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Abstract: A new hybridization of the Cuckoo Search (CS) is developed and applied to optimize multi-cell solar systems; namely
multi-junction and split spectrum cells. The new approach consists of combining the CS with the Nelder-Mead method. More precisely,
instead of using single solutions as nests for the CS, we use the concept of a simplex which is used in the Nelder-Mead algorithm. This
makes it possible to use the flip operation introduces in the Nelder-Mead algorithm instead of the Levy flight which is a standard part of
the CS. In this way, the hybridized algorithm becomes more robust and less sensitive to parameter tuning which exists in CS. The goal
of our work was to optimize the performance of multi-cell solar systems. Although the underlying problem consists of theminimization
of a function of a relatively small number of parameters, thedifficulty comes from the fact that the evaluation of the function is complex
and only a small number of evaluations is possible. In our test, we show that the new method has a better performance when compared to
similar but more compex hybridizations of Nelder-Mead algorithm using genetic algorithms or particle swarm optimization on standard
benchmark functions. Finally, we show that the new method outperforms some standard meta-heuristics for the problem ofinterest.

Keywords: Cuckoo search, Nelder-Mead Simplex, cascaded optimization, multi-cell solar systems, multi-junction solar cells, split
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1 Introduction

In the recent years, the performance of photovoltaic (PV)
cells has been significantly improved by using multi-cell
devices. In such systems, few different cells are combined
to maximize the conversion efficiency by dividing the
spectrum of solar radiation and then use a proper cell for
each divided spectrum. Using this approach, efficiency of
44.7% has been achieved where 4 junctions are used [1,
2]. The two most common methods for such device
concept are splits spectrum and multi-junction solar cells.
With the development of new technologies, it has become
possible to create more complex systems consisting of a
higher number of cells. It has been shown that the
performance of such systems can be further improved
using optical concentration[3]. For future development of
such solar-cell systems, it is of significant importance to
have bounds for the optimal possible efficiency. While it
is relatively simple to find them in case of two or three
layers, it becomes significantly more complex in case of a
higher number of layers. This is due to the fact that it is

necessary to find the minimal value of a multi parameter
function, which is computationally challenging.

The problem becomes even more complex because it
is hard to find the corresponding gradient that could
simplify the calculation. There is a wide range of
non-gradient based optimization methods like simulated
annealing [4], genetic algorithms [5], pivot method [6],
particle swarm optimization [7], Nelder-Mead Simplex
(NMS) method [8] that are generally used to solve this
type of problems. The performance of such methods is
highly dependent on the function that we wish to
minimize. In the case of the problem of interest, initial
test have shown that NMS algorithm manages to
outperform, in several tested problem instances,
mentioned more complex population based methods. One
of the reasons for this is the fact that due to physical
properties of the problem, we have a good initial guess of
the solution. Our research has focused on improving the
performance of this algorithm by incorporating some type
of swarm intelligence. There is a wide range of meta
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heuristic that mimic the behavior of groups in nature, the
most prominent are ant colony optimization [9], bee
colony optimization [10], particle swarm optimization
(PSO) [7], firefly algorithm [11], and cuckoo search
(CS)[12][13]. In the recent years, the CS [12] algorithm
has been gaining on popularity as an optimization method
due to its good performance, robustness, and simplicity of
implementation. Research has been conducted to improve
the original algorithm by changing the method of
communication inside of the colony [14], having adaptive
parameters[15], using quantum inspired
approaches[16][17], and adapting the algorithm for
parallel applications [18][19]. The CS algorithm has
previously been successfully applied in the field of solar
cells, more precisely for parameter estimation of
photovoltaic models [20].

Previously, the NMS algorithm has been hybridized
using genetic algorithms [21][22], ant colony
optimization [23] and particle swarm optimization [24]
resulting in very efficient global optimization algorithms.
One of the main problems of hybridized methods is that
although they achieve better results, they often become
very complex for implementation. In this work, we
introduce a CS inspired hybridization of the NMS
algorithm that manages to avoid this drawback but still
achieves significantly better results than the original
method. The general idea of our approach is to use the
simplex structure from NMS algorithm as a form of a nest
in the cuckoo search. One of the main advantages of this
approach is that we can avoid the use of the Levy flight in
CS. Although the Levy flight is a very powerful system of
exploring the solution space, its performance within the
CS is highly dependent on the scaling factor introduced in
this method. In the presented approach, we substitute the
Levy flight with the flip operation of a simplex in the in
the NMS algorithm. In our tests, we show that the
proposed method not only performs well in the case of
solar cells optimization, but also achieves good results on
standard benchmark functions when a lower number of
parameters is considered. The cuckoo search is often a
competing method to the particle swarm optimization and
genetic algorithms (GA); because of this, we also give a
comparison to previously published results of
hybridization of NMS using this method. In the
comparison we have shown that the new method manages
to achieve a higher speed of convergence, while at the
same time being much simpler to implement. To better
evaluate the effect of the proposed hybridization of CS we
have also conducted a comparison to other versions of the
CS previously presented in literature. This has been done
on a wide range of benchmark functions, from which it is
noticeable that the new approach has a very good
performance.

The article is organized as follows. In the next section,
we give an overview of related research, divided into 3
subsections. The first one presents the basics of the
cuckoo search algorithm. In the second subsection we
give an outline of the NMS algorithm. In the final

subsection we give an overview of previously developed
hybridization of NMS using swarm intelligence and
genetic algorithms. The third section presents a detailed
specification of the new method. The forth section is
dedicated to an evaluation of the new method. In the first
subsection we compare its performance on standard
benchmark functions with published results for other
population based hybridizations of NMS. The following
subsection presents a comparison to other versions of the
CS algorithm. In the third subsection we present the
optimization problem in PV cell and analyze the
performance of the method.

2 Related work

2.1 Cuckoo Search

As previously mentioned the Cuckoo Search is one of the
population based meatheuristic for function
minimization. In other words the goal of this method is to
find the global minimal valuemin f (x) of a function
defined in the following way

f : Rn → R (1)

Function f is called the objective function withn
dimensions.

Cuckoo search (CS) is an optimization algorithm that
mimics the brood parasitism of some cuckoo species.
More precisely, cuckoo birds lay their eggs in the nests of
other host birds (of other species). Through an evolutive
process cuckoos have managed to adapt the shape and
color of eggs to the one of targeted bird species. This
method of survival has been converted to a meta-heuristic
approach called Cuckoo Search. In the corresponding
algorithm, each egg in a nest will represent a solution and
cuckoo egg represents a newly generated solutions. The
idea is to create new, similar, and potentially higher
quality solutions (cuckoos) to replace the low quality
solutions in the nests. In the simplest form, each nest
contains one egg.

The proposed meta heuristic follows several rules.

1.Each cuckoo in the colony generates one solution
(egg) at each step, similar to an already existing
solution (nest),

2.The best solution will be carried to the next generation,

3.The number of available solutions that are used as nests
is fixed, and at each step, new solutions are generated.
This has a consequence that some solutions need to be
discarding, which corresponds to eggs being found by
the host bird. The discarding operation is only done
on some set of worst solutions (nests), more precisely
for each such nesta there is a probabilitypa of being
found.
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The standard CS algorithm following these rules is
presented in the following pseudo code:

Objective function:f (X), X = (x1,x2, ..,xd)

Generate an initial population ofn host nests;
while (t < MaxGeneration) or (stopcriterion) do

Get a cuckoo randomly (say,i) and replace its
solution by performing Levy flights;
Evaluate its quality/fitnessFi

Choose a nest amongn (say, j) randomly;
if Fi < Fj then

Replacej by the new solution;
end if

A fraction (pa) of the worse nests are abandoned and
new ones are built;
Keep the best solutions/nests;
Rank the solutions/nests and find the current best;
Pass the current best solutions to the next generation;

end while

Levy flight is an essential part of the CS algorithm. It
is defined by the following equation

Xi(t +1) = Xi(t)+α
⊗

Levy(λ ), (2)

where α (α > 0) represents a step size. Eq.2
basically represents a stochastic equation for a random
walk which is a Markov chain. More precisely, the next
position or function value that shall be evaluated depends
on two parameters; namely, the current position and
transition function (α

⊗

Levy(λ )). The next position
(status) depends only on the current position (Xi(t)) and
probability of transition (α

⊗

Levy(λ )). Levy(λ ), which
is the random step length, is drawn from a Levy
distribution. The consecutive positions generated through
steps of the Levy flight create a random walk that has a
heavy tail distribution. The use of Levy flight instead of a
simple random walk significantly improves the
performance of CS.

As presented in this pseudo code, the CS algorithm
has several stages. The first stage is to generate the initial
population. In the main loop of the algorithm a new
solutionFi is generated using Levy flight from a random
nest i. If this solution is better than a one belonging to
random nestFj, the Fj substituted byFi. Finally, in the
goal of increasing the diversity of the search, a fractionpa
of the worst nests is changed using Levy flight with a
larger step applied to avoid trapping in local optimal
solutions.

The main advantage of the CS search is its robustness
and its dependence on only a few number of parameters
that are needed to be fine tuned. Certainly, these
parameters depend on the function that is being optimized
like in the case of PSO and GA.

Fig. 1: Illustration of the movement of a 2D simplex using the
flip operation inside of the NMS algorithm.

2.2 Nelder-Mead method

The Nelder-Mead simplex method, frequently called the
downhill simplex method or amoeba method, is widely
used for finding local minima solutions, for well defined
problems for which a derivative is not known. The NMS
falls in the general class of direct search methods.The
basic component of the algorithm is a simplex. In case of
a two parameter function, a simplex is a triangle, and the
method results in a pattern search that is dependent of the
values of the three vertices of the triangle. In a similar
way for aN dimension function a simplex will haveN +1
vertices. In general, the method replaces some of the
worst points (which have the largest values of thef ) of
the simplex with a new vertices that are acquired using a
heuristic approach. In this way the simplex is transformed
to a new one which is potentially closer to the minima.
There are several potential transformation refection,
expansion, contraction and shrinkage that define the
generation of the search [8]. In NMS algorithm, the
heuristic choice and the application of the transformation
are called a flip.

More precisely the NMS algorithm is defined in the
following way. For function f with n dimensions, a
simplex will be a convex hull consisting ofn+1 vertices.
We will define a simplex with verticesx1,x2, ..,xn,xn+1 by
△. The NMS generates iteratively a sequence of
simplices by performing the following procedure. First all
of the vertices inside of simplex△ are sorted depending
on the objective function value

f (x1)≤ f (x2)≤ ..≤ f (xn) (3)

At each of iteration some of the vertices are removed
from the simplex and new ones are added. Using the
following steps
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–Reflection
The reflection pointxr is calculated using the following
formula

xr = xc +α(xc − xn+1) (4)

In Eq. 4 xc represents the centroid of the simplex
calculated in the following way

xc =
1

n+1

n+1

∑
i=1

xi (5)

In case the value offr = f (xr) satisfies the condition
f1 ≤ fr ≤ fn we replacexn+1 with xr and go to next
iteration.

–Expansion
In casefr < fi, an additional step is done to attempt by
calculating an expansion vertexxe.

xe = xc +β (xr − xc) (6)

If fe = f (xe) satisfies fe < fr replacexn+1 with xe
otherwise withxr.

–Outside Contraction
In casefn ≤ fr < fn+1, compute the outside contraction
point.

xoc = xc + γ(xr − xc) (7)

If foc = f (xe) satisfiesfoc ≤ fr replacexn+1 with xoc
otherwise do a shrink operation.

–Inside Contraction
In case fr ≥ fn+1, compute the inside contraction
point.

xic = xc − γ(xr − xc) (8)

If fic = f (xic) satisfiesfic ≤ fn+1 replacexn+1 with xic
otherwise do a shrink operation.

–Shrink

xi = x1+ δ (xi − x1) (9)

To fully define the flip operation it is necessary to
specify the values ofα, β , γ andδ . Their values should
satisfy the following conditions.

α > 0, 0< β < 1, γ > 1, γ > α, 0< δ < 1. (10)

In the standard implementation these parameters have
the following values:α = 1, β = 0.5, γ = 2 andδ = 0.5.
In our hybridization of NMS we have used these values.
We wish to mention that the NMS algorithm, and
consequently the proposed hybridization, can be further
improved by incorporating adaptive parameters [25].

2.3 Hybridized Methods

There are two main disadvantages of the CS algorithm.
First, it does not incorporate any type of local search to

increase the convergence speed when it is close to some
local or global minima, but only uses the Levy flight to
generate new test positions. Contrary to this, GA and PSO
are much faster in narrowing to optima when they are
close. The second problem is that the performance of CS
is highly dependant on the value ofα in Eq.2. It has been
shown that its value does not only depend to the on scale
the test function, but for high precision of results, its value
needs to adapt during the execution of the algorithm.

There has been a wide range of approaches to
improve the performance of CS by hybridization. It has
been shown that combining CS with other types of
population based algorithms is a good approach. Some of
the most successful ones are its combination with GA
[26], PSO [27], differential evolution [28], and ant colony
optimization [29]. Although this type of hybridization
manages to improve the performance of the original
method, the implementation becomes significantly more
complex than the basic CS. On the other hand, it could be
argued that the new methods, which couples two
population based techniques, that are generally more
suitable for globalized searches, combines to very similar
approaches. It is also important to mention that very
limited research has been done in the hybridization of CS
with some local search methods, which has proven to be
very profitable for other population based algorithms.

In our work, we attempt to improve the performance
of CS, by hybridization with NMS algorithm while
maintaining the simplicity and robustness of the original
algorithm. Previously, population based algorithms have
been successfully combined with NMS [24,30,31]. There
are two main directions to this type of hybridization;
namely, cascaded or tandem [31]. In the cascaded
approach, the two methods are used consecutively, and
resulting in a more globalized search. In case of a tandem
hybridization, the two methods influence each others
performance and generally result in a more localized
search which is more suitable for functions with a lower
number of parameters. In the case of optimization of solar
cells, the functions of interest would have from 3-10
parameters, so we have focused on developing a more
localized search using the tandem approach. The focus of
the method is to find solutions of good quality with a low
number of functions evaluations. The incentive for this is
the fact that the calculation of efficiency of multi layer
solar cells is computationally very expensive.

3 Hybridized method

As previously mentioned, the goal is to find the minima
of a function containing a relatively small number of
parameters (3-10). To achieve this, we have hybridized
the NMS using Cuckoo search. The general idea is to
exploit the effectiveness of NMS as a local search
algorithm, but combine it with the CS to get a wider
search area. By combining CS with NMS, the original
method becomes more capable in narrowing down to
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good solutions. One of the problems of CS is that except
for the focusing of the search by the replacement of lower
quality solutions with better ones, the search is relatively
random. In the new approach, we wish to search the
solution space in a more structured way. This is done by
incorporating the flip operation from NMS to CS.

The changes to the original CS method are the
following:

–Nests in the new method are simplexes instead of
parameter values that correspond to good solution. As
a consequence the initial population will be a set of
simplexes.

–While in the original CS, Levy flight is used to
explore new solutions, in the new method, this is done
using the flip operation of NMS. More precisely, at
each step of the algorithm, nesti is transformed to
nesti′ by using a flip.

–In the presented approach, only a part of the vertices
inside of a simplex are replaced. This is because a
simple replacement of lower quality nests with better
ones in the case of using simplexes combined with the
flip operation is not productive. This is due to the fact
that NMS has a deterministic search pattern, and if
this was done, we would be just repeating the tests for
same solutions.

The new approach can be formalized by the following
pseudo code.

Objective function:f (X), X = (x1,x2, ..,xd)

Generate an initial population ofn simplexes;
Testdn solutions;
while (t < MaxGeneration) or (stopcriterion) do

Get a cuckoo randomly (say,i) and replace its using
a NMS flip;
Evaluate its quality/fitnessFi

Choose a nest amongn (say, j) randomly;
if Fi < Fj then

Replace worstp vertices in simplexj
by the vertices from simplexi;

end if

if mod(t,k) = 1 then
A fraction (pa) of the worse simplex are abandoned
and new ones are built;

end if
Keep the best solutions/nests;
Rank the solutions/nests and find the current best;

end while
The initial simplexes are generated around randomly

selected points, with a relatively small sizes. We use a
slight modification of the approach for generating
simplexes proposed by L. Pfeffer, which is also used in
MatLab implementation of NMS [32]. A simplex△ with
verticesxi is generated around a vertexa = (a1,a2, ..,an).

All of the coordinates ofxi are equal to the ones ofa
except the one on positioni, which is calculated as

x = ai +αai (11)

In Eq. 11 x represents the value ofxi at positioni. α
is a random parameter that is used generate simplexes of
different sizes. In our test the best results where achieved
whenα had a uniform distribution inside of the interval
(0,0.25)

As it has been previously mentioned, the flip
operation is simply used instead of the Levy flight, as it
can be seen in the pseudo code. The substitution of nest of
lower quality is done by coping some of the vertices of
the lowest quality by some of the high quality ones from
the better simplex.

At this stage, there are two important details that must
be pointed out. First, the best vertex from the higher
quality nest (simplex) is not used because this would
make the search focus very quickly. If the other high
quality vertexes are used, the search focuses towards good
solutions but still remains diverse. This stage has two
possibilities, either a relatively random search of the
space in the direction of the higher quality nest if the
simplexes are distant or a wider search around the good
solution if the simplexes are close to each other. The
algorithm has two parametersk and p that are used for
fine tuning of the method. The part of vertexesp that
should be overwritten is dependent on the number of
parameters of the function that we wish to minimize. In
our experiments, it has been shown that for functions with
a low number of parameters, the valuep = 1 vertices is a
good choice. In general, if this number is too low the
search needs many steps to actually move to the region of
good solutions, and contrary if it is two large this
movement is too fast. The second tuning parameterk is
used to specify how randomized the search will be, or in
other words, how frequently new random nests will be
generated. In our test it has been shown that havingk
equal to two times the number of nests is a good choice.

4 Experiments and Results

In this section, we present results of using the new
method to optimize two sets of problems. The first test are
conducted on standard benchmark test functions and
compared to previously published results [30]. More
precisely, we have compared our method to the
hybridizations of NMS with PSO and NMS with GA on
problems of 3-10 parameters. Since PSO and GA are
methods that often competing methods CS, this gives us a
good evaluation of the new hybridized method.

To fully evaluate the effect of the proposed
hybridization of the CS, in the second section we present
a comparison to other version of the CS. In the final part
of our tests, we analyze the performance of the new
method on a practical problem of optimization of
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multijunction and split spectrum solar cells. We have
tested the effectiveness of our method for systems with a
3-10 different cells of both types. To be able to have a
quantitative evaluation of the new method, it has been
compared to NMS, simulated annealing and GA.

The method has been implemented by creating code
using MatLab R2013a. The calculations have been done
on a machine with Intel(R) Core(TM) i7-2630 QM CPU
2.00 GHz, 4GB of DDR3-1333 RAM, running on
Microsoft Windows 7 Home Premium 64-bit.

4.1 Comparison to other Hybridizations of NMS

In our first group of test, we compare the performance of
the new method to hybridization of NMS with two other
population based meta heuristics, GA and PSO. Test has
been done on 10 different test functions as presented by
Fan et al. [30] and Chelouah and Siarry [22] where their
definitions can be found. Tests for functions with two
variables have been done for the Branin RCOC (RC), B2,
Goldstein and Price (GP), Shubert (SH), Zakharov (Zn);
with three variables Hartmann (H3,4), and with four
variables on the ShekelS4,3. The test has also been done
on the Rosenbrock (Rn) function for 2, 5 and 10
parameters. For each of the test functions, 100 runs of the
NMS-CS algorithm have been done with different initial
simplex positions similarly to what is done in article [30].
In the two competing algorithms the initial vertices are
randomly selected inside of the specified search domain,
while in the case of the proposed hybridization these
vertices are used for generating the initial simplixes using
the method presented in the previous section. In the
results section of the mentioned article, ”successful” runs
are defined for solutions that have a certain level of
precision. We have excluded this measure from the results
given in Table 1, since our method has had a 100
successless runs for each of the 10 test functions; as it had
been the case with NMS-GA and NMS-PSO given in
[30]. In our test, we have used the same stopping criteria
as in article [30] or when a high enough precision is
reached. The stopping criterion is given in the following
equation

S f =

√

N

∑
i=1

f (xi)− f < ε (12)

Where f = 1
N+1 ∑N

i=1 f (xi) is the average of the bestN
solutions. This criterion is based on the standard deviation
of the objective function values overN best solutions.The
chosen value forε = 10−7. In the case of the previous
published workN was equivalent to one third of the
population. In the case of the proposed methodf(xi)
would represent the best solution inside of simpexi, and
consequently we would only observe the best third (N)
simplexes.

The NMS-CS has used 6 nests for all the test
functions exceptR10 where it was 20. This is lower then

the recommended 25 nests for the CS which is used in a
wide range of articles. We believe that NMS-CS has
achieved the best results when using a much smaller
number of nest due to fact that it uses the NMS flip
operation to narrow in on solutions. We can see the
comparison of the three methods in Table1 It is observed
that the new method manages to outperform NMS-GA.
This confirms the conclusion form article [30], that
combining NMS with swarm intelligence methods is
more beneficial than with genetic algorithms. It is
apparent that the new method has a very similar
performance to NMS-PSO when the number of iterations
is considered, but overall the new method manages to get
slightly higher quality of results. More precisely the new
method has managed to get clearly better results, in both
the number of iterations and achieved precision, in four
out of ten cases. Due to the definition of benchmarks tests
that have been previously published, to which we have
made a comparison to, it was not possible to strictly
conclude which method was the best preforming in the
rest of the cases but it can be said that the performance of
NMS-PSO and NMS-CS was very similar. It is important
to point out, that the new approach is much simper to
implement compared to the other two hybridizations of
NMS.

4.2 Comparison to other versions of Cuckoo
Search Algorithms

To evaluate the performance of the proposed
hybridization of the CS, a comparison to other versions of
the CS has also been conducted. More precisely the new
method has been compared to the original CS algorithm
proposed by Yang (Yang) [12] and the modified version
of the algorithm proposed by Walton (MCS) [15]. The
comparison has been conducted on the benchmark
functions used at the CEC 2013 [33]. The benchmark
instances are divided into 3 groups, functions 1-5 are
unimodal, 6-20 are multimodal and functions 21-28 are
composite functions generated using the three to five of
the functions of the two first groups. The three methods
have been compared for test functions having 2, 5 and 10
dimensions. The numerical experiments have been done
using the code made available by the authors of the two
competing methods [34,35]. The code for the proposed
method has been made available at the Mathworks
website
(http://www.mathworks.com/matlabcentral/fileexchange/
46789-nelder-mead-hybridization-of-cuckoo-search)

For each of the algorithms 50 independent runs have
been performed for each of the test functions. We
observed the average and best found solution find for the
50 runs, with a fixed number of fitness function
evaluations. In case of 2, 5 and 10 dimensional functions,
a maximum of 2000, 5000 and 20000 function
evaluations was allowed. To better evaluate the
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Table 1: Comparison of population based hybridizations of the NMS algorithm on standard benchmark functions. The best results have
been underlined.

Test
Function

NMS-GA NMS-PSO NMS-CS

Num.
Eval.

Avg. Error Num.
Eval.

Avg. Error Num.
Eval.

Avg. Error

RC 356 4.0e-5 230 1.0e-4 269 2.1e-5
B2 529 4.0e-5 325 1.0e-5> 132 1.0e-5>
GP 422 2.0e-5 304 3.0e-5 313 2.4e-5
SH 1009 2.0e-5 753 3.0e-5 569 2.0e-5
R2 738 6.0e-5 440 5.0e-5 473 2.1e-5
Z2 339 4.0e-5 186 1.0e-5> 150 1.0e-5>
H3,4 688 5.0e-5 436 1.2e-4 418 5.0e-4
S4,5 2366 1.6e-4 850 6.0e-5 1125 2.8e-5
R5 3126 9.0e-5 2313 4.0e-5 1504 3.1e-5
R10 5194 2.0e-4 3303 1.2e-4 2621 2.2e-4

performance of the methods the best, worst, average and
standard deviation of the generated solutions is presented.
To have the a fair comparison we have done extensive fine
tuning of the parameters that specify the two algorithms
for problems of these sizes through a large number of
tests, of course this was also been done for the proposed
method. The number of nests used for the Yang’s and the
new algorithm was 6, 10 and 25 for test functions of 2, 5
and 10 dimensions. In case of MCS, doubling the number
of the nest for each of the dimension has shown to give
the best results. This is due to the fact that MCS only uses
a high number of nest in the early steps of the algorithm.
To evaluate the effectiveness we The results of these
experiments are given in Tables2, 3, 4.

In these tables the value MP means that the maximal
precision of MatLab has been reached. From observing
the results in Tables2, 3 and4 it is noticeable that the new
method has the greatest advantage when compared to the
two other methods in the case of uni-modal functions.
Generally the hybridization using NMS is most
advantageous in a general slope towards the global
minima. These two positive effects correspond to the use
of the incorporation of the NMS algorithm. The flip
operation in a certain, loosely defined, sense
approximates the gradient of the function. This flip
operation gives two effects in the hybridized algorithm. In
case of large simplexes, which are created using the
mixing of nests global tendencies of the function are
included in the search. On the other had, in the case of
small ones, the flip operation makes it possible to quickly
converge to the nearby local or global optimal solution.

The method has had a better performance in the case
of functions of 2 and 5 dimensions. When it is compared
to the original CS algorithm it presents a significant
improvement. It has managed to get lower values for
average and minimal solutions, for many test functions,
compared to Yang’s algorithm. The proposed method has
lowered the performance of the original algorithm in only
a few problem instances. This is contrary to the MCS,

Fig. 2: The general concepts of multijunction solar cell systems
where the dots are the collection (injection) points.

which is an overall improvement to the basic algorithm,
but has for a wide range of test functions achieved worse
results than the original CS algorithm. It is evident that
the new method has a less consistent behavior that two
competing versions of CS. This can be concluded when
we observe the results presented in the Tables2, 3 and4,
where the methods has a much higher number of best
found minimal solutions than average ones.

4.3 Multi-cell solar system optimization

In this section, we applied the presented method to the
practical problem of optimizing the performance of
multi-cell solar systems and mainly on multi-junction and
split spectrum solar cells. Finding the optimal efficiency
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Table 2: Comparison of different CS algorithms for benchmark functions with two dimensions. The best results have been underlined.

Yang MCS NMS-CS
Min Avg Std Min Avg Std Min Avg Std

f1 0.0e+0 MP MP 3.6e-10 2.5e-5 4.5e-5 MP MP MP
f2 2.9e-7 8.5e-2 3.4e-1 3.2e+0 1.5e+3 2.2e+3 MP MP MP
f3 1.4e-6 1.6e+2 1.1e+3 6.5e+0 1.1e+3 1.2e+3 MP MP 3.2e-14
f4 6.0e-8 1.6e-3 3.5e-3 1.1e-1 2.0e+3 3.3e+3 MP MP MP
f5 MP MP MP 3.7e-7 4.9e-4 7.1e-4 MP MP 3.7e-14
f6 8.0e-13 2.1e-3 1.1e-2 6.5e-9 1.1e-2 2.4e-2 MP MP MP
f7 8.6e-7 3.0e-3 6.9e-3 1.0e-3 2.2e-1 4.8e-1 8.1e-10 2.0e-2 6.4e-2
f8 2.1e-6 5.4e+0 7.4e+0 1.0e-3 1.0e+0 3.4e+0 8.0e-137.2e-1 3.4e+0
f9 1.3e-4 1.6e-1 2.5e-1 7.5e-4 8.8e-2 1.4e-1 MP 4.9e-2 1.9e-1
f10 9.6e-5 2.7e-2 2.1e-2 7.4e-3 4.3e-1 5.1e-1 MP 2.6e-2 2.8e-2
f11 MP 1.8e-1 6.3e-1 3.5e-9 1.5e-1 3.6e-1 MP 1.8e-1 3.9e-1
f12 5.7e-14 2.6e-1 4.7e-1 1.7e-6 9.0e-1 4.6e-1 MP 2.9e-1 4.5e-1
f13 MP 3.7e-1 8.8e-1 2.5e-7 1.7e+0 1.2e+0 MP 5.4e-1 9.6e-1
f14 2.4e-8 1.1e+0 3.3e+0 5.3e-7 1.4e+0 4.0e+0 MP 1.6e+1 3.3e+1
f15 7.3e-5 1.8e+1 3.1e+1 9.9e-5 1.2e+1 2.3e+1 MP 1.5e+1 2.6e+1
f16 1.2e-1 9.5e-1 5.7e-1 1.3e-1 8.2e-1 4.3e-1 MP 6.2e-3 3.8e-2
f17 2.4e-5 1.1e+0 8.2e-1 4.9e-5 1.3e+0 1.0e+0 MP 1.6e+0 9.7e-1
f18 1.4e-1 1.6e+0 8.2e-1 1.3e-4 1.4e+0 1.1e+0 MP 1.7e+0 9.4e-1
f19 MP 8.4e-3 1.4e-2 1.3e-9 4.7e-2 4.4e-2 MP 1.3e-2 2.0e-2
f20 4.3e-6 3.5e-2 1.2e-1 1.9e-2 4.0e-2 3.4e-2 MP 3.4e-2 4.6e-2
f21 1.3e-12 3.8e+1 7.3e+1 7.0e-4 4.3e+0 2.0e+1 MP 5.8e+0 2.3e+1
f22 2.9e-11 1.2e+1 3.0e+1 6.6e-5 1.8e+1 3.4e+1 1.1e-13 4.7e+1 4.5e+1
f23 1.6e-8 7.9e+1 9.8e+1 1.8e-3 1.0e+2 2.8e+1 MP 6.2e+1 6.7e+1
f24 1.3e-8 1.0e+1 2.3e+1 4.0e-4 8.2e+0 9.0e+0 MP 7.9e+0 1.5e+1
f25 2.7e-9 4.5e+1 4.9e+1 1.7e-3 3.2e+1 4.3e+1 MP 4.0e+1 4.8e+1
f26 1.6e-9 5.6e+0 2.0e+1 4.8e-6 1.7e+0 4.8e+0 MP 1.3e+0 3.4e+0
f27 3.6e+0 1.5e+2 8.9e+1 7.9e-2 8.9e+1 4.8e+1 8.5e-1 7.9e+1 4.9e+1
f28 2.1e-10 4.0e+1 9.3e+1 1.0e-2 2.7e+1 4.3e+1 MP 3.2e+1 4.7e+1

Fig. 3: The general concepts of split spectrum solar cell systems,
where the dots are the collection (injection) points.

of such cells is of high complexity due to the fact that the
underlining equations are highly nonlinear. Previously,
research has been conducted in finding limits for different
mathematical models.[36,37] These problem of finding
the In multi-junction solar cells, few cells of different
energy gaps (Eg) are stacked in layers where in between
buffer layers are used to allow transporting the
photogenerated carriers between the cells. This type of
cells is schematically represented in Figure-2 and it is
conceptually a two-terminal system with a series stack of
two-level cells. AsEgs differ, each layer (or cell) abosrbs

a portion of the incident solar radiation (i.e. for
photonenergy above the layerEg). Other photons are
transimited to the next layer. This selective
absortion/transmission is the mean for spectrum division.

Split spectrum solar cell system, follow a different
approach. In this system, the idea is to split solar radiation
by a pre-optical setup and then direct each of the split
spectrum into a cell with matchingEg. We can see an
illustration of this type of cells in Figure-3.

Practically, there are few differences between the two
concepts. The main difference is current continuity. In
split-spectrum system, the photogenerated carriers are
collected separately for each cell. So, there is no physical
constraint in this regard. However, in multi-junction cells,
the photogenerated current from ny cell should be
reinjected in the next one. Hence, it is essential to
maintain the continuity.

There have been several strategies to estimate the
practical efficiency limits of cells of this type. Estimating
the upper limit for multi-cell devices such as
multi-junction and split spectrum, can be achieved by
extending the single junction model [38,39,40,41]. In
this work, we use the detailed balance model develop by
Hanna and Nozik [39,40].
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Table 3: Comparison of different CS algorithms for benchmark functions with five dimensions. The best results have been underlined.

Yang MCS NMS-CS
Min Avg Std Min Avg Std Min Avg Std

f1 MP MP MP 5.3e-6 3.9e-3 1.7e-2 MP MP MP
f2 1.0e+1 6.9e+2 1.6e+3 5.5e+2 1.4e+5 1.6e+5 9.1e-102.8e-4 1.4e-3
f3 1.2e+0 1.3e+5 5.4e+5 1.9e+2 3.5e+6 1.2e+7 5.2e-6 4.0e+3 2.2e+4
f4 1.7e+0 8.8e+1 1.5e+2 3.0e+2 3.8e+3 2.4e+3 1.1e-101.3e-3 8.2e-3
f5 1.1e-13 9.3e-12 1.6e-11 4.7e-2 7.0e-3 9.5e-3 4.9e-9 2.6e-6 5.1e-6
f6 2.7e-5 5.6e-1 6.6e-1 1.1e-3 1.7e+0 1.9e+0 1.1e-13 1.2e+0 1.8e+0
f7 2.6e-2 6.7e-1 7.0e-1 4.6e-1 1.1e+1 1.2e+1 4.7e-2 4.6e+0 6.2e+0
f8 4.6e+0 2.0e+1 2.2e+0 2.6e+0 1.8e+1 5.3e+0 1.5e-1 1.9e+1 4.8e+0
f9 2.3e-1 1.7e+0 5.8e-1 4.6e-1 1.7e+0 6.3e-1 8.0e-2 1.6e+0 6.6e-1
f10 9.3e-2 2.5e-1 9.0e-2 3.7e-1 6.6e+0 7.3e+0 1.4e-8 8.7e-2 5.5e-2
f11 1.2e-5 1.2e+0 9.3e-1 5.0e-4 1.8e+0 1.0e+0 9.9e-1 5.6e+0 3.7e+0
f12 1.2e+0 5.3e+0 2.1e+0 1.5e-1 7.9e+0 4.8e+0 2.9e-115.1e+0 3.7e+0
f13 1.1e+0 7.0e+0 3.7e+0 1.0e+0 1.4e+1 6.6e+0 9.3e-10 9.2e+0 4.8e+0
f14 1.2e+1 1.2e+2 7.7e+1 3.9e-1 5.6e+1 6.1e+1 7.2e+0 3.5e+2 1.6e+2
f15 6.7e+1 3.5e+2 1.1e+2 7.1e+0 1.9e+2 1.1e+2 6.8e+0 2.7e+2 1.6e+2
f16 6.5e-1 1.2e+0 3.1e-1 3.8e-1 1.0e+0 3.6e-1 7.6e-4 2.9e-1 2.1e-1
f17 2.9e+0 9.5e+0 2.0e+0 1.7e-1 6.9e+0 1.9e+0 3.0e+0 9.7e+0 3.1e+0
f18 3.4e+0 1.3e+1 3.0e+0 4.3e+0 1.2e+1 3.2e+0 1.9e+09.1e+0 2.8e+0
f19 1.4e-1 4.3e-1 1.5e-1 2.1e-2 5.2e-1 3.9e-1 2.0e-2 3.2e-1 1.6e-1
f20 2.7e-1 1.1e+0 3.0e-1 2.5e-1 1.1e+0 3.4e-1 2.9e-1 1.4e+0 6.2e-1
f21 1.0e+2 1.9e+2 9.8e+1 1.0e+2 2.7e+2 7.4e+1 3.5e-5 2.2e+2 1.1e+2
f22 1.6e+2 3.3e+2 9.8e+1 2.3e-1 2.4e+2 1.3e+2 1.4e+2 6.0e+2 1.8e+2
f23 1.4e+2 5.7e+2 1.3e+2 7.5e-1 4.5e+2 1.7e+2 1.1e+2 5.5e+2 1.9e+2
f24 4.8e+1 1.3e+2 3.9e+1 9.1e+1 1.2e+2 9.7e+0 3.3e+11.2e+2 3.0e+1
f25 1.0e+2 1.2e+2 2.3e+1 1.1e+2 1.2e+2 9.3e+0 1.0e+2 1.2e+2 1.6e+1
f26 1.5e+1 1.0e+2 2.4e+1 5.1e+1 1.1e+2 1.3e+1 9.8e+0 1.0e+2 3.2e+1
f27 3.0e+2 3.5e+2 2.0e+1 3.1e+2 3.5e+2 2.4e+1 3.0e+23.4e+2 2.5e+1
f28 1.0e+2 2.5e+2 8.4e+1 1.0e+2 3.2e+2 6.4e+1 3.8e+1 2.8e+2 8.7e+1

In both multi-junction and solar cell, the spectrum is
ideally split based on theEgs of the different cells. ForN-
cell system where the gaps are ordered ascendingly, the
photogenerated generated current in the ith cell is

J(i)g = q
∫ E(i+1)

g

E
(i)
g

φ(E)dE (13)

q is the electron charge, andE is photon energy (ineV ),
andφ(E) is the standard AM1.5G flux. For the last cell,
the upper limit is∞. In the ideal case, it is assumed that
radiative recombination is the only cause for
recombination. So, the recombination current is
calculated based on the generalized black body radiation
as follow

J(i)r = qa
∫ ∞

E(i)
g

E2

exp
(

E−γ(E)V (i)

kT

)

−1
dE (14)

Hence, the resulted overall generated current in the ith cell
is

J(i) (Eg,V,T ) = J(i)g − J(i)r (15)

Then for each cell, the conversion efficiency becomes

η(i)
(

V (i)
)

=
V (i) J(i)

Pin
(16)

In split spectrum cells, the photogenerated current is
extracted separately for each cell. So, the total efficiency
is

η(SS) = ∑
i

η(i) =
1

Pin
∑

i
V (i) J(i) (17)

For multi-jucntion, it is necessary to have the
photogenerated current flow from one cell to the other
before extracted in the external terminals. This series
connection requires that the current must be the same in
all of them and it is equal to the lowest current achieved
in any of the cells. This fact resulted in changing the total
efficiency to

η(MJ) = ∑
i

η(i) =
1

Pin
Jmin ∑

i
V (i) (18)

The goal of the optimization is to maximizeη and hence
for practical application, we are actually minimizing the
value 1−η(MJ).
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Table 4: Comparison of different CS algorithms for benchmark functions with ten dimensions. The best results have been underlined.

Yang MCS NMS-CS
Min Avg Std Min Avg Std Min Avg Std

f1 1.6e-10 1.3e-9 1.3e-9 2.4e-5 2.1e-3 6.0e-3 6.8e-133.3e-10 7.0e-10
f2 1.4e+5 5.4e+5 3.4e+5 5.8e+5 3.4e+6 1.7e+6 1.2e-2 1.9e+2 8.6e+2
f3 7.7e+8 8.1e+40 5.7e+41 4.0e+6 2.6e+8 3.4e+8 3.7e+01.1e+5 4.3e+5
f4 2.4e+3 8.3e+3 4.5e+3 4.9e+3 9.8e+3 2.8e+3 1.7e-5 3.8e-1 1.5e+0
f5 5.5e-7 3.2e-6 2.5e-6 5.1e-4 1.4e-2 3.2e-2 5.2e-5 5.9e-4 6.0e-4
f6 2.5e-1 6.0e+0 4.2e+0 5.0e-2 3.2e+1 3.2e+1 5.1e-10 6.4e+0 4.6e+0
f7 7.6e+0 2.5e+1 9.9e+0 1.7e+1 5.0e+1 2.2e+1 5.0e+0 3.4e+1 2.0e+1
f8 2.0e+1 2.0e+1 8.6e-2 2.0e+1 2.0e+1 1.0e-1 2.0e+1 2.0e+1 8.6e-2
f9 4.0e+0 6.6e+0 1.0e+0 3.5e+0 5.7e+0 1.1e+0 2.7e+05.2e+0 1.5e+0
f10 2.3e-1 6.1e-1 1.4e-1 1.2e+0 7.2e+0 6.0e+0 1.2e-7 3.1e-2 3.5e-2
f11 4.0e+0 1.4e+1 4.1e+0 1.4e-4 3.5e+0 4.3e+0 4.0e+0 1.6e+1 6.9e+0
f12 9.3e+0 3.0e+1 7.4e+0 8.1e+0 2.5e+1 1.1e+1 3.0e+01.5e+1 6.5e+0
f13 1.3e+1 3.2e+1 9.2e+0 1.1e+1 3.6e+1 1.4e+1 1.4e+1 3.1e+1 1.1e+1
f14 3.8e+2 1.0e+3 2.5e+2 7.0e+0 2.2e+2 1.2e+2 3.6e+2 1.0e+3 3.0e+2
f15 7.6e+2 1.4e+3 2.2e+2 2.0e+2 7.1e+2 2.3e+2 2.2e+2 9.0e+2 3.2e+2
f16 3.6e-1 1.4e+0 3.2e-1 5.5e-1 1.1e+0 2.4e-1 1.4e-1 5.7e-1 2.8e-1
f17 2.1e+1 3.7e+1 6.9e+0 4.5e+0 1.6e+1 4.2e+0 1.2e+1 1.9e+1 4.3e+0
f18 3.2e+1 4.8e+1 5.9e+0 2.1e+1 3.6e+1 7.3e+0 1.3e+12.1e+1 5.7e+0
f19 9.8e-1 2.2e+0 4.7e-1 3.0e-1 1.1e+0 4.6e-1 3.2e-1 8.8e-1 3.1e-1
f20 3.1e+0 3.5e+0 2.2e-1 2.2e+0 3.5e+0 4.5e-1 2.6e+0 3.6e+0 4.5e-1
f21 1.0e+2 2.0e+2 1.0e+2 3.0e+2 4.0e+2 1.4e+1 2.0e+2 4.0e+2 2.8e+1
f22 3.4e+2 1.0e+3 2.4e+2 3.2e+1 2.7e+2 1.5e+2 6.0e+2 1.3e+3 3.0e+2
f23 7.1e+2 1.5e+3 2.3e+2 2.9e+2 1.1e+3 2.9e+2 6.2e+2 1.3e+3 2.9e+2
f24 1.5e+2 1.9e+2 2.4e+1 1.2e+2 2.0e+2 3.7e+1 1.1e+2 2.2e+2 1.5e+1
f25 1.7e+2 2.2e+2 7.5e+0 1.2e+2 1.9e+2 3.4e+1 1.7e+2 2.1e+2 8.2e+0
f26 1.3e+2 1.6e+2 1.9e+1 1.1e+2 1.4e+2 2.7e+1 1.1e+2 1.8e+2 5.6e+1
f27 4.3e+2 5.3e+2 3.4e+1 3.4e+2 4.5e+2 6.1e+1 3.0e+24.4e+2 8.8e+1
f28 1.0e+2 2.6e+2 8.3e+1 1.0e+2 5.7e+2 2.3e+2 1.0e+2 4.1e+2 1.8e+2

In the experiments, the performance of the new
method is compared with NMS, SA and GA for split
spectrum and multi-junction solar cells. The tests are
conducted for solar cells that have 4 to 10 layers. For each
of the problem sizes, we have compared the quality of
results that can be archived using 1500 function
evaluations. For NMS, SA and GA, methods that are a
part of the MatLab toolbox are used. We have fine

For the SA and the GA we have conducted a large
number of tests on the smallest problem sizes to fine tune
the parameters available in Matlab for defining these
methods. When specifying the properties of the SA, we
found that the optimal initial temperature for the
optimization algorithm was 100.The temperature function
used was set with the Matlab parameter
TEMPERATUREEXP, in which the temperature at any
given step was 0.95 times the temperature from the
previous one. The reannaling interval was set to 100, the
step has length square root of temperature, as defined by
the Matlab parameter value ANNEALINGBOLTZ. In
case of GA the population size was set to 15 out of which
2 where consider as elitist. The Crossover fraction was set
to 0.8. The mutation was set by the Matlab parameter

value MUTATIONUNIFORM, which correspond to
selection rate of 0.01.

From physical properties of the problem, it is known
that Eg values should belong to the domain(0,4). Solar
radiation vanishes for photon energy above 4eV . For the
problem of interest, it is known that high quality solutions
can be found close toEg values that equally divide the
photogenerated carriers or if the corresponding voltages
are equably divided in the expected range. In case of
NMS, the search is started using 10 different starting
points, out of which 2 correspond to the parameter values
close to which it is expected to find good solutions and 8
random selection of parameters. In case of SA, only two
starting points for which the highest quality of solutions is
expected. We have used the same parameter sets as for
NMS and 5 new random ones for the initial population. In
case of NMS-CS, the same initial points as for GA have
been used to generate the starting 15 nests (simplexes).

The calculation time for all of the methods was very
similar due to the fact that the evaluation of the efficiency
function is the most computationally expensive part.
Because of the long execution time, only a single run has
been conducted, in the sense that 1500 function
evaluations have been done, for each of the methods. In
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Table 5: Comparison of different meta heuristics for Split SpectrumSolar Cells. The best results have been underlined.

Number of cells NMS SA GA NMS CS

3 51.348 50.876 51.351 51.351
4 55.387 53.562 55.105 55.396
5 57.633 55.419 57.630 57.790
6 59.110 58.594 59.006 59.658
7 60.290 59.553 60.419 60.706
8 61.247 60.228 61.315 61.618
9 61.871 61.075 62.066 62.596
10 62.350 61.517 62.451 63.296

Table 6: Comparison of different meta heuristics for multijunctionsolar cells. The best results have been underlined.

Number of cells NMS SA GA NMS CS

3 50.961 50.548 50.719 51.003
4 54.533 53.243 53.801 54.558
5 56.183 55.086 52.141 56.610
6 57.848 56.470 57.363 58.078
7 59.714 58.556 59.423 59.732
8 59.576 58.949 60.218 60.140
9 60.619 59.073 60.896 59.051
10 61.098 59.634 61.461 61.231

table 5 and 6 we can see the results acquired for split
spectrum and multijunction solar cell respectably.

In the case of calculating the efficiency of split
spectrum solar sells, the use of SA has given results of
lower quality than the other methods. NMS manages to
get better results than GA in case of smaller problem
instances, which can be explained by the fact that the
smaller size of the solution space, make a local search
method more effective. In all of the tested cases, NMS CS
has managed to produce the results of the best quality.

In case of multi junction solar cells, where the
minimization problem becomes more complex due to the
existences of constraints, similar results have been
achieved. Although results are less conclusive, since only
one test run has been performed, which can make the
choice of the random seed influence the performance of
the different methods. An example of this are the
performance of GA and NMS CS in the case of 5 and 9
cells respectably, where the found efficiency is much
lower than expected. We believe the reason for this is that
the method has been trapped in a strong local minima.
The new method has achieved better quality results in
case of smaller problem instances, but has been slightly
outperform by GA in case of the 3 problems of the
greatest size. It is important to point out, that hybridized
method has improved the performance of NMS in all but
the one extreme case.

5 Conclusion

In this paper, we have presented a new method for the
minimization of multi-parameter functions, with the focus
on its application for the maximization of efficiency of
multi-cell solar systems. The method is a hybridization of
the CS with NMS algorithm. The new approach
incorporates some fundamental parts of the NMS into CS.
More precisely, it uses simplexes for nests in the CS,
which makes it possible to use the NMS flip operation
instead of the Levy flight. In this way, the good properties
of NMS, as a local search, are preserved while the new
methods manages to also conduct a effective exploration
of a larger solution space. In comparison to the original
CS algorithm, the hybridized approach becomes more
capable for finding high quality solutions since it is
combined to a local search method. A second advantage
of the new method is the higher level of robustness, since
it avoids using some tuning parameters that exist in CS.

The new approach has been tailored for the specific
problem of solar cell optimization. Although the function
corresponding to this problem has a relatively low
number of parameters 3-10, the complexity comes from
the fact that the its evaluation is computationally
expensive. In our experiments, we have shown that the
new approach manages to outperform NMS, GA, and SA
for this problem. To better evaluate the new method we
have also compared its performance to other
hybridizations of NMS using population based meta
heuristics like GA and PSO. We have shown that the new
method is very competitive, and in many cases
outperforms, these algorithms on standard benchmark
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functions. One of the main advantages of the new method
is its simplicity of implementation, especially if it is
compared to other hybridizations of this type.
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