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Abstract: In this paper, we study a boundary value problem of nonlinearfractional differential equation. Existence and positivity
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works.

Keywords: positive solution, fractional Caputo derivative, Cone, fixed point index.

1 Introduction

Fractional calculus has played a significant role in
engineering, science, economy, and other fields. Recently,
a great number of papers and books on fractional
calculus, fractional differential equations have appeared.
For details, see [3,7,8,13,18,21,22] and references
therein. Moreover, lots of works have appeared, in which
fractional derivatives have been used for a better
description considering material properties, mathematical
modelling based on enhanced rheological models, which
naturally leads to the differential equations of fractional
order and to the necessity of the formulation of initial
conditions to these equations.

In fact, the use of cone theoretic techniques in the
study of solutions to boundary value problems has a rich
and varied history. For example, some authors have used
fixed point theorems to show the existence of positive
solutions to boundary value problems for ordinary
differential equations, difference equations, and dynamic
equations on time scales; see for example [5,9,25,27,28].
However, in other papers, [14,15,26], some authors have
used fixed point theory to show the existence of solutions
to singular boundary value problems.

In [13], the author considers the existence and
multiplicity of the positive solutions of nonlinear

fractional differential equation boundary-value problem

λ Lx = −g(t) f (t,x) ,0≤ t ≤ 2π ,
x(0) = x(2π) ,x

′
(0) = x

′
(2π) ,

whereλ > 0 is a parameter,Lx = x
′′
−ρ2x,ρ > 0 is a

constant. In addition,f ∈ C ∈ ([0,∞[× [0,∞[ , [0,∞[) and
g ∈ Lp [0,2π ] for some 1≤ p ≤+∞.

Bing Liu [2] has studied the existence of at least one
or two positive solutions to the three points boundary value
problem

y
′′
(t)+ a(t) f (y(t)) = 0,0< t < 1,

y(0) = 0,y(1) = β y(η) ,

where 0< η < 1,0< β < 1
η .

In the present paper, we apply topological degree
theory combined with partially ordered structure of space
to establish the existence and multiplicity of positive
solutions to the boundary value problem(P1)

cDq
0+u(t)+ a(t) f (u(t)) = 0,0< t < 1,

u(0) = u′′(0) = 0,u(1) = 0.

wheref ∈C ([0,∞[ , [0,∞[), a(t)∈C ([0,1] , [0,∞[) and 2<
q < 3.

Thus, this work is organized in the following fashion:
Section 2 provides some necessary background. In
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particular, it introduces some lemmas and definitions
associated with topological degree theory and partially
ordered structure of space. Section 3 states and proves
main results. Finally, in the last section we give some
examples to illustrate the previous results.

2 Preliminaries

In this section, to achieve completeness, we demonstrate
and study the definitions and as some basic facts of
Caputo’s derivatives of fractional order which can be
found in [18].

Definition 2.1. [18] The Riemann -Liouville fractional
integral of orderα > 0 of a function g ∈ C([a,b] is
defined by

Iα
a+g(t) =

1
Γ (α)

t
∫

a

g(s)
(t − s)1−α ds.

Definition 2.2. [18] The caputo fractional derivative of
orderα > 0 of

g ∈ ACn [a,b] is defined by

cDα
a+g(t) =

1
Γ (n−α)

t
∫

a

g(n)(s)
(t − s)α−n+1ds,

wheren = [α]+1 ([α] is the entire part ofα).

Lemma 2.3.[18] Let α,β > 0 andn = [α] + 1, then the
following relations hold:

cDα
a+tβ−1 =

Γ (β )
Γ (β −α)

tβ−α−1,β > n,

and
cDα

a+tk = 0,k = 0,1,2, .....,n−1.

Lemma 2.4.[18] Assume thatu ∈Cn [a,b].Then

Iα
a+Dα

0+u(t) = u(t)+ c1+ c2t + c3t2+ ...+ cntn−1,

where,ci ∈ R, i = 0,1,2, ...,n, andn = [α]+1.
Denote byL1([0,1] ,R) the Banach space of lesbegue

integrable functions from[0,1] into R with the norm
‖Y‖L1 =

∫ 1
0 |Y (t)|dt.

Lemma 2.5.[18] Let p, q ≥ 0, f ∈ L1([a,b]. Then

IP
0+ Iq

0+ f (t) = IP+q
0+ f (t) = Iq

0+IP
0+ f (t),

and
cDq

a+Iq
0+ f (t) = f (t),∀t ∈ [a,b] .

Lemma 2.6.[18] Let β > α > 0, f ∈ L1([a,b] . Then for
all t ∈ [a,b] we have

cDα
a+Iβ

0+ f (t) = Iβ−α
0+ f (t).

Lemma 2.7.Giveny ∈C([0,1]) and 2< q < 3, the unique
solution of the fractional problem(P0)

{

cDq
0+u(t)+ y(t) = 0, 0< t < 1

u(0) = u′′(0) = 0,u(1) = 0,

is given by

u(t) =
1

Γ (q)

∫ 1

0
G(t,s)y(s)ds,

where

G(t,s) =

{

t(1− s)q−1− (t − s)q−1,0≤ s ≤ t,
t(1− s)q−1, t ≤ s ≤ 1.

(1)

Proof. Using Lemmas 2.3 and 2.4 we have

u(t) =−Iq
0+y(t)+C+Bt+At2,

from the conditionsu(0) = u′′(0) = 0, we obtainC = A =
0, and the conditionu(1) = 0 implies

B =
1

Γ (q)

∫ 1

0
(1− s)q−1y(s)ds,

sou(t) can be written as

u(t) =−Iq
0+y(t)+

1
Γ (q)

∫ 1

0
t(1− s)q−1y(s)ds,

whereG is defined by (1). The proof is completed.�.

Lemma 2.8.For all s, t ∈ [0,1] , the Green functionG(t,s)
is non negative, continuous and satisfies

i)G(t,s) ≤ (1− s)q−1,

ii) min
t∈[τ1,τ2]

G(t,s) ≥ τ1

(

1− (τ2)
q−2

)

(1− s)q−1 where

0< τ1 < τ2 < 1.

Proof. From the expression of G(t, s), it is evident that
G(t,s) ∈ C([0,1]× [0,1)) andG(t,s) ≥ 0 for s, t ∈ [0,1].
Next, we prove (ii). From the definition of G(t, s), we
known that, for a givens ∈ [0,1], G(t, s) is increasing with
respect tot for t ≤ s, then, let

g1(t,s) = t(1− s)q−1− (t − s)q−1,s ≤ t,

g2(t,s) = t(1− s)q−1, t ≤ s.

That is,g1(t,s) is a continuous function forτ1 ≤ t ≤ τ2,
andg2(t,s) is increasing with respect tot. Hence, we have

g1(t,s)≥ τ1

(

1− (τ2)
q−2

)

(1− s)q−1, t ∈ [τ1,τ2]

min
t∈[τ1,τ2]

g2(t,s)= τ1(1−s)q−1≥ τ1

(

1− (τ2)
q−2

)

(1−s)q−1.
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Therefore,

min
t∈[τ1,τ2]

G(t,s)≥ τ1

(

1− (τ2)
q−2

)

(1− s)q−1.

The proof is completed.�.

Lemma 2.9.The solution of problem(P1) satisfies

min
t∈[τ1,τ2]

u(t)≥ τ1

(

1− (τ2)
q−2

)

‖u‖ .

Proof. From Lemma 2.7,u can be expressed by

u(t) =
1

Γ (q)

∫ 1

0
G(t,s)a(s) f (u(s))ds

≤
1

Γ (q)

∫ 1

0
(1− s)q−1a(s) f (u(s))ds

then

‖u‖ = max
0≤t≤1

|u(t)|= max
0≤t≤1

1
Γ (q)

∫ 1

0
G(t,s)a(s) f (u(s))ds

≤
1

Γ (q)

∫ 1

0
(1− s)q−1a(s) f (u(s))ds.

Also, we have

u(t) ≥
t
(

1− tq−2
)

Γ (q)

∫ 1

0
(1− s)q−1a(s) f (u(s))ds

≥ t
(

1− tq−2)‖u‖ ,

therefore

min
t∈[τ1,τ2]

u(t)≥ τ1

(

1− (τ2)
q−2

)

‖u‖ .

�.

3 Main results

Let E =C([0,1],R) be the Banach space of all continuous
real functions on[0,1] endowed with the norm

‖u‖= max
t∈[0,1]

|u(t)| .

Define the integral operatorT : E → E by

Tu(t) =
1

Γ (q)

∫ 1

0
G(t,s)a(s) f (u(s))ds,∀t ∈ [0,1] .

We define some important constants:
f0 = limu→0+

f (u)
u , f∞ = limu→∞

f (u)
u , and

δ = τ1

(

1− (τ2)
q−2

)

. Denote

P =

{

u ∈ E,u(t)≥ 0,0≤ t ≤ 1, min
t∈[τ1,τ2]

u(t)≥ δ ‖u‖

}

.

It is obvious that P is a cone. Moreover, from Lemma
2.9, T (P) ⊂ P, it is also easy to see thatT : E → E is
completely continuous.

In what follows, for the sake of convenience, set

α =
Γ (q)

∫ 1
0 a(s) (1− s)q−1ds

,β =
Γ (q)

δ 2
∫ τ2

τ1
a(s) (1− s)q−1ds

.

Theorem 3.1.Let K be a closed convex set in a Banach
spaceX and letD be a bounded open set such thatDK =
D∩K 6= /0.Let T : Dk → K be a compact map.

Suppose thatx 6= T (x) for all x ∈ ∂Dk.
(P1) (Solution property) Ifi(T,Dk) 6= 0, thenT has a

fixed point inDk.
(P2) (Normality) If u ∈ Dk,then i(u,Dk) = 1, where

u(x) = u for x ∈ Dk.
(P3) (Additivity) If V1,V2 are disjoint relatively open

subsets ofDk such thatx 6= T (x) for x ∈ Dk�(V1∪V2) ,
then

i(T,Dk) = i(T,V1)+ i(T,V2) .

From these properties, one can have the following
consequences.

Theorem 3.2.Let K be a cone in a real Banach spaceX .
Let D be an open bounded subset ofX with
DK = D∩K 6= /0, andDk 6= K. Assume thatA : Dk → K is
completely continuous such thatx 6= T (x) for x ∈ ∂Dk.
Then the following results hold:

(1) If ‖Ax‖ ≤ ‖x‖ , x ∈ ∂Dk, theni(A,Dk) = 1.
(2) If there existse ∈ K�{0} such thatx 6= Ax+ λ e

for all x ∈ ∂Dk and allλ > 0, theni(A,Dk) = 0.
(3) LetU be open inK such thatU ⊂ Dk. If i(A,Dk) =

1 andi(A,Uk) = 0, thenA has a fixed point inDk\Uk. The
same results hold ifi(A,Dk) = 0 andi(A,Uk) = 1.

Theorem 3.3.Let E be a Banach space, and letK ⊂ E, be
a cone inE. Let r > 0, and defineΩr = {x ∈ K | ‖x‖< r}.
AssumeA : Ωr → K is a completely continuous operator
such thatAx 6= x for x ∈ ∂Ωr.

i)If ‖Au‖ ≤ ‖u‖ , u ∈ ∂Ωr, then

i(A,Ωr,K) = 1.

ii)If ‖Au‖ ≥ ‖u‖ , u ∈ ∂Ωr, then

i(A,Ωr,K) = 0.

Theorem 3.4.Assume that
∫ τ2

τ1
(1− s)q−1a(s)ds 6= 0 and

the following assumptions are satisfied.
(H1) f0 = f∞ = ∞.
(H2) There exist constantsr > 0 andA ∈ ]0,α[ such

that
f (u)≤ Ar,u ∈ [0,r] .

Then, the boundary value problem(P1) has at least two
positive solutionsy1 andy2 such that

0< ‖y1‖< r < ‖y2‖ .

Proof. At first, in view of f0 =∞, then for anyA1 ∈ ]β ,∞[ ,
there existr1 ∈ ]0,r[ such that

f (u)≥ A1u,u ∈ [0,r1]
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Let Ωr1 = {u ∈ P : ‖u‖< r1} . Sinceu∈ ∂Ωr1 ⊂ P, we
have min

τ1≤t≤τ2
u(t)≥ δ ‖u‖ . Thus, for anyu∈ ∂Ωr1, we have

Tu(t) =
1

Γ (q)

∫ 1

0
G(t,s)a(s) f (u(s))ds

≥
A1

Γ (q)

∫ 1

0
a(s)G(t,s)u(s)ds

≥
A1

Γ (q)

∫ τ2

τ1

a(s)G(t,s)u(s)ds

≥
A1δ 2

Γ (q)
‖u‖

∫ τ2

τ1

a(s) (1− s)q−1 ds,

which yields

Tu(t)≥ ‖u‖ ,u ∈ ∂Ωr1.

Hence, Theorem 3.3 implies

i(T,Ωr1,P) = 0.

On the other hand, sincef∞ = ∞, we deduce that for
anyA2 ∈ ]β ,∞[ , there existsr2 > r such that

f (u)≥ A2u,u ≥ δ r2.

Let Ωr2 = {u ∈ P : ‖u‖< r2} . Since u ∈ ∂Ωr2 ⊂ P,
we have min

τ1≤t≤τ2
u(t) ≥ δ ‖u‖ = δ r2, and hence for any

u ∈ ∂Ωr2, we can obtain

Tu(t) =
1

Γ (q)

∫ 1

0
G(t,s)a(s) f (u(s))ds

≥
1

Γ (q)

∫ τ2

τ1

G(t,s)a(s) f (u(s))ds

≥
A2

Γ (q)

∫ τ2

τ1

a(s)G(t,s)u(s)ds

≥
A2δ 2

Γ (q)
‖u‖

∫ τ2

τ1

a(s) (1− s)q−1 ds,

which implies

Tu(t)≥ ‖u‖ , f oru ∈ ∂Ωr2.

Thus Theorem 3.3 yields

i(T,Ωr2,P) = 0.

Let Ωr = {u ∈ P : ‖u‖< r} . For anyu∈ ∂Ωr, we have

Tu(t) ≤
Ar

Γ (q)

∫ 1

0
a(s)G(t,s)ds

≤
Ar

Γ (q)

∫ 1

0
a(s) (1− s)q−1ds

≤ r = ‖u‖ ,

therefore,‖Tu‖ ≤ ‖u‖ for anyu ∈ ∂Ωr.
From Theorem 3.3, we obtain

i(T,Ωr,P) = 1.

Hence, sincer1 < r < r2 it follows from the additivity
of the fixed point index that

i
(

T,Ωr�Ω r1,P
)

= 1,

i
(

T,Ωr2�Ω r,P
)

= −1.

Therefore,T has a fixed pointy1 in Ωr/Ω r1 and a fixed
pointy2 in Ωr2/Ω r and 0< ‖y1‖< r < ‖y2‖ .The proof is
complete.�.

Theorem 3.5.Assumes that
∫ τ2

τ1
(1− s)q−1a(s)ds 6= 0 and

the following assumptions are satisfied.
(H3) f0 = 0.
(H4) There exist constantsρ > 0 andB ∈ ]β ,∞[ such

that
f (u)≥ Bρ ,u ∈ [δρ ,ρ ] .

Then, the boundary value problem(P1) has at least one
positive solutionsy1

0< ‖y1‖< ρ .

Proof. At first, in view of f0 = 0, then for anyε ∈ ]0,α[ ,
there existsr1 ∈ ]0,ρ [ such that

f (u)≤ εu,u ∈ [0,r1] .

Letting Ωr1 = {u ∈ P : ‖u‖< r1} . For anyu ∈ ∂Ωr1
we have

Tu(t) =
1

Γ (q)

∫ 1

0
G(t,s)a(s) f (u(s))ds

≤
ε

Γ (q)

∫ 1

0
a(s)G(t,s)u(s)ds

≤
ε

Γ (q)
‖u‖

∫ 1

0
a(s)(1− s)q−1 ds

≤ ‖u‖ ,

which yields

Tu(t)≤ ‖u‖ ,u ∈ ∂Ωr1.

Thus, Theorem 3.3 implies

i(T,Ωr1,P) = 1.

Let Ωρ = {u ∈ P : ‖u‖< ρ} . Sinceu ∈ ∂Ωρ ⊂ P, we
have min

τ1≤t≤τ2
u(t) ≥ δ ‖u‖ = δρ , and hence for any

u ∈ ∂Ωρ , we obtain

Tu(t) =
1

Γ (q)

∫ 1

0
G(t,s)a(s) f (u(s))ds

≥
1

Γ (q)

∫ τ2

τ1

G(t,s)a(s) f (u(s))ds

≥
Bρ

Γ (q)

∫ τ2

τ1

a(s)G(t,s)ds

≥
Bρδ 2

Γ (q)

∫ τ2

τ1

a(s) (1− s)q−1ds

≥ ρ = ‖u‖ ,
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which implies

Tu(t)≥ ‖u‖ , f oru ∈ ∂Ωρ .

Thus, Theorem 3.3 yields

i
(

T,Ωρ ,P
)

= 0.

Hence, sincer1 < ρ , it follows from the additivity of
the fixed point index that

i
(

T,Ωρ�Ω r1,P
)

=−1.

Therefore,T has a fixed pointy1 in Ωρ�Ω r1.�.

Theorem 3.6.Assume that(H2) and (H4) hold and that
r 6= ρ . Then the boundary value problem(P1) has at least
one positive solutiony satisfyingr < ‖y‖< ρ orρ < ‖y‖<
r.
Proof. Without losing the generality, we may assume that
r < ρ . Let Ωr = {u ∈ P : ‖u‖< r} . For anyu ∈ ∂Ωr and
from (H2) , we get

Tu(t) ≤
Ar

Γ (q)

∫ 1

0
a(s)G(t,s)ds

≤
Ar

Γ (q)

∫ 1

0
a(s) (1− s)q−1ds

≤ r = ‖u‖ ,

hence,‖Tu‖ ≤ ‖u‖ for anyu ∈ ∂Ωr.
Thus, an application of Theorem 3.3 again shows that

i(T,Ωr,P) = 1. (2)

Finally, let Ωρ = {u ∈ P : ‖u‖< ρ} . For u ∈ ∂Ωρ ,
sinceu ∈ P, min

τ1≤t≤τ2
u(t) ≥ δ ‖u‖ = δρ , and hence for any

u ∈ ∂Ωρ and from(H4) we can obtain

Tu(t) =
1

Γ (q)

∫ 1

0
G(t,s)a(s) f (u(s))ds

≥
1

Γ (q)

∫ τ2

τ1

G(t,s)a(s) f (u(s))ds

≥
Bρ

Γ (q)

∫ τ2

τ1

a(s)G(t,s)ds

≥
Bρδ 2

Γ (q)

∫ τ2

τ1

a(s) (1− s)q−1ds

≥ ρ = ‖u‖ ,

which impliesTu(t)≥ ‖u‖, for u ∈ ∂Ωρ . Thus,

i
(

T,Ωρ ,P
)

= 0. (3)

Combining (2) and (3) gives

i
(

T,Ωρ�Ω r,P
)

=−1.

Consequently,T has at least one fixed point on
Ωρ�Ω r. Thus(P1) has at least one positive solution and

r < ‖y‖< ρ .

This completes the proof.�.

4 Illustrative Examples

Example 4.1. Let us consider the fractional boundary
value problem

cD
11
4

0+u(t)+ (1− t)
(

exp(u)+ u2)= 0,0< t < 1,

u(0) = u′′(0) = 0,u(1) = 0.

hereq = 11
4 ,a(t) = 1− t,

f (u) = exp(u)+ u2.

It is easy to see thatf0 = f∞ = ∞, then(H1) holds.
We have (q+1)Γ (q) = 9.559, because f (u) is

monotone increasing function foru ≥ 0, taking
r = 1

2,A = 2exp
(

1
2

)

+ 1
2 ∈ ]0,9.559[ ,then we get for

u∈ [0,r]

f (u)≤ f
(1

2

)

= exp
(1

2

)

+
(1

2

)2
= 1

2

(

2exp
(1

2

)

+ 1
2

)

= Ar.

Hence(H2) holds. Applying Theorem 3.4, we deduce
that there exist at least two positive solutionsy1 and y2
such that

0< ‖y1‖<
1
2
< ‖y2‖ .

Example 4.2.Consider the following fractional boundary
value problem

cD
9
4
0+u(t)+1035u

9
8 exp(−u)(1− t) = 0,0< t < 1,

u(0) = u′′(0) = 0,u(1) = 0.

where
q = 9

4, f (u) = 1035u
9
8 exp(−u) ,a(t) = 1 − t,δ =

1
4

(

1−
(

3
4

)q−2
)

= 0.017,β = 33394,Γ
(

9
4

)

= 1.133.

It is easy to check that(H3) holds. Since f (u) is
monotone decreasing function foru ≥ 9

8, for
ρ = 70,B = 4732800

70 ∈ ]33394,∞[ , we have

f (u)≥ f (70) = 4732800= Bρ ,u ∈ [δρ ,ρ ] ,

therefore, (H4) holds. Applying Theorem 3.5 we
deduce that there exist at least one positive solutionsy1

0< ‖y1‖< ρ .

Example 4.3.Consider the same problem as in example
4.2. Sincef (u) is monotone increasing function foru ∈
[

0, 9
8

]

, taking r = 10−290,A = 0.0562∈ ]0,3.682[ , then
we get foru ∈ [0,r];

f (u)≤ f
(

10−290)= Ar,

hence(H2) holds.
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We havef (u) is monotone decreasing function foru≥
9
8, for ρ = 70,B = 4732800

70 ∈ ]4732800,∞[, we have for
u ∈ [δρ ,ρ ]:
f (u)≥ f (70) = 4732800= Bρ ,

hence (H4) holds. Then, from Theorem 3.6 the
boundary value problem(P1) has at least one positive
solutiony satisfyingr < ‖y‖< ρ or ρ < ‖y‖< r.
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