(2N3) of Definition 2, we obtain

|la—a’ ul| <k|a—xn,ull+k|x:—a’,ul|

Letting n tend to infinity we get|a — a’,ul| = 0 for all
ue X andsoa = a’.

Let we prove now thatr is a fixed point ofT. Assume
that a # Ta. Then, by Definition 2, we obtain
la—Ta,ul| <sla—X,ul+s|x—Ta,ul

And so, ifn — o, we get

®3)

lo =Ta,uf <slim %) —Ta,ul|
n—oo

From (1),
% =T a,ul| = ITx-1—Ta,ull
S 5f(||xn71_ aau” 9 ||anl_Tanlau|| 9 ||a —Ta,UH 3
||a _T2Xn—1au|| ’ ||a _T)(f'l—].vu”) =+ LHa _TXn—LU”
= 0f ([IX-1—a,ull, a1 —=Xn,ul, o = Tar,ulf,
lla —Xnsa,ull [ = Xn,ul]) + Lo — Xq, U]
Letting n tend to infinity we have

l@w”Xn_Tavun S 6f(0707 ||a —TU,UH 7070)

n
<dfla—Ta,ul.

From 3) and (4),

(4)

la—Ta,ul| <slim [x,—Ta,ul| <sd|la —Ta,ul
N—co

Since 0< sd < 1 we have|a —Ta,ul| =0 for allu € X.
Soa is a fixed point ofT and this completes the proof.

Theorem 2Let (X,|-,-]]) be a quasi-2-normed space
with the coefficientss 1 and T: X — X be a mapping. If
(X,|I-,-]) is T-orbitally complete, FikT) # 0 and
satisfies the following inequality:
[T =Ty, ull < aflix=yull, [x=Txull, ly—Ty.ul,
Iy =T2x,u[|, ly = Txull) + La|jx—Txul (5)

for all x,y,u € X, whered; € [0, %) and Ly >0, thenT has
a unique fixed point.

ProofLet a € Fix(T). Assume that’ # a is also a fixed
point of T. From (5),

lo—a ul| = ||T(a)—T(a’),ul|

< af(|la—a’u |,
|a’—T2a,u|,||a’—Ta,ul|) + Ly |ja — Ta,ull
=& f(||a—a’,ul|.0,0,
<& a—a’uf

7||a —TG,U” ) ||a/—TG/,U

a —a,ull,|la"—a,u

’)+L1-0

)

Since 0< d; < 1, we havea = a’. This completes the
proof.

Theorem 3Let (X,||-,-]]) be a quasi-2-normed space
with the coefficientss 1and T: X — X be a mapping. If
(X, |I-,-]I) is T-orbitally complete, T X — X is an almost
f-contraction and satisfies the inequality (5), then:

1.T has a unique fixed point, i.e. Fix) = {a}.
2.For any x € X, the Picard iteration{x,} converges to
a.

ProofThe conditions of Theorem 1 hold, andBx(T)
0. By Theorem ZFix(T) = {a} and for anyxo € X, the
Picard iteration{X}, Xo» = TX,—1,n € N, converges tax.
This completes the proof of the theorem.
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Example 8.et (X, ||.,.]|) be a quasi-2-normed space with 5) If f(t1,t2,t3,14,t5) = max{ty,t3} andL = 0, then by
the coefficients > 1. Let T : X — X be the identity = Theorem 1 we obtain a fixed point Theorem that extends

mapping such thal x= x for all x € X. the well-known Bianchini Contraction principld§] in a
Actually, the quasi-2-normed spacgX,||.,.||) is  quasi-2-normed space.

T-orbitally complete. _ Remark 3. For suitable forms of we can obtain several
We verify the conditions of Theorem 3 in case other corollaries that extend well-known theorems of

f(t,t2,t3,14,t5) = t1. The inequality (1) takes the form Rhoades classificationd4] in a quasi-2-normed space

(orin a 2-normed space fer= 1).
ITX)=T(y),ul <Slx=yul+L[y—=Txul|  (6)

The above inequality takes the form Acknowledgement

IT) =Ty, ull = [Ix—y,ull < 8]lx—y,ul[+Lly—xul The authors wish to express their warmest thanks to the
referees for a careful reading of manuscript and for very
useful suggestions and remarks that contributed to the
improvement of initial version of the manuscript.

and consequently it is satisfied for abiy [0, %) andL > 1.

All the conditions of Theorem 3 are satisfied. The
Fix(T) = X and, for anyx € X, the Picard iteratiod T"x}
converges to.
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