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Abstract: In this paper we study the limit distributions of extreme, intermediate and centralm-generalized order statistics (gos), as well
asm-dual generalized order statistics (dgos), of a stationaryGaussian sequence (sGs) under equi-correlated set up, whenthe random
sample size is assumed to converge weakly. Moreover, the result of extremes is extended to a wide subclass of gos (as well as dgos)
which contains the most important models of ordered random variables (rv’s).
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1 Introduction

In testing the strength of materials, reliability analysis,
lifetime studies, etc., the realizations of experiments arise
in nondecreasing order and therefore we need to consider
several models of ascendingly ordered rv’s. Kamps [17]
introduced the concept of gos as a unification of several
models of these ascendingly ordered rv’s.

Theoretically, many of the models of ascendingly
ordered rv’s are contained in the gos model, such as
ordinary order statistics (oos), order statistics with
non-integral sample size, sequential order statistics (sos),
record values, Pfeifer’s record model and progressive type
II censored order statistics (pos). These models can be
applied in reliability theory. For instance, therth extreme
order statistic represents the life-length of some r-out-of-n
system, whereas the sos model is an extension of the oos
model and serves as a model describing certain
dependencies or interactions among the system
components caused by failures of components and the pos
model is an important method of obtaining data in
lifetime tests. Live units removed early on can be readily
used in other tests, thereby saving cost to the
experimenter.

The concept of gos enables that known results in
submodels can be subsumed, generalized, and integrated
within a general framework. In [17] gos were introduced
via a distributional approach. Namely, the gos
X(1,n, m̃,k), X(2,n, m̃,k), ..., X(n,n, m̃,k) are defined by

their density function (pdf)

f (m̃,k)
1,2,...,n:n(x1, ...,xn)

= k(
n−1

∏
i=1

γi,n)(
n−1

∏
i=1

(1−F(xi))
mi)(1−F(xn))

k−1(
n

∏
i=1

f (xi)),

on the cone {(x1, ...,xn) : x0 = F−1(0) ≤ x1 ≤ ...
≤ xn ≤ F−1(1) = x0}. The parametersγ1,n, ...,γn,n are
defined byγn,n = k > 0 andγs,n = k + n − s + Ms > 0,
s = 1,2, ...,n − 1, where m̃ = (m1,m2 , ...,mn−1),

Ms = ∑n−1
j=s m j and m1, ...,mn ∈ ℜ. If

m1 = m2 = ...= mn−1 = m (i.e.,γs,n = k+(n− s)(m+1),
s = 1,2, ...,n−1), we get a wide subclass of gos, which is
called m-gos, and write X(s,n,m,k) instead of
X(s,n, m̃,k). The class ofm-gos contains oos,k−records,
sos, order statistics with non-integer sample size and pos,
with special censoring schemes.

Nasri-Roudsari [18] (see, also [2]) has derived the
marginal df of thesth m−gos, m 6= −1, in the form

Φ(m,k)
s:n (x) = IGm(x)(s,N − s + 1), where Gm(x)

= 1− (1− F(x))m+1 = 1− F̄m+1(x), N = k
m+1 + n − 1

andIx(a,b) = 1
β (a,b)

∫ x
o ta−1(1− t)b−1dt is the incomplete

beta ratio function. By using the well-known relation
Ix(a,b) = 1− Ix̄(b,a), where ¯x = 1− x, the marginal df of
the (n − s + 1)th m−gos, m 6= −1, is given by

Φ(m,k)
n−s+1:n(x) = IGm(x)(N − Rs + 1,Rs), where

Rs =
k

m+1 + s−1. The possible non-degenerate limit df’s
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and the convergence rate of the upper extremem-gos, are
discussed in [19]. The necessary and sufficient conditions
of the weak convergence, as well as the form of the
possible limit df’s, of extreme, intermediate and central
m-gos are derived in [2].

Burkschat et al. [8] introduced the concept of dgos to
enable a common approach to descendingly ordered rv’s
like reversed order statistics and lower records models.
The dgos Xd(1,n, m̃,k),Xd(2,n, m̃,k), ...,Xd(n,n, m̃,k)
based on a dfF are defined by their pdf

f d(m̃,k)
1,2,...,n:n(x1, ...,xn)

= k(
n−1

∏
i=1

γi,n)(
n−1

∏
i=1

(F(xi))
mi)(F(xn))

k−1(
n

∏
i=1

f (xi)),

wherex0 = F−1(1) > x1 ≥ x2 ≥ ... ≥ xn > F−1(0) = x0.
Moreover, we can write the df’s ofsth lower m-dgos
X(s,n,m,k) and thesth upperm-dgosX(n− s+1,n,m,k)

in the forms Φd(m,k)
s:n (x) = ITm(x)(N − s + 1,s) and

Φd(m,k)
n−s+1:n(x) = ITm(x)(Rs,N − Rs + 1), respectively, where

Tm(x) = Fm+1(x).
Let X1,X2, ...,Xn be a Gaussian sequence with zero

expectation, unit variance and correlation
rn = E(XiX j) ≥ 0, i 6= j. This sequence can be replaced,
by the sequenceX j =

√
rn Y0+

√
1− rn Yj, 1≤ j ≤ n, for

the iid standard normal variatesY0,Y1, ...,Yn. Moreover,
X j = Yj, for rn = 0. Therefore, for any 0≤ s ≤ n, we get

X(s,n,m,k) =
√

rn Y0+
√

1− rn Y (s,n,m,k) (1)

and

Xd(s,n,m,k) =
√

rn Y0+
√

1− rn Yd(s,n,m,k), (2)

where X(s,n,m,k) (or Xd(s,n,m,k)) and Ys:n (or
Yd(s,n,m,k)) are thesth m-gos (orm-dgos) based on the
sequences{X j} j=n

j=1 and{Yj} j=n
j=1, respectively.

A sequence{X(sn,n,m,k)} (or {Xd(sn,n,m,k)}) is
called a sequence ofm-gos (orm-dgos) with variable rank
if 1 ≤ sn ≤ n andsn → ∞, asn → ∞. Here, we have the
following two distinct cases:

1-If sn
n → 0 (or sn

n → 1), asn → ∞, thenX(sn,n,m,k) and
Xd(s,n,m,k) are called lower intermediatem-gos and
lower intermediatem-dgos (or upper intermediatem-
gos and upper intermediatem-dgos), respectively.

2-If sn
n → λ (0 < λ < 1), as n → ∞, then X(sn,n,m,k)

andXd(sn,n,m,k) are called centralm-gos and central
m-dgos, respectively. A remarkable example of the
central order statistics is thepth sample quantile,
wheresn = [np],0< p < 1, and[x] denotes the largest
integer not exceedingx (see [11]).

In many biological, agricultural and some quality
control problems it is almost impossible to have a fixed
sample size, because some observations always get lost
for various reasons. Therefore, we often come across

situations where the sample sizen in X(s,n,m,k) and
Xd(s,n,m,k) is a rv νn following a given distribution
function (df). The rv’s X1:νn = X(1,νn,0,1) and
Xνn:νn = X(νn,νn,0,1) arise naturally in reliability theory
as the lifetimes of series and parallel systems,
respectively, with νn identical components having
lifetimesX1,X2, ...,Xνn . Also, the rvX1:νn arises naturally
in transportation theory as the accident-free distance of a
shipment of, say, explosives, whereνn of them are
defective, which may explode and cause an accident after
X1,X2, ...,Xνn miles, respectively (cf. [20]). If one
introduces the random sample size as an extension of a
model (mainly for statistical inference), one can usually
assume that it is independent of the underlying variables.

Many authors considered the limit theory of oos with
random sample sizes whenrn = 0 (i.e., in the iid rv’s
case) andνn is independent of the basic rv’s, where, the
df of νn

n converges weakly to a non-degenerate df. Among
those authors are [1,7,12,14,15]. Vasudeva and Moridani
[21] studied the limit df ofsth maxima of oosXνn:νn in the
sGs (1), under a restrictive condition that the random
correlation rνn converges in probability to a positive
constant or infinity. The most recent contribution relevant
to this topic is [22], in which it is obtained the limit
theorems for the maxima of stationary Gaussian process,
with random index.

In Section 2, we study the upper (or lower) extreme
m-gos X(ś(νn),νn, m,k) = X(νn − s + 1,νn,m,k) (or
X(s,νn,m,k)) and the upper (or lower) extremem-dgos
Xd(ś(νn),νn,m,k) = Xd(νn − s + 1,νn,m,k) (or
Xd(s,νn,m,k)) concerning the sequence (1) and (2),
respectively, under mild conditions, where the restricted
condition in [21] is got rid. Some of these results are
extended to a wide subclass of gos, as well as dgos, when
the parametersγ1,n,γ2,n, ...,γn,n are assumed to be
pairwise different. In Sections 3 and 4, we consider the
parallel results for the central and intermediatem-gos and
m-dgos, respectively.

Everywhere in what follows the symbols−→n ,
w−→n

and p−→n stand for convergence, converge weakly and
converge in probability, asn → ∞, respectively.
Moreover, for everys,x ≥ 0, Γs(x) = 1

Γ (s)

∫ x
0 ts−1e−tdt

stands for the incomplete gamma ratio function, while
Γ̄s(x) = 1− Γs(x) denotes its survivor function. Finally,
N (x) denotes the standard normal df.

2 Extreme m-gos (dgos) with random indices
in a sGs

The weak convergence of the sequences

{X(ś(νn),νn,m,k)−an,m
bn,m

} and {Xd(ś(νn),νn,m,k)−an,m
bn,m

}, are
investigated in Theorems (2.1) and (2.2), respectively,

where an,m = 1
bn,m

− 1
2bn,m (log logn

1
m+1 + log4π) and

bn,m = ( 2
m+1 logn)

−1
2 . Moreover, Theorems (2.3) and
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(2.4) give the corresponding results concerning

{X(s,νn,m,k)−án,m

b́n,m
} and {Xd(s,νn,m,k)−án,m

b́n,m
}, respectively,

where ´an,m = 1
b́n,m

− 1
2 b́n,m(log logn(m+ 1)+ log4π) and

b́n,m = (2logn(m+1))
−1
2 .

Theorem 2.1. Let νn be a sequence of integer valued rv’s

independent of X1, ...,Xn and P(νn < x) = An(x).
Furthermore,

(A):let An(nx) w−→n A(x), whereA(+0) = 0 andA(x) is a
non-degenerate df. Then

(B1):P
(

X(s′(νn),νn,m,k)−an,m
bn,m

< x
)

w−→n Ψ (x)

=
∫ ∞

0 H(m,k)(x;τ,z)dA(z), if
(C1):rn logn−→n τ ≥ 0, where

H(m,k)(x;τ,z)

=

{

Γ̄Rs(ze−(m+1)x−τ)∗N (
√

m+1
2τ x), τ > 0.

Γ̄Rs(ze−(m+1)x), τ = 0,

and (*) stands for the convolution operation. Moreover,

(B2):P
(

X(s′(νn),νn,m,k)−an,m√
rn

< x
)

w−→n N (x), if

(C2):rn logn−→n ∞ andrn is slowly varying function ofn
(see, [16]), i.e., for everyθ > 0, we getrnθ

rn
−→n θ .

Conversely, if (B1) and (C1) (with τ = 0) hold, then the
relation (A) will be satisfied.
Proof. Let Pnq = P(νn = q). Then, by the total probability

rule, we get

M(m,k)
s′(νn):νn

(an,m+bn,mx)=P(X(s′(νn),νn,m,k)<an,m+bn,mx)

=
∞

∑
q=s

M(m,k)
s′(q):q(an,m + bn,mx)Pnq. (3)

Assume thatz = q
n , thus the sum in (3) is a Riemann sum

of the integral

M(m,k)
s′(νn):νn

(an,m + bn,mx)

=
∫ ∞

0
M(m,k)

s′(nz):nz(an,m + bn,mx)dAn(nz). (4)

Now, consider the condition (A) with (C1), by using (1),

we get X(ś(nz),nz,m,k)−an,m
bn,m

= U (m,k)
nz +V (m,k)

nz , whereU (m,k)
nz

=
√

rnz
bn,m

Y0 and V (m,k)
nz =

√
1−rnz
bn,m

[Y (ś(nz),nz,m,k)− an,m

(1− rnz)
− 1

2

]

. Moreover, U (m,k)
nz and V (m,k)

nz are

independent. Therefore,

P(U (m,k)
nz < x) w−→n N (

√

m+1
2τ x), if τ > 0,

U (m,k)
nz

p−→n 0, if τ = 0.







(5)

On the other hand, we can writeP(V (m,k)
nz < x)

= P(Y (ś(nz),nz,m,k) < Anz,m + Bnz,mx), where Anz,m

= (1− rnz)
− 1

2 an,m andBn,m = (1− rnz)
− 1

2 bn,m. By using
Theorem 2.1 of [2], we get P(Y (ś(nz),nz,m,k)
< anz,m + bnz,mx) w−→n Γ̄Rs(e

−(m+1)x). Moreover, it is easy

to verify that Anz,m−anz,m
bnz,m

−→n 1
m+1(τ − logz) and Bnz,m

bnz,m

−→n 1. The latter is evident from the assumption
rn logn−→n τ ≥ 0 and thus rn −→n 0 (i.e., rnz −→n 0).
Hence, only the first relation needs proof. Applying that
(1 − rnz)

− 1
2 = 1 + 1

2rnz(1 + ◦(1)), ( 2
m+1 lognz)

1
2

=
√

2
m+1 logn + logz√

2(m+1) logn
(1 + ◦(1)) and

loglog(nz)
1

m+1 = log logn
1

m+1 + 1
m+1 log(1 + logz

logn) and

bearing in mind thatloglogn
logn

−→n 0, we get

Anz,m − anz,m

bnz,m
=
(

1+
rnz

2
(1+ o(1))

)

[

2
m+1

logn+(1+ o(1))
logz
m+1

−1
2
(loglogn

1
m+1 + log4π)

− logz
4logn

(loglogn
1

m+1 + log4π)(1+ o(1))

]

− 2
m+1

logn

−2logz
m+1

+
1
2

[

log logn
1

m+1 + log(1+
logz
logn

)
1

m+1 + log4π
]

−→n
1

m+1
(− logz+ τ).

Thus, in view of Khinchin’s type theorem, we get

P(Vnz < x) w−→n Γ̄Rs(ze−(m+1)x−τ). (6)

By combining (5) and (6), Lemma 2.2.1 in [13] thus yields

M(m,k)
s′(nz):nz(an,m + bn,mx) w−→n H(m,k)(x;τ,z), (7)

uniformly with respect tox over any finite interval ofz (the
continuity of the limit inx, implies that the convergence is
uniform). Now, letc be a continuity point ofA(x) such that
1−A(c)< ε. Then
∫ ∞

c
H(m,k)(x;τ,z)dA(z) ≤ 1−A(c)< ε. (8)

Moreover, for sufficiently largen, in view of condition (A),
we get
∫ ∞

c
M(m,k)

s′(nz):nz(an,m + bn,mx)dAn(nz)≤ 1−An(nc)< 2ε. (9)

For estimating the difference M(m,k)
s′(νn):νn

(an,m

+bn,mx) − Ψ(x), we first estimate
∫ c

0 M(m,k)
s′(nz):nz

(an,m + bn,mx)dAn(nz) −∫ c
0 H(m,k)(x;τ,z)dA(z). By using

the triangle inequality
∣

∣

∣

∣

∫ c

0
M(m,k)

s′(nz):nz(an,m + bn,mx)dAn(nz)−
∫ c

0
H(m,k)(x;τ,z)dA(z)

∣

∣

∣

∣

≤
∣

∣

∣

∣

∫ c

0
M(m,k)

s′(nz):nz(an,m + bn,mx)dAn(nz)
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−
∫ c

0
H(m,k)(x;τ,z)dAn(nz)

∣

∣

∣

∣

+

∣

∣

∣

∣

∫ c

0
H(m,k)(x;τ,z)dAn(nz)−

∫ c

0
H(m,k)(x;τ,z)dA(z)

∣

∣

∣

∣

. (10)

Since, the convergence in (7) is uniform over the finite
interval [0,c]. Therefore, for any arbitraryε > 0 and for
sufficiently largen, we get
∣

∣

∣

∣

∫ c

0
[M(m,k)

s′(nz):nz(an,m + bn,mx)−H(m,k)(x;τ,z)]dAn(nz)

∣

∣

∣

∣

≤ ε(An(nc)−An(0))≤ ε. (11)

The third difference in (10) can be estimated by
constructing Riemann sums, which are close to the
integral there. Namely, letn0 be a fixed number, and let
0 = c0 < c1 < ... < cn0 = c be the continuity points of
A(x). Furthermore, let n0 and ci be such that

|∫ c
0 H(m,k)(x;τ,z)dAn(nz) −

n0

∑
i=0

H(m,k)(x;τ,ci)(An(nci) −

An(nci−1))| < ε, and |∫ c
0 H(m,k)(x;τ,z)dA(z) −

n0

∑
i=0

H(m,k)(x;τ,ci)(A(ci) − A(ci−1))| < ε. Since, by

assumption An(nci)
w−→n A(ci), 0 ≤ i ≤ n0, the two

Riemann sums are closer to each other thanε for all
sufficiently large n. Thus, once again by the triangle
inequality, the absolute value of the difference of the
integrals is smaller than 3ε. Combining this fact with
(11), the left hand side term of (10) becomes smaller than
4ε for all largen. Thus, in view of (4), (8) and (9), we get

∣

∣

∣
M(m,k)

s′(νn):νn
(an,m + bn,mx)−Ψ(x)

∣

∣

∣

=

∣

∣

∣

∣

∫ c

0
M(m,k)

s′(nz):nz(an,m + bn,mx)dAn(nz)

+

∫ ∞

c
M(m,k)

s′(nz):nz(an,m + bn,mx)dAn(nz)

−
∫ c

0
H(m,k)(x;τ,z)dA(z)−

∫ ∞

c
H(m,k)(x;τ,z)dA(z)

∣

∣

∣

∣

<

∣

∣

∣

∣

∫ c

0
M(m,k)

s′(nz):nz(an,m + bn,mx)dAn(nz)

−
∫ c

0
H(m,k)(x;τ,z)dA(z)

∣

∣

∣

∣

+

∣

∣

∣

∣

∫ ∞

c
M(m,k)

s′(nz):nz(an,m + bn,mx)dAn(nz)

∣

∣

∣

∣

+

∣

∣

∣

∣

∫ ∞

c
H(m,k)(x;τ,z)dA(z)

∣

∣

∣

∣

= 7ε.

This completes the proof of the first part of the theorem.
Turning to the condition (A) with (C2), starting with

the relation (4), we notice that

X(s′(nz),nz,m,k)− an,m√
rn

=

√

rnz

rn
Y0+T (m,k)

nz , (12)

where T (m,k)
nz =

√

1−rnz
rn

[Y (s′(nz),nz,m,k)

−(1− rnz)
− 1

2 an,m] ≤
√

1−rnz
rn

[Y (s′(nz),nz, m,k)− an,m],

for largen, since 0≤ rnz ≤ 1 andan,m > 0, for largen.

Therefore,|T (m,k)
nz | ≤ |Y (s′(nz),nz,m,k)− an,m|r−

1
2

n , since
0 ≤ rnz ≤ 1. Applying the condition thatrn is slowly
varying, then, for every finite valuez, we have
√

rnz
rn

−→n 1. Therefore,

P

(√

rnz

rn
Y0 < x

)

w−→n N (x). (13)

On the other hand, for everyε > 0, we get

P
(

|T (m,k)
nz | ≥ ε

)

≤ P

( |Y (s′(nz),nz,m,k)− anz,m|
bnz,m

× r
− 1

2
n bnz,m +Ln,m ≥ ε

)

= P

( |Y (s′(nz),nz,m,k)− anz,m|
bnz,m

≥ (ε −Ln,m)

√
rnz

bnz,m
×
√

rn

rnz

)

, (14)

where

Ln,m =
anz,m − an,m√

rn
=

1√
rn

[

(
1

bnz,m
− 1

bn,m
)

−1
2

(

bnz,m(loglog(nz)
1

m+1 + log4π)

− bn,m(log logn
1

m+1 + log4π)
)]

.

Applying, 1√
rn
( 1

bnz,m
− 1

bn,m
) = logz√

2(m+1)rn logn
(1 + ◦(1))

−→n 0, we get

lim
n→∞

Ln,m = lim
n→∞

−1
2
√

rn





log 1
m+1(logn+ logz)+ log4π
√

2log(nz)
1

m+1

− loglogn
1

m+1 + log4π
√

2logn
1

m+1





= lim
n→∞

−1

2
√

2rn
m+1 logn

[

log(1+
logz
logn

)
1

m+1 −
[

(loglogn) logz
2logn

+
(log(1+ logz

logn )) logz

2logn
+

(log4π) logz
2logn

]

(1+ ◦(1))
]

= 0.

Since rnz
rn

−→n 1 and rnz
bnz,m

=
√

2rnz
m+1 lognz−→n ∞, the

relation (14) implies

P
(

|T (m,k)
nz | ≥ ε

)

−→n 0. (15)

c© 2016 NSP
Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci.10, No. 3, 1081-1090 (2016) /www.naturalspublishing.com/Journals.asp 1085

Combining (12), (13), (14) and (15), Lemma 2.2.1 in [13]

thus yields M(m,k)
s′(nz):nz(an,m + bn,mx) w−→n N (x). The

remaining part of this case follows exactly as the proof of
the casern logn−→n τ.

Turning now to prove the converse part that (B1) and
(C1) imply (A). Starting with the relation (4), by the
compactness of df’s, we can select a subsequencen⋆,
such thatAn⋆(n⋆z)

w−→
n⋆

A⋆(z), whereA⋆(z) is an extended

df (i.e., A⋆(∞)−A⋆(0) ≤ 1). Therefore, by repeating the
first part of theorem (whenτ = 0) for the subsequencen⋆,
with the exception that the pointc is chosen such that

A⋆(∞) − A⋆(c) ≤ ε, we get M(m,k)
s′(νn⋆ ):νn⋆

(an⋆,m +bn⋆,mx)
w−→
n⋆

Ψ(x) =
∫ ∞

0 Γ̄Rs(ze−(m+1)x) dA⋆(z). Since, the two

limits Ψ(x) and Γ̄Rs(ze−(m+1)x) are df’s, then
Ψ(∞) = 1 =

∫ ∞
0 dA⋆(z) = A⋆(∞)− A⋆(0). Thus,A⋆ is a

df. Now, if An(nz) did not converge weakly, then we
could select two subsequencesn1 and n2 such that
Ani(zni)

w−→n1
Ai(z), i = 1,2. This implies that

Ψ(x) =
∫ ∞

0
Γ̄Rs(ze−(m+1)x)dA1(z)

=

∫ ∞

0
Γ̄Rs(ze−(m+1)x)dA2(z). (16)

Let Gi(t) =
∫ ∞

0 Γ̄Rs(tz)dAi(z), i = 1,2. Clearly, G1(t) and
G2(t) are analytic functions in the region
D = {t : 0< |t| < ∞}. Moreover, in view of (16), G1 and
G2 coincide on some interval contained inD. for all real
values ofx. Thus by the uniqueness theory of analytic
functions, G1(t) and G2(t) coincide on the regionD,
which means thatA1(z) = A2(z). This completes the
proof of the theorem.�
Theorem 2.2. Let νn be a sequence of integer valued rv’s

independent of X1, ...,Xn and P(νn < x) = An(x).
Furthermore,

(A):let An(nx) w−→n A(x), whereA(+0) = 0 andA(x) is a
non-degenerate df. Then

(B1):P
(

Xd(s
′(νn),νn,m,k)+an,m

bn,m
< x
)

w−→n Ψ(x)

=
∫ ∞

0 Hd(m,k)(x;τ,z)dA(z), if
(C1):rn logn−→n τ ≥ 0, where

Hd(m,k)(x;τ,z)

=

{

Γ̄Rs(ze(m+1)x−τ )∗N (
√

m+1
2τ x), τ > 0,

Γ̄Rs(ze(m+1)x), τ = 0.

Moreover,
(B2):P

(

Xd(s
′(νn),νn,m,k)+an,m√

rn
< x
)

w−→n N (x), if

(C2):rn logn−→n ∞ andrn is slowly varying function ofn.

Conversely, if (B1) and (C1) (with τ = 0) hold, then the
relation (A) will be satisfied.
Proof. By representation (2) and by using Theorem 1.1 of

[5], it is easy to see that the proof of Theorem 2.2 is
similar to the proof of Theorem 2.1, with only the
exception of obvious changes.�

Theorem 2.3. Let νn be a sequence of integer valued rv’s

independent of X1, ...,Xn and P(νn < x) = An(x).
Furthermore,

(A):let An(nx) w−→n A(x), whereA(+0) = 0 andA(x) is a
non-degenerate df. Then

(B1):P

(

X(s,νn,m,k)+a
′
n,m

b′n,m
< x

)

w−→n Ψ(x)

=
∫ ∞

0 H(m,k)(x;τ,z)dA(z), if
(C1):rn logn−→n τ ≥ 0, where

H(m,k)(x;τ,z) =
{

Γs(zex−τ)∗N ( x√
2τ ), τ > 0,

Γs(zex), τ = 0.

Moreover,

(B2):P

(

X(s,νn,m,k)+a
′
n,m√

rn
< x

)

w−→n N (x), if

(C2):rn logn−→n ∞ andrn is slowly varying function ofn.

Conversely, if (B1) and (C1) (with τ = 0) hold, then the
relation (A) will be satisfied.
Proof. By representation (1) and by using Theorem 1.1 of

[5], it is easy to see that the proof of Theorem 2.3 is
similar to the proof of Theorem 2.1, with only the
exception of obvious changes.�

Theorem 2.4. Let νn be a sequence of integer valued rv’s

independent of X1, ...,Xn and P(νn < x) = An(x).
Furthermore,

(A):let An(nx) w−→n A(x), whereA(+0) = 0 andA(x) is a
non-degenerate df. Then

(B1):P

(

Xd(s,νn,m,k)−a
′
n,m

b′n,m
< x

)

w−→n Ψ(x)

=
∫ ∞

0 Hd(m,k)(x;τ,z)dA(z), if
(C1):rn logn−→n τ ≥ 0, where

Hd(m,k)(x;τ,z) =
{

Γ̄Rs(ze−(x+τ))∗N ( x√
2τ ), τ > 0,

Γ̄Rs(ze−x), τ = 0.

Moreover,

(B2):P

(

Xd(s,νn,m,k)−a
′
n,m√

rn
< x

)

w−→n N (x), if

(C2):rn logn−→n ∞ andrn is slowly varying function ofn.

Conversely, if (B1) and (C1) (with τ = 0) hold, then the
relation (A) will be satisfied.
Proof. By representation (2) and by using Theorem 1.2 of

[5], it is easy to see that the proof of Theorem 2.4 is similar
to the proof of Theorem 2.1, with only the exception of
obvious changes.�

Although, the above theorems provide a set-up, which
includes many interesting models such as oos, sos and
pos, with censoring scheme(R, ...,R) ∈ N M, a number
of models of gos are excluded in this set-up, e.g., pos with
general censoring scheme(R1, ...,RM). The following two
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theorems extend Theorems 2.3 and 2.4 to a very wide
subclass of gos in which the vector ˜m = (m1,m2, ...,mn−1)
is arbitrarily chosen such thatmi > −1, i = 1,2, ...,n−1,
and the parametersγ1,n,γ2,n, ...,γn,n are pairwise different,
i.e., γi,n 6= γ j,n, i 6= j, for all i, j ∈ {1, ...,n}. For instance,
this assumption is no restriction on pos with general
censoring scheme(R1, ...,RM).

Theorem 2.5. Let áγ1,n = 1
b́γ1,n

− 1
2 b́γ1,n(log logγ1,n

+ log4π), b́γ1,n = (2logγ1,n)
−1
2 and γ1,n −→n ∞.

Furthermore, letνn be a sequence of integer valued rv’s
independent of X1, ...,Xn and P(νn < x) = An(x).
Furthermore,

(A):let An(nx) w−→n A(x), whereA(+0) = 0 andA(x) is a
non-degenerate df. Then

(B1):P

(

X(s,νn,m̃,k)+a
′
γ1,n

b
′
γ1,n

< x

)

w−→n Ψ(x)

=
∫ ∞

0 H(m̃,k)(x;τ,z)dA(z), if
(C1):rn logγ1,n −→n τ ≥ 0, where

H(m̃,k)(x;τ,z) =
{

Γs(zex−τ )∗N ( x√
2τ
), τ > 0,

Γs(zex), τ = 0.

Moreover,

(B2):P

(

X(s,νn,m̃,k)+a
′
γ1,n√

rn
< x

)

w−→n N (x), if

(C2):rn logγ1,n −→n ∞ andrn is slowly varying function of
n.

Conversely, if (B1) and (C1) (with τ = 0) hold, then the
relation (A) will be satisfied.
Proof. By representation (1) and by using Theorem 2.1 of

[4], it is easy to see that the proof of Theorem 2.5 is
similar to the proof of Theorem 2.3, with only the
exception of obvious changes.�

Theorem 2.6. Let νn be a sequence of integer valued rv’s

independent of X1, ...,Xn and P(νn < x) = An(x).
Furthermore,

(A):let An(nx) w−→n A(x), whereA(+0) = 0 andA(x) is a
non-degenerate df. Then

(B1):P

(

Xd(s,νn,m̃,k)−a
′
γ1,n

b
′
γ1,n

< x

)

w−→n Ψ(x)

=
∫ ∞

0 Hd(m̃,k)(x;τ,z)dA(z), if
(C1):rn logγ1,n −→n τ ≥ 0, where

Hd(m̃,k)(x;τ,z) =
{

Γ̄Rs(ze−(x+τ))∗N ( x√
2τ ), τ > 0,

Γ̄Rs(ze−x), τ = 0.

Moreover,

(B2):P

(

Xd(s,νn,m̃,k)−a
′
γ1,n√

rn
< x

)

w−→n N (x), if

(C2):rn logγ1,n −→n ∞ andrn is slowly varying function of
n.

Conversely, if (B1) and (C1) (with τ = 0) hold, then the
relation (A) will be satisfied.
Proof. By representation (2) and by using Corollary 2.1 of
[3], it is easy to see that the proof of Theorem 2.6 is similar
to the proof of Theorem 2.4, with only the exception of
obvious changes.�

3 Central m-gos (dgos) with random indices
in a sGs

Let 0< λ < 1 andx0 be such thatN (x0) = λ . Moreover,
let sn be a central rank sequence such that√

n( sn
n − λ )−→n 0. It is known that (c.f. Theorem 2.2 of

[2])

P(
Y (sn,n,m,k)− x0

cn
< x),P(

Yd(sn,n,m,k)− x0

cn
< x)

w−→n N (
c∗λ (m)

c∗λ
(m+1)x),

wherecn =

√
λ (1−λ )√
nφ(x0)

, φ(x) = 1√
2π e−

x2
2 is the pdf of the

standard normal distribution,cλ =
√

λ (1−λ ), λ (m) =

1− (1−λ )
1

m+1 andc∗λ =
cλ
λ
. Under the above conditions

concerningλ andsn, the following theorem gives the limit
df of the snth centralm-gos andm-dgos of sGs’s (1) and
(2), respectively.
Theorem 3.1. Let the condition (A) in Theorems 2.1-2.6

satisfied. Then,

(B⋆
1):P(X(sνn ,νn,m,k)−x0

cn
< x) w−→n Φ(x)

=
∫ ∞

0 L(x;τ,z)dA(z), if
(C⋆

1): nrn −→n τ ≥ 0, where L(x;τ,z)

= N

(

(
√

z λ (1−λ )
τφ2(x0)+λ (1−λ )

c∗λ(m)

c∗λ
(m+1)x

)

. Moreover,

(B⋆
2): P(X(sνn ,νn,m,k)−x0√

rn
< x) w−→n N (x), if x0 ≥ 0 and

(C⋆
2): nrn −→n ∞ andrn is slowly varying function ofn.

Conversely, if (B⋆1) and (C⋆1) hold, then the relation (A) will
be satisfied.
Proof. Proceeding exactly as the proof of (3), we get

M(m,k)
sνn :νn(x0+ cnx) = P(X(sνn ,νn,m,k) < x0+ cnx)

=

∫ ∞

0
M(m,k)

snz:nz(x;z,τ)dAn(nz), (17)

where M(m,k)
snz:nz(x;z,τ) = P(X(snz,nz,m,k) < x0 + cnx).

First, consider the condition (A) with (C⋆1), by using (1),
we get

X(szn,nz,m,k)− x0

cn
=

√
rnz

cn
Y0

+

√
1− rnzY (szn,nz,m,k)− x0

cn
=U (m,k)

nz +V (m,k)
nz , (18)

c© 2016 NSP
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U (m,k)
nz =

√
nzrnzφ(x0)√
zλ (1−λ )

Y0 and V (m,k)
nz =

√
1−rnzY (snz,nz,m,k)−x0

cn
.

Moreover, U (m,k)
nz and V (m,k)

nz are independent. If
nrn −→n τ, 0≤ τ < ∞, then

P(U (m,k)
nz < x) w−→n N (

√

z λ (1−λ )
τφ2(x0)

c∗λ(m)

c∗λ
(m+1)x),

if τ > 0,

U (m,k)
nz

p−→n 0, if τ = 0.



















(19)

On the other hand, we have

P(V (m,k)
nz < x) = P(Y (snz,nz,m,k) < Anz,m +Bnz,mx), (20)

where Anz,m = x0√
1−rnz

and Bnz,m = cn√
1−rnz

. Now, if

nrn −→n τ ≥ 0, we get

Anz,m − x0

cnz
=

(1+ rnz
2 (1+ o(1)))x0− x0
√

λ (1−λ )
√

nzφ(x0)

∼
√

rnz
√

nzrnzx0φ(x0)

2
√

λ (1−λ )
−→n 0.

Moreover,Bnz,m
cnz

= (1+ rnz
2 (1+ o(1)))−→n

√
z. Therefore,

an application of Khinchin’s type theorem yields

P(V (m,k)
nz ≤ x) w−→n N (

√
z

c∗λ (m)

c∗λ
(m+1)x). (21)

By combining (18),(19), (20) and (21), we get

M(m,k)
snz:nz(x0+ cnx) w−→n L(x;τ,z)

=N (

√

z
λ (1−λ )

τφ2(x0)+λ (1−λ )
c∗λ (m)

c∗λ
(m+1)x),τ ≥ 0, (22)

uniformly with respect tox over any finite interval ofz (the
continuity of the limit inx, implies that the convergence is
uniform). The remaining part of the proof of the theorem,
under the condition∞ > τ ≥ 0, follows now by using the
relations (17) and (22) exactly as the proof of Theorem 2.1,
under the same condition (i.e.,rn logn−→n τ ≥ 0).

Turning now to the proof of the condition (A) with

(C⋆
2), by using (1), we get X(snz,nz,m,k)−x0

√
1−rnz√

rn

=
√

rnz
rn

Y0 + S(m,k)
nz , where |S(m,k)

nz |
=

√
1−rnz√

rn
|Y (snz,nz,m,k)− x0| ≤ |Y (snz,nz,m,k)−x0|√

rn
. Thus,

P(|S(m,k)
nz | ≥ ε)≤ P

( |Y (snz,nz,m,k)− x0|√
rn

≥ ε
)

= P

(

|Y (snz,nz,m,k)− x0|
cnz

≥
√

nzrnφ(x0)
√

λ (1−λ )
ε

)

w−→n 0.

Lemma 2.2.1 in [13] thus yieldsM(m,k)
snz:nz(x0 + cnx) w−→n

N (
c∗λ(m)

c∗λ
(m + 1)x). The derivation of the limit df’s of

central m-dgos of sGs (2) is proceeded exactly as the
same as those of centralm-gos of the sequence (1). The
remaining part of the proof of the theorem, under the
conditionτ = ∞, follows now by using the relations (17)

and the last relation (i.e.,M(m,k)
snz:nz(x0 + cnx) w−→n N (

c∗λ(m)

c∗λ
(m + 1)x). uniformly with respect tox) exactly as the
proof of Theorem 2.1, under the conditionrn logn−→n ∞.

Turning now to prove the converse part that (B⋆
1) and

(C⋆
1) imply (A). Starting with the relation (17), by the

compactness of df’s, we can select a subsequencen⋆,
such thatAn⋆(n⋆z)

w−→
n⋆

A⋆(z), whereA⋆(z) is an extended

df (i.e., A⋆(∞)−A⋆(0) ≤ 1). Therefore, by repeating the
first part of theorem for the subsequencen⋆, with the
exception that the pointc is chosen such that

A⋆(∞) − A⋆(c) ≤ ε, we get M(m,k)
sνn⋆

:νn⋆
(x0 + cn⋆x)

w−→
n⋆

Φ(x) =
∫ ∞

0 L(x;τ,z)dA⋆(z). Since, the two limitsΦ(x)
and L(x;τ,z) are df’s, thenΦ(∞) = 1 =

∫ ∞
0 dA⋆(z)

= A⋆(∞)−A⋆(0). Thus,A⋆ is a df. Now, ifAn(nz) did not
converge weakly, then we could select two subsequences
n1 and n2 such thatAni(zni)

w−→n1
Ai(z),vi = 1,2. In this

case, we have

Φ(x) =
∫ ∞

0
N
(

σ
√

zx
)

dA1(z)

=

∫ ∞

0
N
(

σ
√

zx
)

dA2(z), (23)

where σ =
√

λ (1−λ )
τφ2(x0)+λ (1−λ )

c∗λ(m)

c∗λ
(m + 1). Let

Gi(t) =
∫ ∞

0 N (t
√

z)dAi(z), i = 1,2. If the functionsG1(t)
andG2(t) are determined in an intervalt1 < t < t2, then in
this interval both of them will be analytic. By
differentiatingG1(t) andG2(t) with respect tot, in view

of (23), we get
∫ ∞

0 e−
σzt2

2
√

zdA1(z) =
∫ ∞

0 e−
σzt2

2
√

zA2(z).

Put σ⋆ = σt2
2 , we get

∫ ∞
0 e−σ⋆z√zdA1(z) =

∫ ∞
0 e−σ⋆z√z

dA2(z). Since, the Laplace transformations with respect
to the measures

√
zA1(z) and

√
zA2(z) coincide, we

deduce thatA1(z) = A2(z). This completes the proof of
the theorem.�

The derivation of the limit df’s of centralm-dgos of
Gaussian sequence (2) is proceeded exactly as the same as
those of centralm-gos of the sequence (1).

4 Intermediate m-gos (dgos) with random
indices in a sGs

In this section we consider a general nondecreasing
intermediate rank sequencesn = ◦(n)−→n 0, for which
logsn
logn

−→n β , 0 ≤ β ≤ 1. Actually, the latter condition is
very wide, e.g., it is easily to verify that this condition is
satisfied, withβ = α, when sn ∼ ℓ2nα , 0 < α < 1 (the
Chibisov rank sequence, see [10]). Also, this condition
will be satisfied, withβ = 0, whensn = logn (i.e., when
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the rank sequence is slowly varying function ofn).
Finally, it will be satisfied, withβ = 1, when sn = n

logn
(i.e., when the rank sequence is rapidly varying function
of n). The following results is indispensable for the study
the intermediatem-gos X(s⋆(n),n,m,k), and m-dgos
Xd(sn,n,m,k), wheres⋆(n) = n− sn +1.
Lemma 4.1. Let Y1,Y2, ...,Yn, be iid rv’s, with common df
N (x). Furthermore, letY (1,n,m,k) ≤ Y (2,n,m,k) ≤ ...
≤ Y (n,n,m,k) be the correspondingm-gos. Then,

P(Y (s⋆(n),n,m,k)−xωn
dωn

< x) w−→n N ((m + 1)x), where

dn = 1
xn
√

sn
, 1−N (xn) =

sn
n , xn ∼

√

2log n
sn
, asn → ∞,

and ωn = sN(
sN
n )

−1
m+1 (remember thatN = k

m+1 +n − 1
∼ n, thusωn = ◦(n)−→n ∞).
Lemma 4.2. Let Yd(1,n,m,k) ≥ Yd(2,n,m,k) ≥ ...
≥ Yd(n,n,m,k) be m-dgos corresponding to the rv’s

Y1,Y2, ...,Yn. Then, P(Yd(sn,n,m,k)−xσn
dσn

< x) w−→n N (x),

wheredn = − 1
xn
√

sn
, N (xn) =

sn
n , xn ∼ −

√

2log n
sn
, as

n → ∞, andσn = (m+1)N.
Theorem 4.1. Let the condition (A) in the Theorems

2.1-2.6 satisfied. Then,

(B⋆⋆
1 ): P(

X(s⋆(νn),νn,m,k)−xωνn
dωn

< x) w−→n
N ( (m+1)z

η
2√

1+2ντzη (m+1)(mβ+1)(1−β )
x), 0≤ ν,η < ∞, if

(C⋆⋆
1 ): rnsn logn−→n τ ≥ 0, sωn

sn
−→n ν and sωnz

sωn
−→n zη .

Moreover,

(B⋆⋆
2 ): P(

X(s⋆(νn),νn,m,k)−xωνn

√
1−rνn√

rn
< x) w−→n N (x), if

(C⋆⋆
2 ): rnsn logn−→n ∞ andrn is slowly varying function of
n.

Remark 4.1. Actually, the condition sωn
sn

−→n ν is not

restrictive for being that the sequencesωn
sn

is bounded, as
n → ∞. This fact can be easily seen, sincesn is
nondecreasing andωn = ◦(n) ≤ n, for largen. Moreover,
it is easily to see thatν = 0, for the two casessn ∼ ℓ2nα

andsn ∼ n
logn . Moreover,ν = 1

m+1, if sn ∼ logn.
Remark 4.2. It is easily to see thatη = α

m+1, for

sn ∼ ℓ2nα andη = 1
m+1, for sn ∼ n

logn . On the other hand,
η = 0, whensn ∼ logn.
Proof. Proceeding exactly as the proof of (4), we get

M(m,k)
s⋆νn ,νn

(xνn + bnx) = P(X(s⋆(νn),νn,m,k) < xωνn
+ dωnx)

=
∫ ∞

0
M(m,k)

s⋆(zn):nz(x;z,τ)dAn(nz), (24)

where M(m,k)
s⋆zn:nz(x;z,τ) = P(X(s⋆(nz),nz,m,k) < xωnz

+dωnx). First, consider the condition (A) with (C⋆⋆1 ), by
using (1), we get

X(s⋆(nz),nz,m,k)− xωnz

dωn

=

√
rnz

dωn

Y0

+

√
1− rnzY (s⋆(nz),nz,m,k)−xωnz

dωn

=U (m,k)
nz +V (m,k)

nz . (25)

Moreover,U (m,k)
nz and V (m,k)

nz are independent. Then, if
snrn logn−→n τ, 0≤ τ < ∞, and logsn

logn
−→n β ,0≤ β ≤ 1, it

is easily to check thatsnrn logωn −→n τ
m+1(mβ + 1).

Consequently, we get

xωn

√
sωn rnz ∼

√

2snrn logωn

√

rnz

rn

sωn

sn

√

1− logsωn

logωn

−→n
√

2ντ
m+1

(mβ +1)(1−β ).

Thus,

P(U (m,k)
nz < x) w−→n N (

√

m+1
2ντ(mβ+1)(1−β )x),

if τ > 0,β 6= 1,ν > 0,

U (m,k)
nz

p−→n 0, if τ = 0, or β = 1, or ν = 0.











(26)

On the other hand, we have

P(V (m,k)
nz <x)=P(Y (s⋆(nz),nz,m,k)<Aωnz +Bωnzx), (27)

whereAωnz =
xωnz√
1−rnz

and Bωnz =
dωn√
1−rnz

. It is clear that

Bωnz
dωnz

=
(1−rnz)

− 1
2 dωn

dωnz
= (1+ rnz

2 (1+ o(1))) xωnz
xωn

√

sωnz
sωn

−→n
(
√

z)η , for rnz −→n 0 and xωnz
xωn

−→n 1. Moreover, Aωnz−xωnz
dωnz

∼ 1
2(xωnz

√
snzrnz)(

√

sωnz
snz

)(
√

rnzxωnz) −→n 0, since
√

rnzxωnz
−→n 0 and sωnz

snz
≤ 1, for large n. Therefore, in

view of Lemma 4.1 and by applying Khinchin’s type
theorem, we get

P(V (m,k)
n < x) w−→n N ((m+1)z

η
2 x). (28)

Combining (25),(26), (27) and (28), we get (B⋆⋆1 ).
Turning now to the proof of the condition (A) with

(C⋆⋆
2 ), by using (1), we get

X(s⋆(nz),nz,m,k)−xωnz
√

1−rnz√
rn

=
√

rnz
rn

Y0 + T (m,k)
nz , where

|T (m,k)
nz | =

√
1−rnz√

rn
|Y (s⋆(nz),nz,m,k) − xωnz | ≤

|Y (s⋆(nz),nz,m,k)−xωnz |√
rn

and
√

rnz
rn

−→n 1. Thus,

P(|T (m,k)
nz | ≥ ε)≤ P

( |Y (s⋆(nz),nz,m,k)− xωnz |√
rn

≥ ε
)

= P

( |Y (s⋆(nz),nz,m,k)−xωnz |
dωnz

≥√
snzrnzxωnz

√

sωnz

snz

√

rn

rnz
ε
)

−→n 0.

Therefore, Lemma 2.2.1 in [13] implies (B⋆⋆
2 ) The

remaining part of the proof of the theorem, under the
conditionτ = ∞, follows now by using the relations (24)

and the relationM(m,k)
s⋆nz:nz(xωnz + dωnx) w−→n N (x) exactly as
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the proof of Theorem 2.1, under the condition
snrn logn−→n ∞. This completes the proof of the
theorem.�
Theorem 4.2. Let the condition (A) in Theorems 2.1-2.6

satisfied. Then,

(B⋆⋆
1 ): P(

Xd(s(νn),νn,m,k)−xσνn
dσn

< x) w−→n
N ( z

ξ
2√

1+2µτzξ (1−β )
x), 0≤ µ ,ξ < ∞, if

(C⋆⋆
1 ): rnsn logn−→n τ ≥ 0, sσn

sn
−→n µ and sσnz

sσn
−→n zξ .

Moreover,

(B⋆⋆
2 ): P(

Xd(s(νn),νn,m,k)−xσνn

√
1−rνn√

rn
< x) w−→n N (x), if

(C⋆⋆
2 ): rnsn logn−→n ∞ andrn is slowly varying function of
n.

Proof. The proof of theorem follows along the same line
of the proof of Theorem 4.1, by combining the result of [9]
with the result of Lemma 3.1 of [6]. Note that in this case
µ = (m+1)α andξ = α whensn ∼ ℓ2nα , while µ =m+1
andξ = 1 whensn ∼ n

logn . Moreover,µ = 1 andξ = 0
whensn ∼ logn.�

5 Conclusion

Often the realizations of experiments in reliability
analysis and lifetime studies are stationary and arise in
nondecreasing (or nonincreasing) order, where in such
experiments it is almost impossible to have a fixed sample
size, because some observations always get lost for
various reasons. Hence, the need arises to establish the
limiting distributions of several models of ascendingly (or
descendingly) ordered stationary random variables with
random number. In this paper we obtained the limit
distributions of extreme, intermediate and central
generalized order statistics, as well as dual generalized
order statistics, of a stationary Gaussian sequence of
random variables under equi-correlated set up, when the
sample size is itself a random variable.
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