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Abstract: In this paper, we suggest and analyze a new iterative methioslofving mixed quasi variational inequalities. The new
iteration is obtained by searching the optimal step sizegbkhe integrated descent direction from two descent dest Global
convergence of the proposal method is proved under cegaimaptions. Our results can be treated as refinement obpidyiknown
results. An example is given to illustrate the efficiencyta proposed method.
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1 Introduction which is called the mixed variational inequality or

. . variational inequality of the second kind, sdel[3,14,15,
Let H be a real Hilbert space, whose inner product17 1g 19 21].

and norm are denoted Hy,-) and|| - ||, respectively. LeK If ¢(.,.) =¢(.) is an indicator function of a closed

be a closed convex setkhandT : H — H be anonlinear  onyex seK in H, then problem?) is equivalent to finding
operator. Le®(.,.) :H xH — RU{+o} be a continuous € K such that

bifunction. We consider the problem of findinge H such

that (Tu,v—u) >0, WeK, 4)
(Tuv—u)+¢(v,u)—¢(u,u)>0, YveH. (1) which is known as the classical variational inequality
Problem () is called the mixed quasi variational INtroducedand studied by Stampacclagffin 1964.
inequality. Such type of mixed quasi variational Due to the presence of the nonlinear bifunction, the

inequalities arise in the study of elasticity with non-lbca Projection method and its variant forms including the
friction laws, fluid flow through porous media and Wiener-Hopf equations technique can not be extended to

structural analysis. For the finite element analysis,SU99€st iterative methods for solving mixed quasi
existence results and applications, st@21]. variational inequalities 1). To overcome these
If the bifunction ¢(.,.) is a proper, convex and lower drawbacks, some iterative methods have been suggested
semicontinuous function with respect to the first fOr Special cases of the mixed quasi variational

argument, then probleni)(is equivalent to findingic H ~ inequalities. For example, if the bifunction is proper,
such that convex and lower semicontinuous function with respect to

0cTurd 5 the first argument, then one can show that the mixed quasi
El u'+ ¢ (u,u), o (2) variational inequalities are equivalent to the fixed-point
which is known as finding the zero of the sum of monotoneproplems and the implicit resolvent equations using the

operators. resolvent operator technique. This equivalent formuratio

~ For ¢(v,u) = ¢(v),vu € H, problem () reduces to  has been used to suggest and analyze some iterative
findingu € H such that methods. Several modified resolvent methods have been
(Tuv—u)+¢(v)—¢(u) >0, WWeH, 3) suggested and developed for solving mixed variational
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inequalities. For recent development of the subject, weRemark 2.1. It is well known that the subdifferential

refer to [[2]-[11], [19-[25]]. d¢(.,.) of a convex, proper and lower-semicontinuous
Inspired by the above cited works, we propose afunction ¢(.,.) : H x H — RU {+»} is a maximal

descent resolvent method for solving mixed quasimonotone with respect to the first argument, we can

variational inequality, the new iterate is obtained along adefine its resolvent by

new descent direction. The new direction is obtained by _ _

combining two descent directions. Global convergence of¢(w) = (I +P9$(..u)) = (+pd¢ (), (10)

the proposed method is proved under certain assumptiongyhered ¢ (u) = d¢ (., u), unless otherwise specified.

To illustrate the proposed method and demonstrate itS The resolvent operatal, defined by {0) has the
efficiency, some applications and their numerical resultsio||owing characterization,

are also provided. Our results can be viewed as significant ) o
extensions of the previously known results. !_emmalll 2.1[23 For a givenu € H, z < H satisfies the
inequality

(U—zv—u)+pp(v,u)—pp(uu)>0, WweH, (11)

2 Preliminaries if and only if

In this section, we recall some basic definitions andu = Jy (2,

results, which will be frequently used in our later analysis whereJ,  is resolvent operator defined byq).

Definition 2.1. The mappingl : Q C H — H is saidto be |t follows from Lemma 2.1 that
(@) monotone over a s€l if (3 [@=2V—=3() @) +PP (% g [2) — P Jp(0) @ Jpw @) 20, Vuvze H(12)

(TO)=T(Y),x=y) 20, ¥xyeQ; ®)
(b) strongly monotone ove® if there exists am > 0 The following result can be proved by using Lemma
such that 2.1.

_ VRN 2 . Lemma 2.2. u* is solution of problemX) if and only if
(TO) =T x=y) = allx=ylI% Xy e ©) u* € H satisfies the relation:
(c) co-coercive oveq if there exists & > 0 such that

o NIt TR OO (13)
TH-TH)XY) ZeTO-TWIP.  yeQ® e o

(d) Lipschitz continuous ovef if there exists arL > 0 From Lemma 2.2, it is clear thatis solution of () if
such that and only ifu is a zero point of the function

[T =TI <lIx=yl>  WxyeQ. 8) r(u,p) :=u—Jyylu—pT(u).

It is clear from Definition 2.1 that co-coercive . )
mappings are monotone but not necessarily stronglyl"e following lemma shows that|r(u,p)|| is a
monotone. Conversely, strongly monotone and LipSChithon-decreasing function, while [Ir(u,p)|l is a
continuous mapping are co-coercive. This shows that ] )
co-coercivity is a weaker condition than strongly hon-increasing one with respectgo

monotonicity. Lemma 2.3[5] Forallue H andp’ > p > 0, it holds that

Definition 2.2. The bifunctiong(.,.) is said to beskew- r(u.oM > lir(u 14

Smmetric, if ([ (u,p")[| = [[r(u,p)l (14)

]and
¢(uu)—d(uv)—d(vu)+¢(vv) =0, vuveH. (9) )
o o Ir(u.p)ll _ [Ir(u.p)] 15
Clearly, if the bifunctiong (., .) is linear in both arguments, — < : (15)
p P

then, |

¢(uu)—d(u,v)—p(u)+o(v,v) = p(u—v,u—v) Throughout this paper, we make following
>0, VYuveH, assumptions.

which shows that the bifunctiofi(.,.) is nonnegative. Assumptions:

Definition 2.3[12] Let A be a maximal monotone  —H is a finite dimension space.

operator, then the resolvent operator associated Avith —T is continuous and co-coercive with modulcis- 0

defined as onH.

_ —The bifunctiong (., .) is skew-symmetric.
_ 1 ;

Ia(u) = (I+pA) (), VueH, —The solution set of probleml) denoted byS is

wherep > 0 is a constant andis the identity operator. nonempty.
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3 The proposed method and some properties

k=0.
Step 1. Sepx = p. If ||r(U¥, p)|| < &, then stop; otherwise,

In this section, we suggest and analyze the new descerfind the smallest no-negative

resolvent method for solving mixed quasi variational

inequality (). To describe our method, we negm
satisfies

0< pr < inf py < sUppx < pu < 4c.
k=0 k=0

Algorithm 3.1

Step 0. Givere > 0,y € [1,2),u € (0,1),0 € (0,1),0 €
(0,1),& € (0,1) andu® € H, set

k=0.
Step 1. Sepx = p. If ||r(uk, p)|| < €, then stop; otherwise,
find the smallest no-negative

integermy, such thaipy = pu™ satisfying

(T (U) =T (W)l < 8]|r (U, ),

] where

(16)

VVk = J¢(uk> [Uk - ka(Uk)].
Step 2. For each* € S*, choose a directiody satisfying
the following inequality
(e, U = ") > [ (U, i) |2 = i (U, i), T (UF) = T (WF)). (17)
1 Compute
Dk = (1—0)r(u*, p) + ock. (18)
] Step 3. Get the next iterate

Ukt = Uk — yan Dy
where
[Ir (U¥, pi) |1
k=B —=3—
||Dl[2
and
Pk

B= (1—0)(1—4—C)+0(1—6).
Step 4. If

(T () = T (W) | < &olr (U, )

then sefp = £, else sep = px. Setk:=k+1,
and goto Step 1.

If ¢(v,u) = ¢(v),Yu € H, and ¢ is an indicator
function of a closed convex sktin H, thenJ, = R« [20],

the projection ofH onto K. Consequently Algorithm 3.1
solving variational

reduces to Algorithm 3.2 for
inequalities 4).

Algorithm 3.2

Step 0. Givere > 0,y € [1,2),u € (0,1),0 € (0,1),0 €
(0,1),8 < (0,1) andw® € K, set

integermy, such thajpx = pu™ satisfying
oe(T () = T (W) | < 8Ir (. P
where
WK = B[ — picT (U9)].

Step 2. For each* € S*, choose a directiody satisfying
the following inequality

(G, U= ") > I (U, i) [12 = oic{r (U, 1), T (UF) = T (WF)).
Compute
Dy = (1—0)r(uk, py) + ody.
Step 3. Get the next iterate

Ut = Uk — yonDy..

where

)l
=P B,

and

B = (1—0)(1—2—2)4—0(1—6).

Step 4. If

(T () = T (W) | < &ollr (U, pr)

then sefp = %, else sep = py. Setk:=k+1,
and go to Step 1.

Lemma 3.1. Letu* € S andvuK € H, we have

(r (6, i, o = ) = (1= 2 Ir (e, i 2 (19)

Proof: Substitutingz= u* — p T (U¥) andv = u* into (12),
and using the definition af(uk, py), we get

<r(uk>pk) _ka(uk)>\Nk_U*> +pk¢(U*7Wk) _pk¢ (Wk7Wk) 2 0(20)
] From (1) we have

<ka(U*)a\Nk - U*> + pk¢ (\Nkv U*) - pk¢(U*7 U*) > 0. (21)

] Adding (20) and @1), and using the skew-symmetry of
the bifunctiong(.,.), we have

(r(u¥, o) — T (U) = T (u")], W< —u*) > 0
which can be rewritten as
(r(u¥, o) — T (U) = T (u")], U — u* =1 (U€, py)) > 0.
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Using the co-coercivity oT, we get
(W= r (o) > (U, o) 12 = pi(T (W) = T(u),
(U, o)) + P (T (U) = T (u), U — )
> [Ir (¥, i) |12 = pr(T () = T (),
(U, o)) + o] T () = T (u) |2
= [Ir (U, )17+ || Vre(T () —

1
T() - 5/ Zr (0012
X r( pl 2

> (1= 2 Ir( o0l 2
Hence, 19) holds and the proof is completed. O
Lemma 3.2. Letu* € S* andvuX € H, then we have
(Dy, Uk —u") > BIr (¥, pi)| I (22)

Proof: Using the definition oDy, Lemma 3.1, 16) and
(17). For any solutionu* € S*, we have

(D, U =) = (1= 0)r (U, py) + ock, U —u)
= (1= o)(r(uk, o), Uk — u*) + o (., UK — u*)
> (1-0)(1— B Ir ek, p) 2+ o r (1K, o)
—o(r (U, ), T (W) — T (w)
> (1-0)(1— ) Ir (&K, p) |2+ o r (1, )

~5a]|r(u, p)|?
=[1-0)(1- %)+0(1—5)H\r(uk7pk)l\2-

Using the definition of@3, we get the assertion of this
lemma. O

Remark 3.1.

-Lemma 3.2 shows thatDy is a descent direction af for
the merit functiong |[x — x*(|2.

-At iteration k, the two directions

dic = r(u*, o) + P (WF)

and

o2 = r (UK, o) + (T (WF) — T (U
satisfied {7). For the proof, see Lemma 3.3 if][for d}
and Lemma 3.2 in32] for dZ.

4 Convergence analysis

In this section, we prove the global convergence of

Proof: Letu* € H be a solution of problemf, then

[JukHE —u* |2 = [|uf = U — ayDy 2
= ||uf = u[|2+ a2 Dy [* — 2acy(u€ — u*, Dy
< ||u = ||+ ay?| Dkl * — 2aryBlIr (U¥, pi) | |2
= ||uk = u"|2 = y(2— y)Ba Ir (U, i) |

Then

k 4
||uk+1—u*||2§ ||uk_u>k||2_V(Z_V)B2||r(|L|JD7I|)|k2)|| )
k

Sincey € [1,2), we have
U — )| < -] <<

Then, the sequena# is bounded. 0
Now, the convergence of the proposed method could
be proved as follows

Theorem 4.2.The sequence® generated by the proposed
method converges to a solution point of probleih (

Proof: It follows from (23) that

“ JIr(ek, po
2. IDd?

which means that

< 00

lim [Ir (U, pi) | =0, (24)
k—co

] and it follows from Lemma 2.3 that

min{L, pi}[Ir (U, 1)[| < [|r (U, pi) - (25)
] Combining @4) and @5), we get

lim py[r (u¥, 1)|| = 0. (26)
k—»co

] We have two possible cases. Firstly, suppose that
lim supog > 0.
k—o0
It follows from (26) that
lim inf||r (uk,1)|| = 0.
k—o0
Since {U¥} is bounded, it has a cluster poiatsuch that
[r(U,1)]] = O, which impliesu'is a solution of problem
(D).

Now, we consider the second possible case

jmp=o

the proposed method. The following theorem plays a

crucial role in the convergence of the proposed method.

Theorem 4.1 Let u* € S* and u**! be the sequence
obtained from algorithm 3.1. Tharf is bounded and

k 4
* * r(u®, Pk
| < w2y -y LR

(23)

By the choice ofpx we know that {6) was not satisfied
for m¢— 1. Then fork large enough such thai < u, we
obtain

T (W) = T Qo [U— (ou/ T (WD

> Su||r (U, p/1) 1/
> &|r(uk, 1)
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where the second inequality follows from Lemma 2.3.
Let Ube a cluster point ofu‘} and the subsequen¢ei }
converges tal. Then, we have

IF@D)l| = fim Ir(ds, 1)
_ \IT(uki)—T(J¢<ukj>[uki—(pki/u)T(uki)])H
< lim
j—oo o
=0,

which means that is a solution of problemX).
In the following, we prove that the sequer{aé‘} has exactly one
cluster point. Assume thati§ another cluster point and satisfies

T:=||d-10] > 0.

Sinceu’is a cluster point of the sequen¢e*}, there is &g > 0
such that .
e —dl| < 5.

On the other hand, sinaec S* and from @3), we have
U —a] < |ue—a] forall k> ko,
it follows that

~ ~ T
ok =g > o] - [~ > 5 vk ko

This contradicts the assumption thats cluster point of{uk},
thus the sequencg} converges tai € S O

5 Preliminary Computational Results

In the section, we give some numerical results for the
proposed method. We consider the nonlinear complementarit

problems
Findu € R" such that
u>0, T(u=>0, (uT(u)=0, (27)

] where T(u) = D(u) + Mu+q, D(u) and Mu+ q are the
nonlinear part and linear parts @f(u) respectively. Problem
(27) is a special case of problerh)( by taking

0, if
+oo,

veRl;
otherwise .

o)~ {

In this case Algorithm 3.1 collapses to Algorithm 3.2.

We form the test problems similarly as in Harker and Pang

[16]. The matrixM = ATA+ B, where A is an n x n matrix
whose entries are randomly generated in the intefvd, +5)
and a skew-symmetric matr® is generated in the same way.
The vectorq is generated from a uniform distribution in the
interval (—500500) (easy problems) and—5000) (hard
problems), respectively. IB(u), the nonlinear part of (u), the
components ardj(u) = dj * arctar{uj) and d; is a random
variable in(0,1).

In all tests we tooku = 2/3, 6 =0.95¢c=0.9, & = 0.2,
y = 1.95 anddy = r(uk, pi) + k[T (W¥) — T(U¥)], the starting
point W° = (0,...,0)T. All codes are written in Matlab. The
computation begins withpg = 1 and stops as soon as
[r(, p)llo < 107, The test results for easy problems
(g € (-500500) and hard problemsqg(e (—5000)) are
reported in table§-2.

Table 1 Numerical results for easy problems

Method in 2] Algorithm 3.2

n No. It. | CPU(Sec.)|| No.It. | CPU(Sec.)
200 53 0.03 20 0.04
300 46 0.04 21 0.06
500 24 0.11 23 0.31
700 41 0.15 23 0.44

Table 2 Numerical results for hard problems

Method in R2] Algorithm 3.2

n No. It. | CPU(Sec.)|| No.It. | CPU(Sec.)
200 85 0.04 23 0.09
300 85 0.08 26 0.13
500 31 0.37 23 0.56
700 64 0.81 70 1.05

From Tablesl-2, we can see that our Algorithm 3.2 is more
efficient than the method ir2p], the number of iterations is much
less than that of2)].
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