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Abstract: In this paper, a posteriori error estimates for paraboliasifrariational inequalities with linear source termsatedl to a
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1 Introduction hedging and is the basis of more complicated hedging

strategies such as those engaged in by investment banks
The Black—Scholes29] or Black—Scholes—Merton model 54 hedge funds.
is a mathematical model of a financial market containing Robert C. Mert the first t blish
derivative investment instruments. From the model, one obert L. MVerton was the Mrst o publish a paper
can deduce the Black-Scholes formula, which gives aexpandlng the mathematical understanding of the options

theoretical estimate of the price of European-styleg”gg]r?s Tﬁ:?r?llmac:]gel'?ol\l/ln;?or:h:n dtegg]olgéafekési\fggltise
options. The formula led to a boom in options trading and1897 N([))bel I\%Iemorial' Prize in Economic Sciences for
legitimised scientifically the activities of the Chicago

: : heir work. Though ineligible for the prize because of his
Board Options Exchange and other options market§ . . >
around the world 29 It is widely used, although often death in 1995, Black was mentioned as a contributor by

with adjustments and corrections, by options marketthe Swedish Academy2p)

participants 29). Many empirical tests have shown that ~ The model's assumptions have been relaxed and
the Black—Scholes price is "fairly close” to the observed generalized in many directions, leading to a plethora of
prices, although there are well-known discrepancies suctinodels that are currently used in derivative pricing and
as the "option smile”29]. risk management. It is the insights of the model, as
The Black-Scholes model was first published byexemplified in the BIack-SchpIgs formula,. t'hat'are
Fischer Black and Myron Scholes in their 1973 paper,frequently used by market participants, as distinguished
"The Pricing of Options and Corporate Liabilities”, from the actual prices. These |.n§|ghts include no-arbétrag
published in the Journal of Political Economy. They bounds and risk-neutral pricing. The Black-Scholes
derived a partial differential equation, now called the €quation, a partial differential equation that governs the
Black—Scholes equation, which estimates the price of therice of the option, is also important as it enables pricing
option over time. The key idea behind the model is to When an explicit formula is not possible.
hedge the option by buying and selling the underlying  The American options problem in a black scholes
asset in just the right way and, as a consequence, tmodel with constant coefficients and without dividend
eliminate risk. This type of hedging is called delta may be solved by considering the following Parabolic
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Quai-Variational Inequalities (PQVIs) with respect to the gaseous deposit.. (cf., e.gl]] From the mathematical
right-hand side as a linear source terms and an obstaclenalysis point of view, probleml) was intensively

defined as an impulse control problem: find
u(t,x) € L*(0,T,D(Q))NC2(0,T,H 1 (Q))
Jou

- < i
ot +Au<f inZ,

u < Mu,
u (1)
(dt +Au— f) (u—Mu) =0,

u(0,x) =upin Q, u=00ndQ,

whereZ is a set inR x R" defined as¥ = Q x [0,T]
with T'< +o , andQ is a smooth bounded domain &f
with sufficiently smooth boundarly and A is an operator
defined oveH?! (Q)

A=—-A+a 2
and a € L?(0,T,L®(Q))NnCO(0,T,H 1(Q)) is
sufficiently smooth functions and satisfy the following

condition:
ap(t,x) > B >0, B is a constant, 3)

andf (.) the right hand side satisfy

feL?(0,T,L*(Q))NCH(0,T,H1(Q)), f >0, (4)
M is an operator given by

Mu=k+ inf _u(x+£), (5)
E>0x+¢€Q

wherek > 0andé >0 and
Mu € L2 (0,T,W3*(Q)). (6)

Under B0 M is satisfying some proprieties as:
M is concavity that is to say, far,v € C(Q)

M(du+ (1—90)v) > M (u)+ (L—0)M(v) (7)
and

vYneR,MU+n)=M(u)+n. (8)

The symbol(.,.), stands for the inner product in
L2(Q).

studied in the late 1980s (sedl], [12] ). On the
numerical and computational side 6][ [8]-[11]).
However, as far as finite element approximation is
concerned, only few works are known in the literature
([3]-[6], [8]-[11]).

The Schwarz alternating method can be used to solve
elliptic boundary value problems on domains which
consist of two or more overlapping subdomains. It was
invented by Herman Amandus Schwarz in 1890. This
method has been used for solving the stationary or
evolutionary boundary value problems on domains which
consist of two or more overlapping subdomains (see
[2]-[6], [9], [10], [17]-[19], [8], [20]-[28]). The solution
to these qualitative problems is approximated by an
infinite sequence of functions resulting from solving a
sequence of stationary or evolutionary boundary value
problems in each of the subdomains. An extensive
analysis of Schwarz alternating method for nonlinear
elliptic boundary value problems can be found in
[12]-[14], [1€], [20]. Also the effectiveness of Schwarz
methods for these problems, especially those in fluid
mechanics, has been demonstrated in many papers. See
the proceedings of the annual domain decomposition
conferencel5] and [21]-[23], [25]-[26], [24]. Moreover,

a priori estimates of the errors for stationary problems is
given in several papers; see for instan2g][[23] where

a variational formulation of the classical Schwarz method
is derived. In R1], geometry-related convergence results
are obtained. In16,17,18], an accelerated version of the
GODDM has been treated. In addition, inl€],
convergence for simple rectangular or circular geometries
has been studied. However, a criterion to stop the iterative
process has not been given. All these results can also be
found in the recent books on domain decomposition
methods 9], [8]. Recently in [L7], [18], an improved
version of the Schwarz method for highly heterogeneous
media has been presented. The method uses new
optimized boundary conditions specially designed to take
into account the heterogeneity between the subdomains
on the boundaries. A recent overview of the current state
of the art on domain decomposition methods can be found
in [1], [24].

In general, the a priori estimate for stationary
problems is not suitable for assessing the quality of the
approximate solutions on subdomains, since it depends
mainly on the exact solution itself, which is unknown. An
alternative approach is to use an approximate solution
itself in order to find such an estimate. This approach
known as a posteriori estimate, became very popular in

The stationary and evolutlonary free boundarythe 1990s with finite element methods; see the
problems are encountered in several applications; fomonographs 1], [29. In [29], an algorithm for a

example, in stochastic control, the solution of) (

nonoverlapping domain decomposition has been given.

characterizes the infimum of the cost function associated\n a posteriori error analysis for the elliptic case has also
to an optimally controlled stochastic switching processbeen used by1] to determine an optimal value of the
without costs for switching and for the calculus of penalty parameter for penalty domain decomposition
guasi-stationary state for the simulation of petroleum ormethods for constructing fast solvers.
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Quite a few works on maximum norm error analysis 4 the results of some numerical experiments are presented
of overlapping nonmatching grids methods for elliptic to support the theory.
problems are known in the literature (cf., e.d4F-[159]).
To prove the main result of this paper, we proceed as in
[4]. More precisely, we develop an approach which 2 Parabolic quasi-variational inequalities
combines a geometrical convergence result, duel@ [
and a lemma which consists of an error estimation in theThe problem {) can be transformed into the following
maximum norm between the continuous and discretecontinuous parabolic quasi-variational inequalitiesdfin

Schwarz iterate. uelL?(0,T,D(Q))NC?(0,T,H1(Q)) solution to
In [4], the authors derived a posteriori error estimates
for the generalized overlapping domain decomposition au
method (GODDM) with Robin boundary conditions on <57V— U) +a(uv—u) > (f,v—u),
the boundaries for second order boundary value
problems; they have shown that the error estimate in the U< Mu. v<Mu (9)
continuous case depends on the differences of the traces - T ’
of the subdomain solutions on the boundaries after a du
discretization of the domain by finite elements method. u(0,x) =ugin Q, = 0ondQ
Also they used the techniques of the residual a posteriori N
error analysis to get an a posteriori error estimate for the  wherea(.,.) is the bilinear form defined as
discrete solutions on subdomains.
A numerical study of stationary and evolutionary free a(u,u) = (Ou, Ou) — (aou, u) (10)

boundary problems of the finite element, combined with a
finite difference, methods has been achieved 4 [ . . .
[101-[18, [27] and using the domain decomposition 2.1 The spatial discretization

method combined with finite element method, has been . ,
treated in §]-[11]. Moreover, in a recent researchj{we Let Q be decomposed into triangles angddenote the set

have treated the overlapping domain decompositiorP! @ll those elementh > 0 is the mesh size. We assume
method combined with a finite element approximation forthat -the family 7, is regu!ar and q_uasrunn‘orm. We
elliptic quasi-variational inequalities related to impel consider the usual basis of affine functiong,
control problem with respect to the mixed boundary! = {L:---m(n)} defined byg (Ms) = §s whereMs is a
conditions for Laplace operatat, where a maximum vertex of the conS|deredhtr|aqulat|on. We introduce the
norm analysis of an overlapping Schwarz method onfollowing discrete spaceg” of finite element
nonmatching grids has been used. Then,9hwWe have
extended the last result to the parabolic quasi variational ueL?(0,T,Hd(Q))NC(0,T,H (Q)), such that
inequalities with the similar conditions, and using the  ,
theta time scheme combined with a finite element spatia}/ B P K dU(.0) = tnin O oug 20
approximation, we have proved that the discretization on Ulk€ Py, Ki € Th, and u(.,0) = toin Q, 7 tin
every subdomain converges in uniform norm. (11)
Furthermore, a result of asymptotic behavior in uniform  wherery, is the usual interpolation operator defined by
norm has been given. )

In this paper, we prove an a posteriori error estimates/ € L2 (0, T,H} (2)) NC (0, T,H3 (Q)), rav=5 V(M) ¢i (x).
for the generalized overlapping domain decomposition =1 (12)
method with Dirichlet boundary conditions on the
boundaries for the discrete solutions on subdomains ofjig
PQVI with linear source terms using the theta time
scheme combined with a finite element spatial
approximation, similar to that in4], which investigated
Laplace equation. Moreover, an Furthermore, the results,;O"
of some numerical experiments are presented to support
the theory.

The outline of the paper is as follows: In section 2, we (ﬁ,vh — uh) +a(Un,Vh— Un) > (f (t),Vh — Un), Vhe VM,
introduce some necessary notations, then we give th t

variational formulation of our model. In section 3 and 4, a
posteriori error estimate for both continuous and discrete
cases are proposed for the convergence of the discret dun

solution using the theta time scheme combined with a ( Un(®) = tro. an =00naQ

finite element method on subdomains. Finally, in section (13)

k )

In the sequel of the paper, we shall make use of the
crete maximum principle assumption (dmp). In other
words, we shall assume that the matrie&g,s = a(¢p, ¢s)

is M-matrices 12].

We discretize in space the probler®),(we get the
owing semi-discrete PQVIs

Un < rpM, vh < 1hM,

(@© 2016 NSP
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Now, we need to prove the following main theorem,
so we use it in identifying the result on the time energy

i ok
behavior. <%,Vh B ugk) La (uﬁk,vh _ ugk)
Theorem 1.[30]Let us assume that the discrete bilinear
form a(.,.) is weakly coercive in ¥ H} (Q), there exist ok uﬁk*1 oK
two constants > 0 andA > 0 such that > | 7+ oarVh—Un | Vn € Vh. (13)

a(Un,Un) + A Unllz > o [|unl|y,
Then, the problem13) can be reformulated into the

where following coercive discrete system of elliptic
b ”2 , y quasi-variational inequalities
klloo
A= <2—y+§+|ao||m>,a—§
c (uﬁk,vh — uﬁk) > (fg’k+ put vy — uﬁk) RVRRTAYSAVA
(19)
2.2 A priory estimates for the semi-discrete such that
PQViIs
© (¥, v — UR) = p (Ug vh — Ug¥)
In [30], it can be identified the energy behavior +a(ng,Vh - Uﬁk) » Vh, ng € Vh, (20)
2 1
Eh(t):/(uh) dx =g k=1,
Q

Using the properties of thi in [31], we have
to the following result

Ul = Brauf + (1- ) rput < oy, (Muﬁ) +(1-8)r, (Muﬁ*)

En(t) < e 21-tg, (0
n(t) < e n(0) < rn (Buf+ (1 - 0)us™?)

t
L (n-2)(s-1) 2
+ 28/ leZn t (/(f) dx)]ds ) g

thus

o

Bk < ok
2.3 The time discretization Up~ < rhMup™. (21)

Now, we discretize the problenmi®) with respect to time . )
by using the theta-scheme. Therefore, we search &£-4 Stability analysis for the PQVIs
sequence of elementsuﬁ e VM which approaches
Un (t) , t = kAt, with initial datau® = ugp.

. 1 .
Thus we have, for ang < [0,1] andk = 1,...,n In [30], we proved that, if6 > > the theta-scheme way is

stable unconditionally, and if & 6 < 1 the theta scheme

) 2
(UE B uﬁfl’vh B uﬁk) L Ata (uﬁk,vh _ uﬁk) is stable unless
> At. (19K v, —uf® (10) A 2 5
= , , t<——h 22
where ) ]
uﬁk _ Guﬁ +(1-0) uﬁfl (11) whereAJ, are the eigenvalues of the operator
and Proposition 1.[30] We assume that the coerciveness
fOk—gfk4(1-9)f<1 (12)  condition a(.,.)of is satisfied withA = 0 for each

By multiplying and dividing byd and then by adding L,....,n we find

k-1
u : : .
ﬁ,vh —uf% | to both side of the inequalitied ), we {|um|§+2Atk§ a(udk ufk) < c(n) <||u0h||§+k§ At| fk||§> :
=1 =1
get (23)
(© 2016 NSP
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3 The space continuous for generalized process as soon as the required global precision is reached.

overlapping domain decomposition Namely, by applying Green formula in Laplace operator
with the new boundary conditions of generalized Schwarz

Let Q be a bounded domain iR? with a piecewiseC! ~ alternating method, we get
boundary” . We split the domain into two overlapping
subdomaing2; andQ, such that

QiNQy=0Q13, 0QsNQ, =T5, s#tandst =1,2.
(—A u6)7k,m+1 vy — uf,k7m+1)

We need the spaces Q
Dul 0,k mt+1 .0 ( ug,k7m+1‘>)
Q

Vs =HY(Q)NHY(Qs) = {ve HY(Qi) : Vagnaa = 0} <0u9 kom1 —
Np—up
and 001
5 auekm—H okmit
Ws =H¢ (ls) = {vr,, v€Vs andv=00ndQs\ls}, +| ———v1—u;"
. (14) .
which is a subspace of
o 0, km+1 i 0.k,m+-1
H32 (Is) = {(,/,/eL2 (Fs): @ =¢r, forp Vs, s=1,2}, _(D ok ’ (Vll U ))Ql
) ) 0 mH-1
equipped with the norm ( ! Vy— Uf km+1>
i I
[l =, inf [Vl o- (25) '

veVsv=¢ onTls

We define the continuous counterparts of the
continuous Schwarz sequences defined id9),(

respectively byl™™* € H}(Q), m=0,1,2, .., solution thus we can deduce

of
0.k m+1 0.k m+1
c(u V—uy CAGPRMEL y Okmi
0 k—1mi1 6.kmi1 1 LT
> (F (uf "‘*)Vul”‘*) = ok
o) = (Dul’ ™0 (vl uy’ ’m+1))
8.k mr1 =
i
ukm™l_0 ondQiNdQ =001, [ 9y i ok
on - ' 001
6, k,m+1 6.km 1—11
au;™® du;™ 6,k,m+1
L Faqudkmt 22 g Monn ou;™ e okmr
om om + om0 Ug
-
anduy*™* € HE (@) solution of _ (Due,k7m+1 - (v ue,k7m+1>)
1 ) 1 o
gughmt 0.k, Okmil Okmil
2 m m+ m+
c ue kL i e Kkmil - o +aguy " — oquy” —uy
_ : i
> (F (ug”k 1’”‘“) V- ug’k"‘“)Q . m=0,1,2,..,
2
_ (Duf,kmﬂ7 [ (Vl _ ue,k7m+1))Q
0.k m+1 1
Uy’ =0, ondQ2NIQ =0Q; I, Okmtl i Bkmil
+ | 01Uy Vp— Uy -
1
0.k m+1 6.km
0u I au P
2 0, km+1 1 6.k,m
—=—— + 02Uy’ ——— 4 0au,, on';
ona /s on, b 2, _ (Dug’k’m“, 0 (Vl ue km+1))Q
(27) L
. . . 0,k m+1 0,k m+1
wherens is the exterior normal t@2s andas is a real + (G u™ S, vi—U )r
1

parameters=1,2.

In the next section, our main interest is to obtainana_ [ 222 alug’k’m vy — uf’k*m” 7
posteriori error estimate, we need for stopping the iteeati n

(@© 2016 NSP
Natural Sciences Publishing Cor.


www.naturalspublishing.com/Journals.asp

1102 NS 2 S. Boulaaras et al.: A posteriori error estimates for the G®Tfor PE

and
:Eu;s the probleni5 equivalent to; findji’,k,erl € Vi such Sl feLmi o o
a 3 Y m m+
—A ug +a0u3
>F9( Ok~ 1'““) in Qs,
C(ue,k7m+1 vy — ue,k7m+1) + (alug’km,vl _ ui),l<7m+1)r 3
1
(Fe( Ok=1mtly v uf"m“)Q + udkm™l_ 0 ondQ3naQ,
1
gubkml Gubkml
gugmit 0.k, o.kmil e T - e Y T A V£
+<f97nl+““2 MU i ev on; 1 ons o !
K
- It can be takene?*™ — ygkmt _ 8k on ) the
and for @7), uy’ ™ e Vs, we have difference  between the overlapping and the
nonoverlapping solutloms|9km+1 and uekm+1 of the
C(ugkarl v _ugkm+l)+ (a ugkm+1 ugkm+1) problems 15 and @7) an_d (resp15 and 15) .
r Q3. Because both overlapping and the nonoverlapping
> (F(ug’k_l’m”),vz— u§’7k’”'+1)Q problems converge seéﬁ] that is, ug ™™ andud*m?
Guokmil oxm 6 k2 . tend touZ™* (resp.ud¥), thene?*™ should tend to naught
+| =gt aau M ) whenmtends to infinity inv; .
2 r By taking
‘ du 9 k,m ok
. . . . . 7m m
4 A posteriori error estimatein continuous A 0171 +aily’
case
0u9,k7m
Since it is numerically easier to compare the subdomain /\f’m =—5p @ uf m
solutions on the interfacel§ and I, rather than on the N3 (32)
overlap Q1», thus we need to introduce two auxiliary o.km 6.km
problems defined on nonoverlapping subdomaingof Akm _ 0us + agudkm o0& T efkm
This idea allows us to obtain the a posteriori error 3 o 3 om !
estimate by following the steps of Otto and Lul2d][ We ok
define these auxiliary problems by coupling each one of Akm _ ouy’ m 6.km
the problems15 and 27 with another problem in a 1~ Ton, + asuy’

nonoverlapping way ovef2. These auxiliary problems

are needed for the analysis and not for the computation Using Green formula, 15 and (5 can be

section. reformulated to the following system of elliptic
To define these auxiliary problems we need to split thevariational equations

domainQ into two sets of disjoint subdomaingQ, Q3)

and(Qy, Q4) such that C(Ufkm1 V1 —uf km+l)+ (0! Ufkm Vi — Ufkmﬂ)r
Q= 0,UQs with Q1N Qs =20 = QU Qs '
with QoM Q4 = 2. (Fe( 0,k— 1m+1) Vi ufkml)
2

Let (U™ u8™) be the solution of problentss and27,

we define the coupleu'i m U™ over (Q1,Q3) to be the + (/\km vi—ud km+l) v ey
solution of the following nonoverlapping problems n

(33)
and
kmtl o k—1mt1
up T —u
1 1 A fkmil 0,k m+1
Aug + akuy’ C(ug),l<7m+17\/3 _ ug7k,m+1) n (a ue kM ug7k,m+1) >

At e
>F6 (uf*‘mﬂ) in Qi :

(Fg( 0.k— 1m+1) Va ugkmﬂ) i
ukm™l_0 ondQiNoQ, k=1,..,n, a3

K, 0.km1 -
gubkmL oxm  OUSKMHL ok 4—(/\1'“,V3—u3 me )r W € V.
—L toaup® _27+oru2 ,only ! 34
an o (34)
(@© 2016 NSP
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On the other hand by taking

F) 9‘k,m
5’71

6.km

K,
6" = + o,

(15)

we get

6.k,m
(U™ —ug™)

+agud*my

0.km
A0Kkm _ Ou,
3 9
ni

+ al(u

om

0.k, 6.k,

6.km k,m
_ 9 4 aqudkm 1
om 3 oL

(16)

B o"ug’k’m
om

+ay ugkm

k,m
+okm.

Using (15) we have

a 9,k,m

Ak,m+1

6.k,m K,m+1
= +6F
3 om

+aguy

6.k,m
ouZw
-3 +O{1ugkm

ek,m+1
ns !

6.km
—aszuy’

6.k,m k,m+1
+ aqu + 6,
ons 3 !

=(a1+ ag)ug km_ /\::_(’m + Gf’m”
17
and the last equation ii7), we have

6.k,m
kmi1 _ OUg
N =

- om

+a3 ufkm

6.k,m
okm OUy

k 6.km 6.km
R an

— a1y’ +agu M+ asup’

6.k,m k,m
_/\3

= (a1 + 03)uy’ Gk L

(18)

4.1 Semi discrete algorithm

The sequence@?*™ ug*™), .\ solutions of (5) satisfy

the following domaln decomposition algorithm:
Step 1: k=0, 6 =0.5

Step 2: Let AKC
(Wy'is the dual ofV;).

€ W, be an initial values= 1,3

Lemmal. Let f = uk, e
n&mML _ AKM™L_AK Then for st = 1,3,s#t, we have

Step 3; Given AF™ e W* solve fors,t = 1,3,5 £t :

Find uy*™"* € Vs solution of

c(US™ Vi — uk™) 4 (asu's‘m vs)rS > (Fk(u‘ém),vs)Qer

+ (/\tkm“,\/s) . ,WVs € Vs.
S

Step 4: Compute

k,m+1
kmi1  O& kmt1
0, = an + 1€y
Step 5: Compute new datéa" ™ e W* solve fors,t =
1,3, from
(/\é(,m+17¢) = ((as+ at)uléerlaVs) —
T rs

(/\km+1’¢)r +(e[k,m+l7¢)rt’v¢ st

S

Step 6: Setm= m+ 1 go toStep 3.

Step 7: Setk = k+ 1 go toStep 2.

6.k,m+-1 6.k,m+-1

= ug’ —uk and

(ese K, ml y, ese,k,m+1) 4 (asese,k,ml’vs _ el;,erl)

(ntk m
and

(ng’ml’ ¢) no

rs

— ek "‘“) s EVs (19)

((as+ at)elé’mlaVS) . (’7tk7m7 ¢) -

+ (etk7m+17 ¢) FS,V(IJ cW,. (20)
Proof. 1. We have
Co(US ML v — udhmH) 4 (orsuse kML Vs — use*k’m“) .
> (FO(UERH™h), v —ugkm)
Qs

+ (/\tk’m, —ufk m“) S,VVS €Vs

and

0.k 0.k 0.k 0.k
Cs(Ug™ Vi — Ug” )+(asus ,Vs— Us’ )r
S

0.k—1 0.k
> (F(ug ),Vs— Us’ ) ,
Qs

+ (/\tk,vs— ug’k)r Vs € Vs.
S
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Sincec(.,.) is a coercive bilinear form, it can be deduced For the second estimate, we have

k1 k-1 ko1 k-1
C(ugvk7m+1 _ USYK,V ) + (a u9 k m_ g’k7VS)I_ (aSWS+ 61 ,% )I_S = (03Ws+ 61 ,% )[’S

S

> (/\t"’m —AK, vs) s eVs
S

<[omsr et |4
0. 0,11
k,m+1 k,m+1
and so < ( las| [wello, -, + || 6 M- M
0.1 0,71
o (efkml i gfkmily 4 (aeg,km’vs_ eg,kml)r < max|as|, Hek m+1H ||WS||0r1 k7m+1H0rl
S »
<CH km+1H ‘ km+1‘ W .
> (né@m’vl — eg7k,m+1)r ,WVs € V. on on I SHW1
S

Thus, it can be deduced
2.We have lim gdkm _ Iirnmef’k’m =0. Than

] s, + || 6™

AX = (ay + az) Ak glm+1
Y
s L

< max(

Therefore

k,m+1 — /\k,m+l_/\k .
s s s Proposition 2.For the sequence&ufl’km“,ug7k’m+_1)meN
solutions of 15) we have the following a posteriori error

= (a1 + ag)ud*M_ARM L ghM™ L _ gy + az)u@k ™ estimation
k
+/\
| D
3.0
okmil_ 0k km_ aky , gkmil
= (ay+az)(ud ™ _uZKy — (A A 46 . CH kal_ug,m}w .
1

Lemma 2. By letting C be a generic constant which has Kmels
different values at different places, we get fars 1,3,s  ProofFrom (19) and @0) and we takevs = vy —u*™"in
t (33), then we have

— C
(nsmt - asdkmw) <cfem il (2)
— (k- alei’"‘“wi) + (™ asds™vs ) -

k+1,m k+1,m+-1 k+1,m-1 k+1,m
= (n§"t M= and ™) o (- aad s )
1 1

(€™ va) +c(e5™, v3)

and

kmt+1 km+1 M1
(oo + O™ k™) <fjem |l
(22) <ni<m1 age§+l’m,\/i> <ni<+1m1 aaeg”’m,vl)r.
1

Proof. Using Lemma 1 and the fact of the inverse of the
trace mapping’ri*1 :W;, — Vs is continuous we have for
st=13,s#t

Thus, we have

(€™ vp) + c(€8™, v3) =
(nsi,(m 1_ asels(’m,wi)l_s = C(Qk*m’Trflw) (nl?f,m_ oy Ll pkm-1_ a3%k’mvvl>l_1
= (D™, 0T tw)
+ (G:sks’m,Tl’_lw) ‘ﬁ-s)\ (els(’m,Tr_lw) ('"Ilfm 1—0(3%k’m,V3—V1)I_l
< ek [Tl g, a7 T, = (o™ o et et
e o T W] g (s )

. (al km km+1) Q:IL(.le) . 4 (nfm—l - a3e3k'm7V3_Vl)l_l
S CHeS' Hl,Qi Wl - (43)

(@© 2016 NSP
Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci.10, No. 3, 1097-1110 (2016)www.naturalspublishing.com/Journals.asp

N SS ¥

1105

Takingv; = €™ andvz = €™ in (22), then using

(a+b) <a®+ b2 and the Iemma 2, we get

NI =

2
(Hekm+1 ~.|<+1H _’_Hug,k7m+1_d3,k+1H )
3,03

2

N NI

U’ —U

6,k mt1 GkH —u

ur
2

9 Kom1 0, kH
3,03
k,mH

3,03
km+l kmt1

o (2™

3

D%k,m7 D%nJrlm) l(aoelgm eI;’m)

km+1 Kk, m+1
+||ao|\w( &M,

Q'

H 9km+1_ul H +H yokm1 ugkm+1H
1,0, 3.03

km+1 km+1 km _km
max<1||ao||> o (e )+e(mem)
km km+1 km km+1
— max(1, |[aol.,) (@€ )+ 6, &)
km-1 k,m k,m+1
+ (nE™ — agd™,
<™, " k”‘“\
Wy
" k1
+01H " o ™™
3,03 Wy
km+1 k,m k,m K,m+1
Cu ™, #8577,
1,91 3,93 Wl
thus
km+1 K,m+1 K,m+1 K,m+1
i P e T e
1,0 3,03 W,
Therefore
gkmil | 6k Bkml | Bk
Jugm g g, -l
1,0 3,03
Okml | Bkmtl
<2C1Hu1 M uy e ’w'
1

In the similar way, we define another nonoverlapping
auxiliary problems ovefQ,, Q4), we get the same result.

Proposition 3. For the

gkmtl  6.kmil
(uy s Uy’

posteriori error estimation

0.k,m+1 0.k

6.k,m+-1 6.k
|8 |t - o

-u H
2 4.0,

Ohmil  Okmil
-

9

<C (23)

Proof.The proof is very similar to proof of Proposition 2.

sequences
Jmen. We get the the similar following a

6.k

Theorem 2. Let u?’k = Ug,,s=1,2. For the sequences

B,k m+1 | 6.kml
(up’ ,Uy Jmen SOlutions of problems1§), one

have the following result

6,k,m+1 GkH H 6.km ekH
u —u + jus, —u
H 1 1 10, 2 2 2.0, =
C(Hugkm—l u&k,m‘ _|_Hug,k7m 9km+1H
Wi
ik K,m+-1
e, €™,
Wy Wo

ProofWe use two nonoverlapping auxiliary problems over
(Q1,Q3) and over(Q2,Q4) resp. From the previous two
propositions, we have

‘ yokmel H +H 97k,m+1_u97kH
2,0,
yekml Gokml 8.
< ”‘*—ul [
1,01 3,023
gokml okm+l 6k
gt g -]
4.0,
CH 0km+1_ugkmﬂ +CHug,k,m+1_ug,k,m+1H
yokml ek e
m+- m
e
Wy
uek 0,k,m+1 '
+CH M_uy m++£2' :
Wy
then
Hule’k’mlfue’kH JrHekm eka
c ‘ufkml_ugkm+£1 ‘ +H ka 9km+l+8£<m 1H
+Ham +e™, )

5 A Posteriori Error Estimatein the Discrete
Case

5.1 The space discretization

Let Q be decomposed into triangles angddenote the set
of all those elementh > 0 is the mesh size. We assume
that the family 1, is regular and quasi-uniform. We
consider the wusual basis of affine functiong;

={1,...,m(h)} defined by¢; (M) = &;, whereM; is a
vertex of the considered triangulation.

We discretize in space, i.e., that we approach the
spaceH& by a space discretization of finite dimensional
vhc H&. In a second step, we discretize the problem with
respect to time wusing the semi-implicit scheme.
Therefore, we search a sequence of elemeﬁ’fée vh
which approachesuy, (tn,.), th = nAt, k=1,...,n, with
initial datau? = ugn.
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Let uekarl € V" be the solution of the discrete For (Q2,Q4) , we have
roblem associated with.4), ue kmtl _ 2kmtl
P =Uo, - 0.km+l 0.km1
C(UZh ,V2n) + (‘72 hUsh V2,h)

We construct the sequences ok n
(UML) o, uSE™ v (s = 1,2) solutions of < (FG(UZh Lmd, Vz,h)Q :
discrete problems associated wig8(and @4). 2

wherery, is the usual interpolation operator defined by ug}‘?mﬂ =0, 0NdRNaIQ,

m(h) aue,k,mﬂ p) 6.km
2h 0.km+1 U 6.km
v = v(M X 45 + au,’)’ = +aou; ", onls
h i; (Mj) ¢i (x) (45) o oh I 1
(49)
- - - . and

In similar manner to that of the previous section, we

introduce two auxiliary problems, we define fa2;, Q3)
9km+1 Cuekm+1v +(a uekm+1v
the following full-discrete problems: findy} € Kp (Ugh 4h) 4,hty 4h)n
0, k—1,m+1
solution of < (Fe(u4 m ),V4,h) ,
Q4
6.k m+1
u, =0, ondQ1NoQ,
o™ 0 — ugp ™) + (al,hufr'? Vlh—Ufrme)r o
! aue‘k,mﬁ’l aue,k‘m—Fl
~ - 4,h 0.k, m+1 2,h 6.k,m+1
FQ 9|( 1,m4-1 b kmt1 Vh. ) + agzuu — ) + QaUs 7Or-]I—

( (uy ),V — 07y >91’ UiheVh, ona auu o 4l 2

6. km+1 (50)

mH
u =0, ondQ1NaQ .
1h ' ! ’ Theorem 3.[8]The solution of the system of QMW7) and
audkm P (48), and 49 is the maximum element the set of discrete

dn s 1u?rlfm+17 ;nhl +011u2h ,onl subsolutions.
(24) We can obtain the discrete counterparts of
by taking the trial functionvi, = vy — ui)rlfmu in propositions 1 and. 2 by domg almost the same analysis as
(24), we get in section above (i.e., passing from continuous spaces to
' discrete subspaces and from continuous sequences to
discrete ones). Therefore,

0, km+1 0.k,m+1

G ) + (i ), i g+ 8], <7,
(51)
< (F(Uf# Lme), V1,h)Q , vip eV, and
1
6I<m+1 6.k okm+l 6k O.km+l Bkm
ot [ = 2] g, ™ = ] o, < g™ -,
Uy =0, ondQ,NdQ, (52)
Similar to that in the proof of Theorem 2 we get the
gubm+l au 9 k m following discrete estimates
1h O.km+l _ 6,km
+aug, —+a 1y , onfly.
on1 on1 Hue km+1_u9,kH +Hu9km_ue,kH
(47) 1h Lhl1 o, 2,h 2hl|; o, S
Similarly, we get okmil 6k ok ok
M+ m m m
C(Hulh —Uh H +Huzh —Uph H
Wy Wo

0, km+1 k1 k+1, k+1,

c(U™ ) + (@ ) e g 15y
1
2] Gk 1ILm+l . . .

(F (ug ), Vl,h)QBa Next we will obtalngal\p error estimate between the
ugfl:m+1_07 oNdQ;NdQ, approximated solutloruah ™1 and the semi discrete
aue km+-1 auekm solution in time u®k. We introduce some necessary

+ a3ug}'1‘!m+1 — +a uf kM onr. notations. We denote by
07'73 ons
(48) e={EeT:Ter,andE ¢ 0Q}
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and for everyl' € 1, andE € &, we define

wr={T'em:T'NT#o}, we={T'emn: T NE#g}.

The right hand sidg is not necessarily continuous
function across two neighboring elementstpthavingE
as a common sidef] denotes the jump of acrossE and
ne the normal vector oE.

We have the following theorem which gives an a
posteriori error estimate for the discrete GODDM.

Theorem 4.Let (8% = u8k | where u is the solution of
problem @), the sequences(ufﬁm*l, g:fm are

meN
solutions of the discrete problem33) and (34) Then
there exists a constant C independent of h such that

okm+l | 6K 6.km | 6k
Judym -l H +Hu2h -,
3342
zﬂz )+ 11,
€Th
where
0.k | Okx—1 0.k,
N = Huhs hit H +H5|,h
Whs Whs
and
T =[P (54 B (Lenalg) ol
0.k %
1 au
5 h,s
h2 : , 25
<, E [dr]E ] ( )
0.E

where c is Lipschitz constant of the right hand side and

the symbok is corresponds to m 1 when s= 1 and to m
when s= 2.

ProofThe proof is based on the technique of the residual a ’

posteriori estimation se@4] and Theorem 3. We give the
main steps by the triangle inequality we have

2 2
Ok Ok ok 0.
Z‘us “UnsT || g, S Z‘usf “hslly g
S— y2<S ﬁl 92<S
2
Huhs ugh’ o (26)

The second term on the right hand side 28)(is bounded

by
;Zuum u;h\lﬁgssgjgnrs-

To bound the first term on the right hand side B6)(

the residual a posteriori error estimatid¥] , to get for
VRSAVAL

C(Use’k — Ugy’; Vs) = C(ue’k Uﬁ’; Vs —Vhs)
< 5 (PO g

TCQsT '

— (1+ ualfp) U (vs—hs) ds

P 20s] (wgas— 5 128 g

- S| (Vs — Vps) dS— S (Vs — Vig) ds
ECZQSE on. | *° ns Egl'sE ang ns
+ECZQ{ Fe( ) Fo (uhs))(vs—vh,s)do

0uh
ons’

+ < Vs—Vh,s> )
Is

whereF? (uﬁﬁ) is any approximation oF? (use*k).
Therefore

ok 6k
)

c(Us™ — U, Vs

2
Zirdo, ‘FG <uhs)

— (1+ pafyp) ng

-0uhys ’
one

0.k
duhs

6.k-1

2
2
s=1
< +Uns

+ AU

oT HVS_VHSHO,T
2

+3 2

s=1ECQsg

[vs — VhaSHO,E +
0E '

2

2 2

sS1EER || 9N

s s
s=1TCQsg
2

+2 2

s=1TCQs

||VS_Vh7SHo,E

Gk

u 0.k

_uhs

6,k
uh,s

ons

o1 ||VS_Vh,SHo,T

HVS_Vh»SHQT’

Using the following fact

6.k

c(ug® uh s,vs+ chl)

||V|S+Ch-5r||17.Qi ’

6.k

6.k
_uhs

Us’

sup
VieK

~
,Qs

we get
2

S;c(ug —uhs,v3+0hS i(TZ}
55)

Finally, by combining $2), (26) and @7) the required
result follows.

6 Numerical example

In this section we give a simple numerical example.

we use the residual equation and apply the technique o€onsider the following evolutionary HIB equation which
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can approximated by PQVIs7] and [10] which 7 Conclusion

investigated the stationary case.
In this paper, a posteriori error estimates for PQVI with

linear source terms are derived using the theta time

max (0_U'+Aiui —f)=0,inQx[0,T], scheme combined with a finite element spatial
<i<2 ot (56)  approximation. Also the techniques of the residual a
. posteriori error analysis are used. Furthermore the esult

u(0,t) in Q =0, of some numerical experiments are presented to support

the theory. In the future work, the a posteriori error

whereQ =]0.1[, u(0,x) =0, T =1and analysis for similar results will be obtained in the general

L du ., d L case of more than two subdomains.
AU:W,AU:W—FU, f :f :X+t
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