Appl. Math. Inf. Sci.10, No. 3, 1081-1090 (2016) %N =¥\ 1081

Applied Mathematics & Information Sciences
An International Journal

http://dx.doi.org/10.18576/amis/100326

Generalized Order Statistics with Random Indices in a
Stationary Gaussian Sequence

Haroon M. Barakat*, El-Sayed M. Nigm and Esraa O. Abo Zaid

Department of Mathematics, Faculty of Science, Zagazigéisity, Zagazig, Egypt

Received: 24 Oct. 2015, Revised: 25 Jan. 2016, Acceptecar2@016
Published online: 1 May 2016

Abstract: Inthis paper we study the limit distributions of extremeéemmediate and centrat-generalized order statistics (gos), as well
asm-dual generalized order statistics (dgos), of a statio@ayssian sequence (sGs) under equi-correlated set up,tidneandom
sample size is assumed to converge weakly. Moreover, thdt tfextremes is extended to a wide subclass of gos (as welbas)
which contains the most important models of ordered randamnables (rv's).
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1 Introduction their density function (pdf)
, . o . f(Mk) (x Xn)
In testing the strength of materials, reliability analysis 12,..,nn\ L e 20

lifetime studies, etc., the realizations of experimenisear ne1 n-1 n
in nondecreasing order and therefore we need to consider k([ yi.n) ([ (1= F(x)™)(L—F ()< (7 (%)),
several models of ascendingly ordered rv’s. Kamp§ [ i':l . iEl I " iEl I

introduced the concept of gos as a unification of several . -1
: n the cone {(X1,...%n) : X = F77(0) < xx < ...
models of these ascendingly ordered rv’s. <% < F*l(l){i ;o}. -Fr)]e parametert(yl)n - i/n;are

Theoretically, many of the models of ascendingly jefined byn = k > 0 andygn = k+n—s+Ms > 0
ordered rv's are contained in the gos model, such ag _ 12 "' _ 1 where M — (M,mp ... mn_l)’
ordinary order statistics (oos), order statistics with T ’ ’ ’ i
non-integral sample size, sequential order statistics)(so .
record values, Pfeifer's record model and progressive typdt = M2 = - =Mh-1 =m(i.e.,)sn =k+(n—s)(m+1),

Il censored order statistics (pos). These models can bg~, 1,2,..,n—1) we geta_W|de subclass of gos, which is
applied in reliability theory. For instance, tinth extreme called _M-gos, and - write X(s,n, m, k) instead of
order statistic represents the life-length of some r-det-o  X(S:0:fM.k). The class ofn-gos contains oos—records,
system, whereas the sos model is an extension of the 00S) orde_r statistics with non-integer sample size and pos,
model and serves as a model describing certainVith SPecial censoring schemes. ,
dependencies or interactions among the system _'\asri-Roudsari 1§ (see, also Z]) has derived the
components caused by failures of components and the pd?ar;gk'”al df of thesth m—gos, m # —1, in the form
model is an important method of obtaining data in ol (x) = lgnx (SN — s + 1), where Gm(x)
lifetime tests. Live units removed early on can be readily= 1 — (1 - F(x))™?! =1 — |:_m+1(x), N = ﬁ +n-1
used _in other tests, thereby saving cost to theandlx(a, b) = -+ [Xt31(1—t)>-1dt is the incomplete
experimenter. B(ab) Jo

Ms = 3iem; and my,..my € 0O If

The concept of qos enables that known results inbeta ratio function. By using the well-known relation
P 9 Ix(a,b) =1—Ix(b,a), wherex= 1— x, the marginal df of

submodels can be subsumed, generalized, and integrat B - P .

within a general framework. Inl[7/] gos were introduced (em‘k()n s+ Dth m-gos, m # —1, is given by
via a distributional approach. Namely, the gos Pnsi1n®) = leux(N — Rs + LRs),  where
X(1,n,m k), X(2,n,MK),..., X(n,n,M k) are defined by Rs= m%l +s— 1. The possible non-degenerate limit df's
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and the convergence rate of the upper extremgos, are  situations where the sample sirein X(s,n,m k) and
discussed in19]. The necessary and sufficient conditions X4(s,n,m,k) is a rv v, following a given distribution
of the weak convergence, as well as the form of thefunction (df). The rv's X.,, = X(1,v4,0,1) and
possible limit df’s, of extreme, intermediate and central Xy,.y,, = X(Vn, Vn,0,1) arise naturally in reliability theory
m-gos are derived inZ). as the lifetimes of series and parallel systems,
Burkschat et al.§] introduced the concept of dgos to respectively, with v, identical components having
enable a common approach to descendingly ordered rv'$ifetimes Xy, Xp, ..., Xy,. Also, the rvXy.,, arises naturally
like reversed order statistics and lower records modelsin transportation theory as the accident-free distance of a
The dgos Xqg(1,n,m k), Xg(2,n,MK),...,Xg(n,n,mKk) shipment of, say, explosives, wheng of them are

based on a df are defined by their pdf defective, which may explode and cause an accident after
) X1, X2,..., Xy, Mmiles, respectively (cf. 40). If one
ff(2m7k)n-n(xl7~.~,xn) introduces the random sample size as an extension of a

model (mainly for statistical inference), one can usually
n—-1 n—-1 n assume that it is independent of the underlying variables.
=K( rl Yin)( rl (F(xi))m)(F(xn))k‘l(rlf(xi)), Many authors considered the limit theory of oos with
i= i= i= random sample sizes whep = 0 (i.e., in the iid rv's
case) and/, is independent of the basic rv's, where, the
df of *» converges weakly to a non-degenerate df. Among
-~ those authors ard [7,12,14,15]. Vasudeva and Moridani
X(sn,mk) and thdﬁ%“ppemdgosx(” stLnmMK) o studied the limit df ofsth maxima of 0086, . in the
in the forms ®sn ™ (x) = If0(N —s+1,8) and  sGs @), under a restrictive condition that the random
@d(mk) (X) = I7,0 (Rs; N — Rs + 1), respectively, where correlation ry, converges in probability to a positive

—s+1: Pl . .
Tn:(x) :nF M1 (x), constant or infinity. The most recent contribution relevant

Let X1,Xs,...,%, be a Gaussian sequence with zero to this topic is P2, ir_1 which it.is obtained t_he limit
expectation, unit  variance and correlation th_eorems for_the maxima of stationary Gaussian process,
rn=E(XiXj) >0, i # j. This sequence can be replaced, with random index.
by the sequenc; = /i Yo+ vI—TnY;, 1< j <n, for In Sec,tlon 2, we study the upper (or lower) extreme
the iid standard normal variate,Y;. ....Y,. Moreover, M90S X(8(Vn),Vn, M.K) = X(vn — s+ 1,vn,mk) (or
X; =Y;, for r, = 0. Therefore, for any & s < n, we get X(s,,vn,m, k)) and the upper (or lower) extrenmrae-dgos
Xd(S(Vn)avnamak) = Xd(Vn - S+ 17Vn7m7k) (Or

- ra— X4(s,vn,mK)) concerning the sequencd)(and @),
X(snmk) = Yo+ V1-raY(snmk) (1) res(pectively), under mild conditions, where the restricted
condition in R1] is got rid. Some of these results are
extended to a wide subclass of gos, as well as dgos, when
Xa(s,n,mK) = /fn Yo+ /1 —rn Yg(s,n,mkK), 2) the parametersyin,yon,...,}hn are assumed to be
pairwise different. In Sections 3 and 4, we consider the
parallel results for the central and intermediatgos and
m-dgos, respectively.

wherex? = F71(1) > x; > x> ... > %y > F71(0) = xo.
Moreover, we can write the df's ofth lower m-dgos

and

where X(s,n,mKk) (or Xg(s,n,mk)) and Ysn (or

Ya(s,n,m,k)) are thesth m-gos (orm-dgos) based on the
j=n ]=n ;

sequence$X;}j_; and{Y;}j_y, respectively. , Everywhere in what follows the symbols;>, —

A sequence{X(sh,n,mKk)} (or {Xg(sh,n,mK)}) is D n
called a sequence ai-gos (orm-dgos) with variable rank  @nd —» stand for convergence, converge weakly and
if 1 < sy <nands, — «, asn — o. Here, we have the CONVverge in probability, asn — e, ~respectively.
following two distinct cases: Moreover, for everysx > 0, [s(x) = g Jot° e 'dt
stands for the incomplete gamma ratio function, while
[s(x) = 1—TIs(x) denotes its survivor function. Finally,
4 (x) denotes the standard normal df.

1-If & — 0 (or 2 — 1), asn — oo, thenX(s,,n,m k) and
Xq(s,n,m k) are called lower intermediata-gos and
lower intermediatan-dgos (or upper intermediate-
gos and upper intermediatedgos), respectively.

2-f 2 - A (0< A < 1), asn— o, thenX(sy,n,mKk) ) o
andXq(sn,n, m,k) are called centratrgos and central 2 Extreme m-gos (dgos) with random indices
m-dgos, respectively. A remarkable example of thein a sGs
central order statistics is theth sample quantile,

wheres, = [np],0 < p < 1, and[x| denotes the largest The  weak convergence of the sequences
integer not exceeding(see [L1]). {X(é(vn),vn,m,k)fanvm} and {Xd(é(vn),vn,m,k)fan}m} are

. . . . bnm bnm
In Imam%I blologllcal.I agricultural '%Td sohme qu?“tydinvestigated in Theorems (2.1) and (2.2), respectively,
control problems it is almost impossible to have a fixe 11 1
. : wher == —5 loglognmI + log4 n
sample size, because some observations always get lost ere anm = g, — 3bnm (loglogn™ +log4m) and

. =1
for various reasons. Therefore, we often come acrosdnm = (m%llogn)T. Moreover, Theorems (2.3) and
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(2.4) give the corresponding
{X(SVng:r: anm} and {Xd SVm:",':)—én,m}’

whereanm = B_ — Ebn’m(log logn(m+ 1) + log4m) and

respectively,

’ -1
bnm= (2logn(m+1)) 2

Theorem 2.1. Let v, be a sequence of integer valued rv's
independent of Xi,...,X, and P(vh, < X) = Ax(X).
Furthermore,

(A):let An(nx) —>A( ), whereA(+0)
non- degenerate df. Then

(B, ).P( (o) ¥ ) —nm x) L y(x)

= [ HMO (x; 7,2)dA(2), if
(Cy):rnlogn—> 1 > 0, where

=0 andA(x) is a

H™ (x;7,2)
) Tr(ze M) (4 /BELX), T > 0.
My (ze~ (22, T=0,

and (*) stands for the convolution operation. Moreover,
X SI n)svn, ‘k - m H
(By):p (XLl 2um ) W,y (x), f
(C2):rnlogn — o andry is slowly varying function ofn
(see, L6), i.e., for everyf > 0, we get'r”—ne —- 6.

Conversely, if (B) and (G) (with T = 0) hold, then the
relation (A) will be satisfied.
Proof. Let Png = P(vh = q). Then, by the total probability

rule, we get

METR), (@b mX) =P(X (€ (V). o, M, K) <2 b )

M ©)

Kk
= ér'(n )) (an,m+ bn,mX) an-

S

o
Il

Assume tharz = %, thus the sum inJ) is a Riemann sum
of the integral

Mé’?\;l:])):vn (@,m+bnm)

_ / MY, (8nm-+ bmX)dAn(n2). (4)
Now, conS|der the condition (A) with (@, by using @),

results concerning=

(1- rnz)*%amm andBpm = (1— rnz)*%bnm By using
Theorem 2.1 of 2], we get P(Y(§(nz),nz,mk)
< @nzm+ brzmX) — MRy(€~ (M ) Moreover, it is easy

to verify that W — 7i7(1 — logz) and g

bnzm
—>1. The latter is eV|dent from the assumption
rnlogn—>r > 0 and thusr,—>0 (i.e., rpz—70).
Hence, only the first relation needs proof. Applymg that

1 - rnz)—% 1+ 3ra(1 + o(1), (3%lognz)?

|
malogn ,ogn( o(1))
1002y and

loglog(nz) ™1 = = log Iogn—I + log2
bearing in mind thai2g2

logn

and

Iog(l +
—~ 0, we get

Anzm

bnz, m

Mz

2

Anz, m—

(1+ (1+ 0(1)))

[%1 logn+ (1+ 0(1))%—}009 Iognm%

log4
m1 2 +log4m)

logz
4 logn

2Iog
m+1 2

—Llo n
m g

(loglognm1 +|0947T)(1+°(1))} 1

logz
=)

{Ioglogn 1 +log(1+ logn i1 Iog4n]

— = (— .
o m+1( logz+ 1)

Thus, in view of Khinchin's type theorem, we get
P(Vnz < X) —s [ (ze™ (MFX-T), (6)

By combining 6) and §), Lemma 2.2.1in13] thus yields
M(mvk)

9 (nz):nz (7)

uniformly with respect tax over any finite interval oz (the
continuity of the limit inx, implies that the convergence is
uniform). Now, letc be a continuity point oA(x) such that
1-A(c) < &. Then

(Bnm+bnmX) s H™ (x,7,2),

(8)

Moreover, for sufficiently larga, in view of condition (A),
we get

/ M

/°° HMK (x: 7, 2)dA(z) < 1— A(C) < €

anm"’ b, mx)dAn(nZ) < 1—An(nc) < 2¢.(9)

we getXEM2. 'Lzmk) = U™ L™ whereu ™ o
. . . m,
\/EY and Vnzmk) _ ‘/ﬁ IV (8(n2),nz, m.K) — anm For estimating the difference M % (Vv (an
n.m ’ . m.
(1—rnz) z|. Moreover, US™ and Vi™  are Honmx) — W(x),  we f'rStk estimate JoMg ny).n,
independent. Therefore, (Bnm-+bnmx)dAn(nz) — JgHM (X 7,2)dA(2). By usmg
the triangle inequality
PUS™ < x) 25 (/). if T >0, -
U(mk)_>0 T ‘/M nz(@.m =+ bn mX)dAn(nz) /Hm" (x;1,2)dA(2)
On the other hand, we can writ®Vi™ < x)
= P(Y(§(n2),nzmK) < Agzm + BrzmX), Where Agm / My ne(Baim = BrX)dAn (2
(@© 2016 NSP
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T = \/%[Y(g(nz),nz, m, k)

(1) 2anm] < /5 [Y(S(n2),nz, mK) — ann,

for largen, since 0< ry; < 1 andanm > O, for largen.

1
Therefore,|Tr$zm’k)| < |Y(8(nz),nz,m k) — anm|rn 2, since
0 < rpz < 1. Applying the condition thatr, is slowly
varying, then, for every finite valuez, we have

T —> 1. Therefore,

P (1 / rr"ZYo < x) L A (X).
n

On the other hand, for evegy> 0, we get

P (|T,$£"7">| > s)

where

- /OCH(m*k) (X, T,2)dAn(n2)

+ /CH("W (x;T,2)dAn(n2) —/CH”“") (%, 7,2)dA(2)
0 0

Since, the convergence iM)(is uniform over the finite
interval [0,c]. Therefore, for any arbitrarg > 0 and for
sufficiently largen, we get

.(10)

C
/0 [MQTH?):nz(a”var br,mX) — H™ (x; 7,2)]dAn(n2)

(13)

< €(An(nc) —An(0)) < e. (11)

The third difference in 100 can be estimated by
constructing Riemann sums, which are close to the
integral there. Namely, letg be a fixed number, and let

0=c¢cp<cC <..<cCp =C be the continuity points of IY(S'(nz),nz,m k) —anzm| -1
A(x). Furthermore, et o and ¢ be such that = P( brom = XTn *Brzm+Lom=> 5)
JSHMO (7,200 (n2) — 5 HI™(7.G) (An(rc) - . (IY(S’(nz),nz, M K) — Bz
An(nGi_1))| < &  and If H™ (x,7,2)dA(Z) — Brizm
n
zo HMK (x 7,6)(AG) — A(G_1))| < & Since, by Vi [T
_ > (&~ Lam)y ) (14)
assumptlonAnmc.)—>A(c.) 0 <i < ny the two nzm Mnz
Riemann sums are closer to each other tisafor all where
sufficiently largen. Thus, once again by the triangle
inequality, the absolute value of the difference of the Lo dem—anm 1 1 1
integrals is smaller thane3 Combining this fact with T U Vo L brzm bam
(12), the left hand side term ofLQ) becomes smaller than
4¢ for all largen. Thus, in view of @), (8) and @), we get 1 (bnz m(loglog(nz) ™ -+ log4m)
(m)k)
‘M vy (B + D) = #(x) — bn,m(loglognwI +Iog4n))] .
’/ M nz nz(@n.m+ bnmX)dAn(n2) Applying, (bn:l-m ﬁ) = 72(m'+°%zrnlogn(1+o(l))

+/ MUY (B + b k) dAn(n2)

—/ HMK (x; T,2)dA(z / H(MK (x; T,2)dA(2)

’/ M nz nz(@n.m+ bnmX)dAn(n2)
—/ H(™Y (x: T,2)dA(2)

QI

+ / H™R) (x: 7, 2)dA(2)

anm~+ bnmX)dAn(nz)

=Te.

This completes the proof of the first part of the theorem.

Turning to the condition (A) with (©), starting with
the relation 4), we notice that

(12)

—~ 0, we get

—1 |log=1:(logn+logz) + log4m
I Lo — fim = 1 |logqi(log gz g
VT 2log(nz) mr1
B IoglognW1I +log4m
\/2Iognm+i1
. -1 logz, 1 [(Ioglogn)logz
=lim ————— |log(1+ — )™ — | ~——— =
n—e o /n%‘llogn[ o Iogn) 2logn
(log(1+ %)) logz  (log4m)logz
2logn + 2logn (I+o(1)] =0.

: 'z Mz __ 21z
Since 7 —4*1 and T \/ g lognz— e, the

relation (L4) implies

P > ¢) 0. (15)

X(s'(nz),nz,m,Kk) — r

(s(n2) ) 8nm _ /EYO‘FTn(zmk),
M
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Combining (2), (13), (14) and (L5), Lemma 2.2.1in13

thus yields MY (@am + bumd) >4 (x).  The
remaining part of this case follows exactly as the proof o
the casenlogn —> 1.

Turning now to prove the converse part thagBnd
(C1) imply (A). Starting with the relation 4), by the
compactness of df’s, we can select a subsequence
such thatAn(n*z) n—VZ>A*(z), whereA*(z) is an extended
df (i.e., A*(o) — A*(0) < 1). Therefore, by repeating the
first part of theorem (when = 0) for the subsequenceg,
with the exception that the poirtt is chosen such that

Ar(0) — A*(c) < €, we getM“F’k)) (@ m +bremX)

“HW(X) =[5 Tr(ze ™M) dA*(z). Since, the two
limits W(x) and [g(ze™D%) are df's, then
Y(w) =1= [7dA*(2) = A*(c0) — A*(0). Thus,A* is a
df. Now, if Ay(nz) did not converge weakly, then we
could select two subsequences and n, such that
A () n—VZ>Ai(z),i = 1,2. This implies that

0= [z ™A

— | etz ™ ¥ dhg(2).
0

Let Gi(t) = [y Mri(t2)dAi(2),i = 1,2. Clearly, Gy(t) and
Go(t) are analytic functions in the region
D = {t: 0 < |t| < «}. Moreover, in view of 16), G; and
G, coincide on some interval containedn for all real
values ofx. Thus by the uniqueness theory of analytic
functions, G1(t) and Gy(t) coincide on the regiorD,
which means thatA;(z) = Ax(z). This completes the
proof of the theoreml

Theorem 2.2. Let v, be a sequence of integer valued rv's
independent of Xp,...,Xn and P(v, < X) An(X).
Furthermore,

(A):let Anmx)—>A( ), whereA(+0)
non- degenerate df. Then
(By):P (HlSLnl ol tzn o) W, g(x)

= [ HIMK (x; T, 2)dA(2), if
(Cy):rnlogn—> 1 > 0, where

Moreover,

(By):P (HlSLoltamilitn ) W,y (x), if
(Co):rnlogn — 00 andry, is slowly varying function oh.
Conversely, if (B) and (G) (with T = 0) hold, then the

relation (A) will be satisfied.
Proof. By representatior) and by using Theorem 1.1 of

(16)

=0 andA(x) is a

Hdmk) (X1,2)

I'Rs(ze<m+1)x’r) x N (
I—qu(ze(mt—l)x%

[5], it is easy to see that the proof of Theorem 2.2 is
similar to the proof of Theorem 2.1, with only the

sexception of obvious changes.

Theorem 2.3. Let v, be a sequence of integer valued rv's

independent of Xi,...,X, and P(vh, < X) = Ay(X).
Furthermore,

(A):let An(nx) —>A( ), whereA(+0) = 0 andA(x) is a
non- degenerate df. Then
(B1):P <7””*m">+a"m < x) M g(x)

bnm
= [ HMO (x; 7,2)dA(2), if
(Cy):rnlogn—= 1 > 0, where

[s(ze )« N (%), T>0
(myk) . _ S \/E ) 9
HT (xT.2) { [s(ze"), T=0.
Moreover,

(B2):P <7X<S*V”’%”a"~m < x) W N (x), if

(Co):rnlogn — 00 andry, is slowly varying function oh.

Conversely, if (B) and (G) (with T = 0) hold, then the
relation (A) will be satisfied.

Proof. By representationl) and by using Theorem 1.1 of
[5], it is easy to see that the proof of Theorem 2.3 is
similar to the proof of Theorem 2.1, with only the
exception of obvious changés.

Theorem 2.4. Let v, be a sequence of integer valued rv's
independent of Xi,...,X, and P(vh, < X) = Ay(X).
Furthermore,

(A):let An(nx) —)A( ), whereA(+0) = 0 andA(x) is a
non- degenerate df. Then
(B ( X5 —on <x> W W(x)

bn,m
= [ HIMK) (x: 7, 2)dA(2), if
(Cy):rnlogn—> 1 > 0, where

I'Rs(ze 4T s (
I'Rs(ze )

HAMK) (x: 7,2) = { V)T

r:O.

Moreover,

Vn,mk) —ay
e (st
(C2):rnlogn — e andry, is slowly varying function of.

Conversely, if (B) and (G) (with T = 0) hold, then the
relation (A) will be satisfied.
Proof. By representatior?) and by using Theorem 1.2 of

[5], itis easy to see that the proof of Theorem 2.4 is similar
to the proof of Theorem 2.1, with only the exception of
obvious changeisl

Although, the above theorems provide a set-up, which
includes many interesting models such as oos, sos and
pos, with censoring schem® ...,R) € 4™ a number
of models of gos are excluded in this set-up, e.g., pos with
general censoring schenfigy, ..., Ry ). The following two

<x> s A (x), if

(@© 2016 NSP
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theorems extend Theorems 2.3 and 2.4 to a very widéConversely, if (B) and (G) (with T = 0) hold, then the
subclass of gos in which the vector="(my, mp, ..., my_1) relation (A) will be satisfied.
is arbitrarily chosen such that, > —1i =1,2,....n— 1, Proof. By representatior?) and by using Corollary 2.1 of

and the parameteg n, Vo, .., Yoo are pairwise different,  [3] itis easy to see that the proof of Theorem 2.6 is similar

e, ¥in# Vini# ], foralli,j € {1,...,n}. Forinstance, t{g the proof of Theorem 2.4, with only the exception of
this assumption is no restriction on pos with generalgpyious changesl

censoring schem@y, ...,Ru).
Theorem 2.5. Let ayLn

1
By, 2 bVl,n (loglogyin

+log4m), by, = (2logyn)z and yin—5 .
Furthermore, lev, be a sequence of integer valued rv’s
independent of Xg,...,X, and P(vq < X) = An(X).
Furthermore,

(A):let An(nx) —>A( ), whereA(+0) = 0 andA(x) is a
non- degenerate df. Then

X(s,Vn,Mk)+a,
A x| Y y(x)
bVln n

= [SH™ (x; 7,2)dA(2), if
(C1):rnlogyin — T > 0, where

(By):P

. [(ze ")« N (%), T>0
(m7k) . _ S \/E I )
HT (i T.2) { rs(ze), r=0.
Moreover,
X(s,vn,MKk)+ ; .
(B2):P % L A (X), if

(Co):rnlogyin —+ 0 andry is slowly varying function of
n.

Conversely, if (B) and (Q) (with T = 0) hold, then the
relation (A) will be satisfied.
Proof. By representationl and by using Theorem 2.1 of

[4], it is easy to see that the proof of Theorem 2.5 is (C3):

similar to the proof of Theorem 2.3, with only the
exception of obvious changés.

Theorem 2.6. Let v, be a sequence of integer valued rv’s
independent of Xi,...,X, and P(vh, < X) An(X).
Furthermore,

(A)let Aq(nx) > A(X), whereA(+0) = 0 andA(x) is a
non-degenerate df. Then

Vn, k) —al
(& - X) R
bVl,n n

= [ HIMK) (5 7. 2)dA(2), if
(C1):rnlogyin — T > 0, where

(By):P

X+T))*JV( X

\/7) >0,
I'Rs(ze )

HA™R (x;7,2) = { IRo(ze o

Moreover,
Xd(s,vn,MK)
N
(Co):rnlogyin —+ 0 andry is slowly varying function of
n.

U
_ayl,n

(B2):P <X | A (), if

3 Central m-gos (dgos) with random indices
in asGs

Let 0< A < 1 andxg be such that# (xg) = A. Moreover,
let s, be a central rank sequence such that
VA(2 —A) —770. It is known that (c.f. Theorem 2.2 of

[2))
Y(S‘la n7 m7 k) - XO
Cn

Yd(sm na ma k) -
Cn

P( < x),P( < X)

*

—>,/V(

VA
VTR L o) =
standard normal d|str|but|om =A(L=A), A(m) =

1- (1—)\)W11 andc; = A Under the above conditions

concerning\ ands,, the following theorem gives the limit
df of the shth centralm-gos andm-dgos of sGs’s 1) and
(2), respectively.

Theorem 3.1. Let the condition (A) in Theorems 2.1-2.6
satisfied. Then,

(m+ 1)x),
)

X2 .
L_e 7 is the pdf of the

wherec, = Tn

ns>vn, ,k —
(BY)P(EnR I <) T @(x)
= [o L(x T,2)dA(2), if
nrm—,>7 > 0, where L(x 1,2

:,/V((,/z—¢21++ 5 (m+1)) Moreover,

B3): (Xm0 <) M, #/(x), if X0 > 0 and
(C5): nry —> o0 andrp is slowly varying function of.

Conversely, if () and (GQ) hold, then the relation (A) will
be satisfied.
Proof. Proceeding exactly as the proof &)(we get

MU, (X0 + CnX) = P(X(Sup, Vi, MK) < X0+ CnX)

- / M) (x: 2, 7)dAn(N2), (17)

where Méqz;n)z(x; Z71) P(X(snz,nz,m,k) < Xg + CnX).
First, consider the condition (A) with (G, by using (),

we get

X(Sm,nz,m,k) — Xo _ \/EY
Cn e
VI—=rnY(Sm,nz, mKk) —
YR M 230 _ oy (ag)
n
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Urggmk) _ ‘/nZZ;\n(z(P( >)Y andV (mk) \/lfrnzY(s‘;i,nz,m,k)fxo'
Moreover, U™ and W™ are independent. If
nrp—> T, 0< T < oo, then
K AT
P(UR™ < X) o A ( AT Am (m - 1)x),
if T>0, (19)
U™ L0, if t=0.
On the other hand, we have
PV < %) = P(Y(Syz,nzm k) < Az +Brzex), (20)
where Apym = \/%rnz and Bpym = \/f%rnz Now, if
nrh—+ T > 0, we get
Aum—x  (1+%(1+0(1)))% — %o
' = nz
- Vo

Ve ZXo(x0) o
2/A1=xr) "7

Moreover, ””" = (1+ #(1+0(1))) +* /z. Therefore,
an appl|cat|on of Khinchin's type theorem yields

(\/Z
)\

By combining 8),(19), (20) and 1), we get

PV

< x) (m+ 1)x). (1)

M) (X0 + €nX) L% T,2)

B A1=2)  Cm)
‘*/V(\/ZwZ(xo)M(l—A) c

uniformly with respect tax over any finite interval oz (the

(m+1)x), T >0, (22)

continuity of the limit inx, implies that the convergence is
uniform). The remaining part of the proof of the theorem,

under the conditiore > 1 > 0, follows now by using the

relations ((7) and @2) exactly as the proof of Theorem 2.1,

under the same condition (i.exlogn —> 1 > 0).

Turning now to the proof of the condition (A) with

(C5), by using @), we get X("Snz,nz,m,;)r;)q,\/1,—rnZ

- JEe o+ S, s
= Y2 Y (55,2 m K) — 0| < MBI Thys,

Y (Snz, Nz, M, k) — Xg|
P m,k) >€ <P(| ) 5 LD >£
(Ise¥ > ) < N >

. <|Y<snz, nZmK) — x| . ITe(X) £>
Cnz A(l=2)

where

Y. 0.

n

w
n

Lemma 2.2.1 in 13 thus yieldsM{™(xo + cnx)

5

JV(CAC%“ (m+ 1)x). The derivation of the limit df’s of

central mdgos of sGs ) is proceeded exactly as the
same as those of centnad-gos of the sequencd)( The
remaining part of the proof of the theorem, under the
conditiont = o, follows now by using the relatlona?')

and the last relation (i. el\/lSnz nz(xo+cnx) —>,/V(

(m+ 1)x). uniformly with respect tox) exactly as the
proof of Theorem 2.1, under the conditinflogn — co.

Turning now to prove the converse part thagBnd
(C3) imply (A). Starting with the relation 17), by the
compactness of df’s, we can select a subsequernce
such thatAn(n*z) n—VbA*(z), whereA*(z) is an extended
df (i.e., A*(0) — A*(0) < 1). Therefore, by repeating the
first part of theorem for the subsequente with the
exception that the pointc is chosen such that
Ar(0) — A*(C) < €, We get ML™), (X0 +CaX) —o
?(x) = [o L(x1,2)dA*(2). Since, the two limits®(x)
and L(x7,2) are df's, then®(w) =1 = [ dA*(2)
= A*(o) — A*(0). Thus,A* is a df. Now, ifAy(nz) did not
converge weakly, then we could select two subsequences
n; and ny such thatAq (zn;) n—vz>Ai(z),vi =1,2. In this
case, we have

D(x) = /Ooo,/i/(a\fzx) dA;(2)

- / (0v/2¢) dAo(2), (23)
where o = wz”%m C*C—%m)(m + 1). Let
Gi(t) = Jo A (ty/2)dAi(2),i = 1,2. If the functionsG (t)

andGy(t) are determined in an intervial< t < tp, thenin
this interval both of them will be analytic. By
differentiatingGs (t) and Gy(t) with respect td, in view
2 2

of (23), we get[e T JzdA(2) = [P e T JZA(2).
Puto* = 22, we get [T e 92 /2dA(2) = [T e 9%z
dAx(z). Since, the Laplace transformations with respect
to the measures/zA1(z) and /ZAx(z) coincide, we
deduce tha®\;(z) = Ax(2). This completes the proof of
the theorenti]

The derivation of the limit df's of centraidgos of
Gaussian sequenc®) (s proceeded exactly as the same as
those of centrain-gos of the sequencé)(

4 I ntermediate m-gos (dgos) with random
indicesin a sGs

In this section we consider a general nondecreasing
intermediate rank sequenag = o(n) —> 0, for which

g% B 0 < B < 1. Actually, the latter condition is

logn
very wide, e.g., it is easily to verify that this condition is
satisfied, withB = a, whens, ~ /?n%, 0 < a < 1 (the
Chibisov rank sequence, se&(]). Also, this condition

will be satisfied, with3 = 0, whens, = logn (i.e., when
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V1—=rpY(s(nz),nz,m K)—Xg,

the rank sequence is slowly varying function n} + g :U( )+Vnz . (25)
Finally, it will be satisfied, with3 = 1, whens, = Io 5 “h

(|fe) V'menftrllle rank seq::ence Ids rap'dlyb%ar]}/'“?hfunftg’”Moreover U™ and V™ are independent. Then, if
of n e following results is indispensable for the study logsn ;
the intermediatem-gos X(s*(n),n,m,k), and m-dgos Sfnlogn =2 7, 0= T.< 0, andggy ?B’TOS B=1i
Xq(sn,n, M, k), wheres*(n) = n—sn+1. is easily to check thats,ralogah —7 7 (MB + 1).
Lemma4.l. LetYy,Ys, ..., Y, be iid rv's, with common df ~ Consequently, we get
A (x). Furthermore, leY (1,n,mk) <Y(2,n,mKk) < ...
< Y(n,n,mKk) be the correspondingm-gos. Then, 'z San log s,

S () Xenv/Senlnz ~ v/ 2Snrnlo — = [1-—=
P(\((Sm)’g’—m’k)’x‘m< X) A ((m+ 1)x), where “n/Sunrz s gwnv ' S logan

wn

dn = xn\/§7 1— A (%) = n7 Xn ~ ,/2Iog§, asn — oo,
and a, = SN(%)WI (remember thaN = X5 +n—1

2 B 1)1 ).

~ N, thusw, = o(n) 7 ). Thus,
Lemma 4.2. Let Yq(1,n,mk) > Yy(2,n,mk) > ... i
. ) m, w 1
> Yy(n,n,mKk) be mdg?ss]n%cl)(griexiponde \Evo the v's  P(Unz " < X) —»A( Wb(lﬁ) X),
Y1,Yz,....Yn. Then, P(S= == < x) o A7(X), if 1>0,8+#1,v>0, (26)
(m!k> p i — — —
whered, = _ﬁ7 N (%) = %, Xn ~ — 4 /2|0g£, as Unz™" —=0, ift=0,or=1 orv=0.
n— oo, andoy = (M+ 1)N. On the other hand, we have
Theorem 4.1. Let the condition (A) in the Theorems (mk) & ¥
2.1-2.6 satisfied. Then, P(Vnz ™ <x)=P(Y(s'(nz),nz, M k) < Ay, + Bar,X), (27)
ok _ _ Xanz dtm .
(BY): P(X(s (vn)7\:jz;]m,k) Xy - X) % whereAy,, = \/7 and By, = T It is clear that
Ul Banz _ (1-rnz) Zd _ I'nz X z z
( (m1)22 X),0< v, < oo, if Tor = an = (I F(A+0(1)55E -
/1+2vtZ1 (m+1)(mB+1)(1-B) n ot 0 and ™ —1 M o
(C): Taslogn 7T > 0, S >y and 22 —zn. (V2 for fne 72 0 ands == 1. Moreover, =5 =

Moreover, ~ 3 X/ () 22)(\TiXe) 770, since
Hok) - X(S*(Vn),Vn,mK) =Xy, 4/ 1=Tvp w . Sen
2 ) g 5 T nzX an or large n. Therefore, in
(B5"): P( N <X) > A (X), if FXan, —570 and 322 < 1, for | Theref
(C5): rasnlogn — 0 andrp is slowly varying function of ~ view of Lemma 4.1 and by applying Khinchin’s type
n. theorem, we get

Remark 4.1. Actually, the condition%?v is not P(Vn(m’k> <x)%,/1/((m+1)z%x). (28)
restrictive for being that the sequen%«? is bounded, as

n — o. This fact can be easily seen, sineg is
nondecreasing ang, = o(n) < n, for largen. Moreover,

Combining 25),(26), (27) and @8), we get (B™).
Turning now to the proof of the condition (A) with

kk H
itis easily to see thae = 0, for the two cases, ~ 2n@ (x%* ()n'z : nzmkgf \/%smg 0. (n‘:"k? get
ands, ~ W Moreovery = m+l7 if s, ~ logn. — nz 2= rr—’:]ZYo + Th,’, where
Remark 4.2. 1t is eaS|Iy to see than = m‘il, for |-|-n<m7k)| _ \r—rnzm S(n2),nzmk) — Xu| <
== . <
S~ 2n® andn = =, for s ~ gn- ON the other hand, v ¢ () nzmig— Xm‘ 0,/ —+1.Th
n =0, whens, ~ logn. Vn an us,

Proof. Proceeding exactly as the proof @ (we get

P(|Tn(zmk>| > g) < P<|Y(S*(nz),nz,m,k) _Xwnz| > £>
VT

p(MEEm e

Mgvmkg (Xvn +bnX) = P(X(S"(Vn), iy M K) < Xy, + depX)

_/ MI™ (x:z,T)dAn(n2), (24)

where Méﬁ];n)z(x; z,1) = P(X(s"(nz),nz,mK) < Xea, ZV Zrnzxﬂhz\/ \/ > 0.
a—scii%xa)szt,gg?nSIder the condition (A) with (O, by Therefore, Lemma 2.2.1 in1B] implies (By*) The
' remaining part of the proof of the theorem, under the
X(s"(n2),nz,m K) — X, MYO conditiont =, ft)nqgws now by u3|vrv19 the relation24)
and the reIanrMS&:nz(xahz + dew,X) =+ 4 (X) exactly as

e, e,
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the proof of Theorem 2.1, under the condition [3]H. M. Barakat and M. E. El-Adll, Asymptotic theory of

Srnlogn—> . This completes the proof of the extreme dual generalized order statistics. Stat. Probetb. L

theorem] 79, 1252-1259 (2009).

Theorem 4.2. Let the condition (A) in Theorems 2.1-2.6 [4]H. M. Barakat and M. E. EI-Adll, Limit theory of extreme
 ofi generalized order statistics. Proc. Indian Acad. Sci. (Mat

satisfied. Then, Sci.)122(2), 297-311 (2012).

. Xd(s(vn),Vn,mK)—Xoy w [5] H. M. Barakat, E. M. Nigm and M. A. Abd Elgawad, Limit
BY*): P mo <X LN at, t 9 ; gawac, -
(B17) (E don ) n theory for bivariate extreme generalized order statisiiog
( 22 x),0< [, & < oo, if dual generalized order statistics. ALEA, Lat. Am. J. Probab
14+2ut7t (1-B) Math. Stat11(1), 331-340 (2014).

(CF): rasalogn—T1 > 0, % —u and % —Z. [6] H. M. Barakat, E. M. Nigm and M. A. Abd Elgawad, Limit
" theory for bivariate central and bivariate intermediatealdu

Moreover, : s
VnmK)— = . generalized order statistics. Probab. and Math. Statppgear
(B3"): P(xd(s(vn)'v"'m'\/)r—nx"v" VI <x) s (x), i (2015).
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