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Abstract: In this paper, we study a boundary value problem of nonliffiesational differential equation. Existence and posiyivi
results of solutions are obtained by using the fixed-poideintheorems. Three examples are given to show the effaeteeof our
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1 Introduction fractional differential equation boundary-value problem
ALx = —g(t) f (t,x),0 <t < 2m,

x(0) = x(2m),X (0) =X (2m),
Fractional calculus has played a significant role in , o, ,
engineering, science, economy, and other fields. Recently, WhereA > 0is a parameteLx=x —p°x,p >0is a
a great number of papers and books on fractionalconstant. In addition,f € C € ([0, x [0,c0[, [0,[) and
calculus, fractional differential equations have appeare 9 € LP[0,271] for some 1< p < +co.
For details, see 37,8,131821,22] and references Bing Liu [2] has studied the existence of at least one
therein. Moreover, lots of works have appeared, in whichOr tWo positive solutions to the three points boundary value
fractional derivatives have been used for a betterProblem
description considering material properties, matherahtic _» -
modelling based on enhanced rheological models, which H+a®fy(t)=00<t<],
naturally leads to the differential equations of fractibna y(0) =0,y(1) =By(n),
order and to the necessity of the formulation of initial

1
conditions to these equations. where 0<n <1,0<p < n

In the present paper, we apply topological degree
In fact, the use of cone theoretic techniques in thetheory combined with partially ordered structure of space

study of solutions to boundary value problems has a richo establish the existence and multiplicity of positive

and varied history. For example, some authors have usegolutions to the boundary value problém)

fixed point theorems to show the existence of positive

solutions to boundary value problems for ordinary CDg+u(t) +a(t)f(ut)=00<t<1,

differential equations, difference equations, and dymami

equations on time scales; see for examp|8,25,27,29].

However, in other papersl4,15,26], some authors have u(0) = u"’(0) = 0,u(1) =0.

used fixed point theory to show the existence of squtiongNheref € C([0,0],[0,%0[), a(t) € C([0, 1], [0,0) and 2<

to singular boundary value problems. q<3. B TR

In [13], the author considers the existence and  Thus, this work is organized in the following fashion:
multiplicity of the positive solutions of nonlinear Section 2 provides some necessary background. In
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particular, it introduces some lemmas and definitionsLemma 2.7.Giveny € C([0,1]) and 2< g < 3, the unique
associated with topological degree theory and partiallysolution of the fractional problertP)
ordered structure of space. Section 3 states and proves

main results. Finally, in the last section we give some

examples to illustrate the previous results.

2 Preliminaries

In this section, to achieve completeness, we demonstrate

{CDg+u(t) +y(t)=0,0<t<1
u(0) =u”(0) =0,u(1) =0,

is given by

and study the definitions and as some basic facts of
Caputo’s derivatives of fractional order which can be Where

foundin [18].

Definition 2.1. [18] The Riemann -Liouville fractional
integral of ordera > 0 of a functiong € C([a,b] is
defined by

t
1 g(s)
r(a) a/ —grads

Definition 2.2. [18] The caputo fractional derivative of
ordera > 0 of
g € AC"[a,b] is defined by

t
D90 - Frgr | T
a

wheren = [a] + 1 ([a] is the entire part ofr).

Lemma 2.3.[18] Let o, 3 > 0 andn = [a] + 1, then the
following relations hold:

re)
re-a

|§'+9(t) =

a n+1

°plth-t= L ifa-lpsp

and

°DY tk=0,k=0,1,2,

Lemma 2.4.[18] Assume thati€ C"[a,b].Then

2 D u(t) = u(t) + c1+ Cot + cat? + ...+ cat" L,

wherec € R, i =0,1,2, ...,
Denote byt 1([0,1],
integrable functions from0,1] into R with the norm

IVl = Jo Y (®)] .
Lemma 2.5.[18] Let p,g> 0, f € L1([a,b]. Then

1518 F (1) = 1579 () = 1018 F (1),

n,andn= [a] + 1.

and
°pd 13 f(t) =

at ot

f(t),vt € [a,b].

Lemma 2.6.[18 Let B > o > 0, f € Li([a,b]. Then for
all't € [a,b] we have

DLIE F(t) =157 f(t).

R) the Banach space of lesbegue

G(t,s): {t(l_s)q_l—(t—S)q_1,0<s<t7 (1)

t(l-9)94lt<s<1l
Proof. Using Lemmas 2.3 and 2.4 we have
u(t) = —1g,y(t) + C+ Bt + At?,

’(0) =0, we obtainC = A=
0 implies

from the conditionsi(0) = U’
0, and the condition(1) =

1 1
Fah

sou(t) can be written as

B= )9 ty(s)ds,

u(t) = —19y(t +—/t1 99 Yy(s)ds,

whereG is defined by {). The proof is completed].

Lemma 2.8.For alls;t € [0,1], the Green functioi(t, s)
is non negative, continuous and satisfies

G(t,s) < (1— 9L,
||)t€r[n|n ]G(t,s) >1 (1— (rz)qu) (1—s)%1 where

O<n<mn<l

Proof. From the expression of G(t, s), it is evident that
G(t,s) € C([0,1] x [0,1)) andG(t,s) > O for s;t € [0, 1].
Next, we prove (ii). From the definition of G(t, s), we
known that, for a gives € [0,1], G(t, s) is increasing with
respect td fort < s, then, let

gl(tas) = t(l_s)(]*l_ (t _S)qilvsg ta

g2(t,s) =t(1—-99%Lt<s

Thatis,gi(t,s) is a continuous function fan, <t < 1y,
andgz(t,s) is increasing with respect toHence, we have

Gu(t,9) > 1 (1— (rz)qu) 1-9%Lte [, 1)

min go(t,s) =11 (1-9)91>1; (1— (rz)q_z) (1—s)9 1,

te[ry, 1o
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Therefore,

min G(t,s) > 11 (1— (rz)q’z) (1-9)9°L,

te[ry, 12

The proof is completed].
Lemma 2.9.The solution of problentP;) satisfies

min u(t) > 1, (1— (rz)qu) ul .

te[ry, 1)

Proof. From Lemma 2.7y can be expressed by

1
u(t) = % /O G(t,9)a(s) f(u(s))ds

1t »

SW/o (1—s)%1a(s) f(u(s))ds

then

1 1
Jul = ax|ut)] = maxros [ Git.9a(s) F(u(s)ds
1 1

< F@ /0 (1—s)% a(s) f(u(s))ds

Also, we have
utt) > %/01(1—3)“%@ f(u(s))ds

> t(1-t92) |u,

therefore

ter[‘rflligz]ua) =h (1_ (Tz)qu) utf-

o.

3 Main results

LetE =C([0,1],R) be the Banach space of all continuous

real functions orf0, 1] endowed with the norm

= t)].
[Jull tgﬁ[gﬁlu( )|

Define the integral operatdr: E — E by

Tu(t) = % /O "Gt s)a(s) f(u(s)ds vt € [0,1].

We define some important constants:
fo = lim o "2 fo = limysw 2 and

5 - I (1— (rz)qu) .

P:{ueE,u(t)>0,0<t<1, r[nin u(t)>5||u|}.
teny

12

Denote

In what follows, for the sake of convenience, set

a— I (9) B - I (9)
Joa(s)(1—9)%ds’ 82 [2a(s)(1-9)7ds’

Theorem 3.1.Let K be a closed convex set in a Banach
spaceX and letD be a bounded open set such tBgt =
DNK #0.LetT : Dx — K be a compact map.

Suppose that # T (x) for all x € dDy.

(P1) (Solution property) If(T,Dy) # 0, thenT has a
fixed point inDy.

(P2) (Normality) Ifu € Dy,theni (T,Dg) = 1, where
U(x) = ufor x € Dy.

(P3) (Additivity) If V1,V, are disjoint relatively open
subsets oDy such thatx # T (x) for x € D\ (VAU Vz),
then

i(T,Dy) =i (T, V1) +i(T,V2).

From these properties, one can have the following
consequences.

Theorem 3.2.Let K be a cone in a real Banach spate
Let D be an open bounded subset of with
Dk = DNK # 0, andDg # K. Assume thafA: Dy — K is
completely continuous such that# T (x) for x € dD.
Then the following results hold:

(1) If |AX]| < |IX|I, x € @Dy, theni (A,Dg) = 1.

(2) If there existee € K\ {0} such thatx # Ax+Ae
for all x € Dk and allA > 0, theni (A, D) = 0.

(3) LetU be openirk such that) c Dy. If i (A,Dx) =
1 andi (A,Ux) = 0, thenA has a fixed point D, \Uy. The
same results hold if(A,Dy) = 0 andi (A,Uy) = 1.
Theorem 3.3.Let E be a Banach space, andketC E, be
aconeirk. Letr > 0, and define2, = {xe K | ||x|| < r}.
AssumeA: Q; — K is a completely continuous operator
such thatAx # x for x € 0 Q.

DIf |Aul| < |lu]|, ue dQ, then

i(A QLK) =1
iIf [|[Aul| > |jul|, u€ 0Qy, then

i(AQ,K)=0.

Theorem 3.4.Assume that/;?(1 — )9~ *a(s)ds # 0 and
the following assumptions are satisfied.
(Hl) f() = foo = 00,
(H2) There exist constants> 0 andA € |0,a] such
that
f(u) <Arue[0,r].

Then, the boundary value probld ) has at least two
positive solutiong; andy, such that

0< yall <r <[yl

Proof. At first, in view of fg = oo, then for any’; € |3, oo,

It is obvious that P is a cone. Moreover, from Lemma there exist; € 10,r[ such that

2.9, T(P) C P itis also easy to see thdt: E — E is
completely continuous.

f (u) > Au,u € [O,rq]
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LetQ,, ={ueP:|ul|<ri}.Sinceue 0Q,, C P,we
haver min u(t) > d||u||. Thus, for anyu € 9, , we have
1<

/Gts

zr(q)/o a(s)G(t.9u(s)ds

Aq 2
Fia /.. alsctsu(sds

> A ) ["as

which ylelds

Tu(t) = (u(s))ds

>

) (1—s)% tds,

Tu(t) > |jul|,ue ;.
Hence, Theorem 3.3 implies
i(T,Q,,P)=0.

On the other hand, sinck, = «, we deduce that for
anyA; € ]B,[, there exists, > r such that

f (u) > Agu,u> ory.

Let Q, = {ueP:|lu|| <ry}. Sinceu e 0Q, C P,
we haver <rtn<|rr1 u(t) > o ||ul| = ory, and hence for any
112102

ue€ dQ;,, we can obtain
Tu(t) = = /Gts (u(s))ds
> W i 6(t,9)a(s) f(u(s))ds
Ao 2
> )/ a(9) G(t.9)u(s)ds

r(q

A 52
2l [“as

which |mpI|es

) (1—9)9 Lds,

Tu(t) > ||ul|, forue 0Qy,.
Thus Theorem 3.3 yields
i(T,Q,,P)=0.

LetQ, =
Ar

I (o)

1
% /O a(s)(1—9)9 ds

<r=|ul,

{ueP:|u|| <r}.Foranyue dQ,, we have

Tu(t) < /Ola(s)G(t,s)ds

<

therefore||Tu|| < ||u|| for anyu € 9.
From Theorem 3.3, we obtain

i(T,Qr,P)=1.

Hence, since; < r < r; it follows from the additivity
of the fixed point index that

i (T,Qr\ﬁrl,P) = 1,
i(T,Qrz\ﬁr,P) = _1

Therefore, T has a fixed poiny; in Qr/ﬁr:L and a fixed
pointy, in Q,/Q; and 0< [|ly1|| < r < ||y2||.The proofis
completeld.
Theorem 3.5.Assumes thafrz(l s)9ta(s)ds # 0 and
the following assumptlons are satisfied.

(H3) fo=

(Ha) There exist constangs > 0 andB € |3,
that

oo such

f(u) >Bp,ue[dp,p].

Then, the boundary value probl€f ) has at least one
positive solutiong

0< |yl < p.

Proof. Atfirst, in view of fo =0, then foranye €]0,a],
there exists; € |0, p[ such that

f(u) <euuel0,rq].

Letting Q;, = {ue P:|ju]| <r1}. For anyu € 90,
we have
1 11 ¢
—— [ G(t,s)a(s) f(u

c 1
SW/ a(s) G(t,s)u(s) ds

Tu(t) = (s))ds

< ||u||/ ) (1—9) Lds
< ||UH,
which yields

Tu(t) <|ul|,ue ;.
Thus, Theorem 3.3 implies
i(T,Qr,P)=1

LetQ, ={ucP:|lu] <p}. Sinceuc 9Q, C P, we
have m|n u( ) > O|lu|| = dp, and hence for any

ue de, we obtain

/Gts

Tu(t) =

Y
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which implies
Tu(t) > |lu]|, forue 9Qp.
Thus, Theorem 3.3 yields
i(T,Qp,P) =0.

Hence, since; < p, it follows from the additivity of
the fixed point index that

i (T,Qp\ﬁrl,P) == —1

Therefore;T has a fixed poinyy in Qp\ Qr,.C.
Theorem 3.6.Assume thai{H,) and (H,) hold and that
r # p. Then the boundary value problefi;) has at least
one positive solution satisfyingr < ||y|| <porp < |ly|| <
r.

Proof. Without losing the generality, we may assume that

r<p.LetQr={ueP:|u| <r}.Foranyue dQ, and
from (Hy), we get

Tu(t) < %/Ola(s)G(t,s)ds

1
% /0 a(s)(1—9)% s

<r=|ul,
hence||Tul| < ||u|| for anyu € 9.

<

4 lllustrative Examples

Example 4.1.Let us consider the fractional boundary
value problem

11
D u(t) + (1—1t) (exp(u) +u?) =0,0 <t < 1,

u(0) =u”’(0) =0,u(1) =0.
hereq=a(t) =1-t,

f (u) = exp(u) + u2.

It is easy to see thdy = f = o, then(H;) holds.

We have (q+21)I (gq) = 9.559, becausef (u) is
monotone increasing function foru > 0, taking
r=1,A=2exp(}) + 3 €]0,9.559 then we get for

€10,r]

fw<t(3)=exp(d)+(3)° =5 exn(}) +3) = A
Hence(H) holds. Applying Theorem 3.4, we deduce

that there exist at least two positive solutionsandy,
such that

1
0<lysll <5 <lyall-

Thus, an application of Theorem 3.3 again shows thatExample 4.2.Consider the following fractional boundary

i(T,Q,P)=1 )

Finally, let Qp = {ueP:|lu[| <p}. Forue dQ,,
sinceu € P, |;nt|<n u(t) > d||ul| = dp, and hence for any
nsisn

u € dQ, and from(Ha) we can obtain

Tu) - = [ Glt9a) f(us)ds
> o :Ga,s)a(s) f(u(s))ds
> o [“ag olt.9ds
-
> p=ul.

which impliesTu(t) > ||ul|, forue Q. Thus,
i (T,QP,P) =0. 3)
Combining @) and @) gives
i(T,2o\Qr,P) = 1.

Consequently,T has at least one fixed point on
Qp\ Q. Thus(Py) has at least one positive solution and

r<|iyl <p.
This completes the proail.

value problem

9
D, u(t) + 10%5u8 exp(—u) (1—t) = 0,0 <t < 1,
u(0) =u”’(0) =0,u(1) =0.
where .
q = 2.f(u = 10%usexp(—u),at) = 1 —t,6 =
1(1-(3)"7) =0017,8 333945 (§) = 1.133

It is easy to check thatHs) holds. Sincef (u) is

monotone decreasing function for> %, for

p = 70,B = 2/32890¢ 133394 o[, we have
f (u) > f(70) = 4732800=Bp,u < [dp,p],

therefore, (Hs) holds. Applying Theorem 3.5 we
deduce that there exist at least one positive solutgns

0 <yl < p.

Example 4.3.Consider the same problem as in example
4.2. Sincef (u) is monotone increasing function fore
0,3], takingr = 10729 A = 0.0562¢ ]0,3.682, then
we get foru € [0, r];

f(u) < f (1029 =Ar,
hence(H,) holds.
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solutiony satisfyingr < ||y| < p orp < |ly|| <t uniqueness of solutions for nonlinear fractional diffei@in

equations with integral boundary conditions, Fractional
Diff. eq. 1(1), 29-43(2001).
[18] A. Kilbas, Hari M. Srivastava, juan j. Truijillo, Theorgnd
ACknOWledgement applicaions of fractional differential equations, in: Ker
. Holland Mathematics Studies, 204, Elsevier Science, B.V.
The authors would like to thank the anonymous referees  amsterdam. 2006.
for their valuable remarks. [19] F. Mainardi, Fractals and fractional calculus in Contim
Mechanics, Springer, New York, 1997.
[20] R. Magin, Fractional calculus in bioengineering, Crév.

References Biom. Eng.32 (1), 1-104 (2004).
[21] K. Nishimoto, Fractional calculus and its applicaton
[1]B. Ahmad, J. J. Nieto, Existence of solutions for Nihon University, Koriyama, 1990.
nonlocal boundary value problems of higher-order [22] K. B. Oldham, Fractional Differential Equations in
nonlinear fractional differential equations, Abstract Electrochemistry, Advances in Engineering Software, 2009
and applied analysis2009 ID 494720, 9 pages, [23]I. Podlubny, Fractional Differential Equations Mathatics
doi:10.1155/2009/494720 (2009). in Sciences and Engineering, Academic Press, New York,
[2] L. Bing, Positive solutions of a nonlinear three point London, Toronto, 1999.
boundary value problem, Comput. Math. Ap##t, 201-211 [24]J. Sabatier, O.P Agrawal, J. A.T. Machado, Advances in
(2002). Fractional calculus, Springer-Verlag, Berlin, 2007.
[3] G.A. Anastassiou, On right fractional calculus. Chaos [25] J. Xu and Z. Yang, Multiple Positive Solutions of a Sifeyu
Solitons Frac#2, 365-376 (2009). Fractional Boundary Value Problem, Applied Mathematics

[4] R.l. Avery, A.C. Peterson, Three positive fixed points of E-Notesl0, 259-267 (2010).
nonlinear operators on ordered Banach spaces, Compu{26] X. Xu, Positive Solutions for Singular Semi-positone

Math. Appl.42,313-322 (2001). Boundary Value Problems, J. Math. Anal. Ap@B7, 480—
[5]Z. Bai, On positive solutions of a nonlocal fractional 491 (2007).

boundary value problem, Nonlinear Analys§ig 916-924  [27] X. Xu, D. Jiang and C. Yuan, Multiple positive solutions

(2010). for the boundary value problem of a nonlinear fractional
[6] k. Deimling, Nonlinear functional analysis, Springéeflag, differential equation, Nonlinear Analysigl, 4676-4688

Berlin, 1985. (2009).
[7] N. Engheta, On fractional calculus and fractional npdtes [28] S. Q. Zhang, Positive solutions for boundary value feots

in electromagnetism, IEEE Tradg (4), 554-556 (1996). of nonlinear fractional differential equations, Election
[8] A. Guezane-Lakoud, A. Kilickman, Unbounded solution fo Journal of Differential Equation&6), 1-12 (2006).

a fractional boundary value problem, Advances in diffeeenc
Equations2014 nol (2014).

[9] A. Guezane-Lakoud, R. Khaldi, Positive solution to altgg
order fractional boundary value problem with fractional Salima Bensebaa
integral condition, Romanian Journal of Mathematics and is Associate Professor of
Computer Science 28-40 (2012). Mathematics at Preparatory

[10] A. Guezane-Lakoud, R. Khaldi, Solvability of a threeimt School of Sciences and
fractional nonlinear boundary value problem, Differ Equ Technology Annaba,
Dyn Syst20(4),395-403 ( 2012). Algeria. She received her

[11] D. Guo, V. Lakshmikantham, Nonlinear problems in Magister degree of Science
abstract cones, Academic Press, San Diego, 1988. in Mathematics from Badii

[12] D. Jiang and C. Yuan, The positive properties of the - Mokhtar Annaba University.
Green function for Dirichlettype boundary value problems Her research interests are on
of nonlinear fractional differential equations and its ; ; ; ; ;
application, Nonlinear Analysi&2, 710719 (2010). ordinary and fractional differential equations.

[13] Q. Jinliang, Positive solutions for a nonlinear peitod
boundary value problem with a parameter, Electronic
Journal of Differential Equation$33 1-10 (2012).

[14]E. R. Kaufmann and N. Kosmatov, A Second-Order
Singular Boundary Value Problem, Comput. Math. Appl.

47,1317-1326 (2004).

(@© 2016 NSP
Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci.10, No. 2, 519-525 (2016)www.naturalspublishing.com/Journals.asp

F . SD 55

Assia Guezane-Lakoud
is a professor in
Mathematics at Badiji
Mokhtar Annaba University,
Algeria. She received
her PhD degree of Science
in Mathematics from
this University. Her research
interests are on partial
differential equations,
ordinary and fractional differential equations and
inequalities. For more information, please see
http://fbedergi.sdu.edu.tr/docs/GuezaneLakoud.pdf

(@© 2016 NSP
Natural Sciences Publishing Cor.


www.naturalspublishing.com/Journals.asp
http://fbedergi.sdu.edu.tr/docs/GuezaneLakoud.pdf

	Introduction
	Preliminaries
	Main results
	Illustrative Examples

