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1 Introduction

The Black–Scholes [29] or Black–Scholes–Merton model
is a mathematical model of a financial market containing
derivative investment instruments. From the model, one
can deduce the Black–Scholes formula, which gives a
theoretical estimate of the price of European-style
options. The formula led to a boom in options trading and
legitimised scientifically the activities of the Chicago
Board Options Exchange and other options markets
around the world [29] lt is widely used, although often
with adjustments and corrections, by options market
participants [29]. Many empirical tests have shown that
the Black–Scholes price is ”fairly close” to the observed
prices, although there are well-known discrepancies such
as the ”option smile” [29].

The Black–Scholes model was first published by
Fischer Black and Myron Scholes in their 1973 paper,
”The Pricing of Options and Corporate Liabilities”,
published in the Journal of Political Economy. They
derived a partial differential equation, now called the
Black–Scholes equation, which estimates the price of the
option over time. The key idea behind the model is to
hedge the option by buying and selling the underlying
asset in just the right way and, as a consequence, to
eliminate risk. This type of hedging is called delta

hedging and is the basis of more complicated hedging
strategies such as those engaged in by investment banks
and hedge funds.

Robert C. Merton was the first to publish a paper
expanding the mathematical understanding of the options
pricing model, and coined the term ”Black–Scholes
options pricing model”. Merton and Scholes received the
1997 Nobel Memorial Prize in Economic Sciences for
their work. Though ineligible for the prize because of his
death in 1995, Black was mentioned as a contributor by
the Swedish Academy [29]

The model’s assumptions have been relaxed and
generalized in many directions, leading to a plethora of
models that are currently used in derivative pricing and
risk management. It is the insights of the model, as
exemplified in the Black-Scholes formula, that are
frequently used by market participants, as distinguished
from the actual prices. These insights include no-arbitrage
bounds and risk-neutral pricing. The Black-Scholes
equation, a partial differential equation that governs the
price of the option, is also important as it enables pricing
when an explicit formula is not possible.

The American options problem in a black scholes
model with constant coefficients and without dividend
may be solved by considering the following Parabolic
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Quai-Variational Inequalities (PQVIs) with respect to the
right-hand side as a linear source terms and an obstacle
defined as an impulse control problem: find

u(t,x) ∈ L2 (0,T,D(Ω))∩C 2(0,T,H−1(Ω)
)


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∂ t

+Au≤ f in Σ ,

u≤ Mu,

(

∂u
∂ t

+Au− f

)

(u−Mu) = 0,

u(0,x) = u0 in Ω , u= 0 on∂Ω ,

(1)

whereΣ is a set inR×R
n defined asΣ = Ω × [0,T]

with T̈ < +∞ , andΩ is a smooth bounded domain ofRn

with sufficiently smooth boundaryΓ and A is an operator
defined overH1 (Ω)

A=−∆ +a0 (2)

and a0 ∈ L2 (0,T,L∞ (Ω)) ∩ C 0
(

0,T,H−1(Ω)
)

is
sufficiently smooth functions and satisfy the following
condition:

a0(t,x)≥ β > 0, β is a constant, (3)

and f (.) the right hand side satisfy

f ∈ L2 (0,T,L∞ (Ω))∩C1(0,T,H−1(Ω)
)

, f ≥ 0, (4)

M is an operator given by

Mu= k+ inf
ξ≥0,x+ξ∈Ω̄

u(x+ ξ ), (5)

wherek > 0 andξ ≥ 0 and

Mu∈ L2(0,T,W2,∞ (Ω)
)

. (6)

Under [30] M is satisfying some proprieties as:
M is concavity that is to say, foru,v∈C(Ω)

M (δu+(1− δ )v)≥ δM (u)+ (1− δ )M (v) (7)

and
∀η ∈ R,M (u+η) = M (u)+η . (8)

The symbol(., .)Ω stands for the inner product in
L2(Ω).

The stationary and evolutionary free boundary
problems are encountered in several applications; for
example, in stochastic control, the solution of (1)
characterizes the infimum of the cost function associated
to an optimally controlled stochastic switching process
without costs for switching and for the calculus of
quasi-stationary state for the simulation of petroleum or

gaseous deposit.. (cf., e.g., [1]). From the mathematical
analysis point of view, problem (1) was intensively
studied in the late 1980s (see [11], [12] ). On the
numerical and computational side ([6], [8]-[11]).
However, as far as finite element approximation is
concerned, only few works are known in the literature
([3]-[6], [8]-[11] ).

The Schwarz alternating method can be used to solve
elliptic boundary value problems on domains which
consist of two or more overlapping subdomains. It was
invented by Herman Amandus Schwarz in 1890. This
method has been used for solving the stationary or
evolutionary boundary value problems on domains which
consist of two or more overlapping subdomains (see
[1]–[6], [9], [10], [17]–[19], [8], [20]–[28]). The solution
to these qualitative problems is approximated by an
infinite sequence of functions resulting from solving a
sequence of stationary or evolutionary boundary value
problems in each of the subdomains. An extensive
analysis of Schwarz alternating method for nonlinear
elliptic boundary value problems can be found in
[12]–[14], [16], [20]. Also the effectiveness of Schwarz
methods for these problems, especially those in fluid
mechanics, has been demonstrated in many papers. See
the proceedings of the annual domain decomposition
conference [15] and [21]–[23], [25]–[26], [24]. Moreover,
a priori estimates of the errors for stationary problems is
given in several papers; see for instance [22], [23] where
a variational formulation of the classical Schwarz method
is derived. In [21], geometry-related convergence results
are obtained. In [16,17,18], an accelerated version of the
GODDM has been treated. In addition, in [16],
convergence for simple rectangular or circular geometries
has been studied. However, a criterion to stop the iterative
process has not been given. All these results can also be
found in the recent books on domain decomposition
methods [9], [8]. Recently in [17], [18], an improved
version of the Schwarz method for highly heterogeneous
media has been presented. The method uses new
optimized boundary conditions specially designed to take
into account the heterogeneity between the subdomains
on the boundaries. A recent overview of the current state
of the art on domain decomposition methods can be found
in [1], [24].

In general, the a priori estimate for stationary
problems is not suitable for assessing the quality of the
approximate solutions on subdomains, since it depends
mainly on the exact solution itself, which is unknown. An
alternative approach is to use an approximate solution
itself in order to find such an estimate. This approach,
known as a posteriori estimate, became very popular in
the 1990s with finite element methods; see the
monographs [1], [29]. In [29], an algorithm for a
nonoverlapping domain decomposition has been given.
An a posteriori error analysis for the elliptic case has also
been used by [1] to determine an optimal value of the
penalty parameter for penalty domain decomposition
methods for constructing fast solvers.
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Quite a few works on maximum norm error analysis
of overlapping nonmatching grids methods for elliptic
problems are known in the literature (cf., e.g., [14]–[15]).
To prove the main result of this paper, we proceed as in
[4]. More precisely, we develop an approach which
combines a geometrical convergence result, due to [10],
and a lemma which consists of an error estimation in the
maximum norm between the continuous and discrete
Schwarz iterate.

In [4], the authors derived a posteriori error estimates
for the generalized overlapping domain decomposition
method (GODDM) with Robin boundary conditions on
the boundaries for second order boundary value
problems; they have shown that the error estimate in the
continuous case depends on the differences of the traces
of the subdomain solutions on the boundaries after a
discretization of the domain by finite elements method.
Also they used the techniques of the residual a posteriori
error analysis to get an a posteriori error estimate for the
discrete solutions on subdomains.

A numerical study of stationary and evolutionary free
boundary problems of the finite element, combined with a
finite difference, methods has been achieved in [4],
[10]–[18], [27] and using the domain decomposition
method combined with finite element method, has been
treated in [8]-[11]. Moreover, in a recent research [3], we
have treated the overlapping domain decomposition
method combined with a finite element approximation for
elliptic quasi-variational inequalities related to impulse
control problem with respect to the mixed boundary
conditions for Laplace operator∆ , where a maximum
norm analysis of an overlapping Schwarz method on
nonmatching grids has been used. Then, in [9] we have
extended the last result to the parabolic quasi variational
inequalities with the similar conditions, and using the
theta time scheme combined with a finite element spatial
approximation, we have proved that the discretization on
every subdomain converges in uniform norm.
Furthermore, a result of asymptotic behavior in uniform
norm has been given.

In this paper, we prove an a posteriori error estimates
for the generalized overlapping domain decomposition
method with Dirichlet boundary conditions on the
boundaries for the discrete solutions on subdomains of
PQVI with linear source terms using the theta time
scheme combined with a finite element spatial
approximation, similar to that in [4], which investigated
Laplace equation. Moreover, an Furthermore, the results
of some numerical experiments are presented to support
the theory.

The outline of the paper is as follows: In section 2, we
introduce some necessary notations, then we give the
variational formulation of our model. In section 3 and 4, a
posteriori error estimate for both continuous and discrete
cases are proposed for the convergence of the discrete
solution using the theta time scheme combined with a
finite element method on subdomains. Finally, in section

4 the results of some numerical experiments are presented
to support the theory.

2 Parabolic quasi-variational inequalities

The problem (1) can be transformed into the following
continuous parabolic quasi-variational inequalities: find
u∈ L2 (0,T,D(Ω))∩C 2

(

0,T,H−1(Ω)
)

solution to


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






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
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
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

(

∂u
∂ t

,v−u

)

+a(u,v−u)≥ ( f ,v−u) ,

u≤ Mu, v≤ Mu,

u(0,x) = u0 in Ω ,
∂u
∂η

= 0 on∂Ω

, (9)

wherea(., .) is the bilinear form defined as

a(u,u) = (∇u,∇u)− (a0u,u) (10)

2.1 The spatial discretization

Let Ω be decomposed into triangles andτh denote the set
of all those elementsh > 0 is the mesh size. We assume
that the family τh is regular and quasi-uniform. We
consider the usual basis of affine functionsϕl ,
l = {1, ...,m(h)} defined byϕl (Ms) = δls whereMs is a
vertex of the considered triangulation. We introduce the
following discrete spacesVh of finite element

Vh =















u∈ L2
(

0,T,H1
0 (Ω)

)

∩C
(

0,T,H1
0

(

Ω̄
))

, such that

u |K∈ P1, Ki ∈ τh, and u(.,0) = u0 in Ω ,
∂uk

h

∂η
in ∂Ω















,

(11)
whererh is the usual interpolation operator defined by

v∈ L2
(

0,T,H1
0 (Ω)

)

∩C
(

0,T,H1
0

(

Ω̄
))

, rhv=
m(h)

∑
i=1

v(Mi)ϕi (x) .

(12)
In the sequel of the paper, we shall make use of the

discrete maximum principle assumption (dmp). In other
words, we shall assume that the matrices(A)ps= a(ϕp,ϕs)
is M-matrices [12].

We discretize in space the problem (9), we get the
following semi-discrete PQVIs
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
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











(

∂uh

∂ t
,vh−uh

)

+a(uh,vh−uh)≥ ( f (t) ,vh−uh) , vh ∈Vh,

uh ≤ rhM, vh ≤ rhM,

uh (0) = uh0,
∂uh

∂η
= 0 on∂Ω

.

(13)
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Now, we need to prove the following main theorem,
so we use it in identifying the result on the time energy
behavior.

Theorem 1.[30]Let us assume that the discrete bilinear
form a(., .) is weakly coercive in Vh ⊂ H1

0 (Ω) , there exist
two constantsα > 0 andλ > 0 such that

a(uh,uh)+λ uh‖2 ≥ α ‖uh‖1 ,

where

λ =

(

‖bk‖
2
∞

2γ
+

γ
2
+ ‖a0‖∞

)

, α =
γ
2

.

2.2 A priory estimates for the semi-discrete
PQVIs

In [30], it can be identified the energy behavior

Eh (t) =
∫

Ω

(uh)
2dx

to the following result

Eh (t) ≤ e−2(η−ε)tEh (0)

+
1
2ε

t
∫

0



e2(η−ε)(s−t)





∫

Ω

(

f i)2
dx







ds. (9)

2.3 The time discretization

Now, we discretize the problem (13) with respect to time
by using the theta-scheme. Therefore, we search a
sequence of elementsuk

h ∈ Vh which approaches
uh (tk) , tk = k∆ t, with initial datau0

h = u0h.
Thus we have, for anyθ ∈ [0,1] andk= 1, ...,n

(

uk
h−uk−1

h ,vh−uθk
h

)

+∆ t.a
(

uθk
h ,vh−uθk

h

)

≥ ∆ t.
(

f θ ,k,vh−uθk
h

)

, (10)

where
uθk

h = θuk
h+(1−θ )uk−1

h (11)

and
f θ ,k = θ f k+(1−θ ) f k−1. (12)

By multiplying and dividing byθ and then by adding
(

uk−1
h

θ∆ t
,vh−uθk

h

)

to both side of the inequalities (10), we

get

(

uθk
h

θ∆ t
,vh−uθk

h

)

+a
(

uθk
h ,vh−uθk

h

)

≥

(

f θ ,k+
uθk−1

h

θ∆ t
,vh−uθk

h

)

, vh ∈Vh. (13)

Then, the problem (13) can be reformulated into the
following coercive discrete system of elliptic
quasi-variational inequalities

c
(

uθk
h ,vh−uθk

h

)

≥
(

f θ ,k+ µuk−1
h ,vh−uθk

h

)

, vh, uθk
h ∈Vh

(19)
such that



















c
(

uθk
h ,vh−uθk

h

)

= µ
(

uθk
h ,vh−uθk

h

)

+a
(

uθk
h ,vh−uθk

h

)

, vh, uθk
h ∈Vh,

µ =
1

θ∆ t
, k= 1, ...,n.

(20)

Using the properties of theM in [31], we have

uθk
h = θ rhuk

h+(1−θ ) rhuk−1
h ≤ θ rh

(

Muk
h

)

+(1−θ ) rh

(

Muk−1
h

)

≤ rh

(

θuk
h+(1−θ )uk−1

h

)

≤ rhMuθk
h ,

thus
uθk

h ≤ rhMuθk
h . (21)

2.4 Stability analysis for the PQVIs

In [30], we proved that, ifθ ≥
1
2

the theta-scheme way is

stable unconditionally, and if 0≤ θ <
1
2

the theta scheme

is stable unless

∆ t <
2C

(1−2θ )
h2, (22)

whereλ h
sh are the eigenvalues of the operatorA.

Proposition 1.[30] We assume that the coerciveness
condition a(., .)of is satisfied withλ = 0 for each
k= 1, ...,n we find

∥

∥uk
h

∥

∥

2
2+2∆ t

n
∑

k=1
a
(

uθk
h ,uθk

h

)

≤C(n)

(

‖u0h‖
2
2+

n
∑

k=1
∆ t
∥

∥ f k
∥

∥

2
2

)

.

(23)
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3 The space continuous for generalized
overlapping domain decomposition

Let Ω be a bounded domain inR2 with a piecewiseC1

boundaryΓ . We split the domainΩ into two overlapping
subdomainsΩ1 andΩ2 such that

Ω1∩Ω2 = Ω12, ∂Ωs∩Ωt = Γs, s 6= t ands, t = 1,2.

We need the spaces

Vs = H1(Ω)∩H1(Ωs) =
{

v∈ H1(Ωi) : v∂Ωi∩∂Ω = 0
}

and

Ws = H
1
2

0 (Γs) = {vΓs, v∈Vs andv= 0 on∂Ωs\Γs} ,
(14)

which is a subspace of

H
1
2 (Γs) =

{

ψ ∈ L2(Γs) : ψ = ϕΓs for ϕ ∈Vs, s= 1,2
}

,

equipped with the norm

‖ϕ‖Ws
= inf

v∈Vsv=ϕ onΓs
‖v‖1,Ω . (25)

We define the continuous counterparts of the
continuous Schwarz sequences defined in (19),
respectively byuk,m+1

1 ∈ H1
0 (Ω) , m= 0,1,2, ..., solution

of















































c
(

uθ ,k,m+1
1 ,v−uθ ,k,m+1

1

)

≥
(

Fθ
(

uθ ,k−1,m+1
1

)

,v−uθ ,k,m+1
1

)

Ω1
,

uθ ,k,m+1
1 = 0, on ∂Ω1∩∂Ω = ∂Ω1−Γ1,

∂uθ ,k,m+1
1

∂η1
+α1uθ ,k,m+1

1 =
∂uθ ,k,m

2

∂η1
+α1uθ ,k,m

1 onΓ1

anduθ ,k,m+1
2 ∈ H1

0 (Ω) solution of















































c
(

uθ ,k,m+1
2 ,vi −uθ ,k,m+1

2

)

≥
(

F
(

uθ ,k−1,m+1
2

)

,vi −uθ ,k,m+1
2

)

Ω2
, m= 0,1,2, ..,

uθ ,k,m+1
2 = 0, on ∂Ω2∩∂Ω = ∂Ω2−Γ2,

∂uθ ,k,m+1
2

∂η2
+α2uθ ,k,m+1

2 =
∂uθ ,k,m

1

∂η2
+α2uθ ,k,m

2 , onΓ2,

(27)
whereηs is the exterior normal toΩs andαs is a real

parameter,s= 1,2.

In the next section, our main interest is to obtain an a
posteriori error estimate, we need for stopping the iterative

process as soon as the required global precision is reached.
Namely, by applying Green formula in Laplace operator
with the new boundary conditions of generalized Schwarz
alternating method, we get

(

−∆ uθ ,k,m+1
1 ,v1−uθ ,k,m+1

1

)

Ω1

=
(

∇uθ ,k,m+1
1 ,∇

(

v1−uθ ,k,m+1
1

))

Ω1

−

(

∂uθ ,k,m+1
1

∂η1
,v1−uθ ,k,m+1

1

)

∂Ω1−Γ1

+

(

∂uθ ,k,m+1
1

∂η1
,v1−uθ ,k,m+1

1

)

Γ1

=
(

∇uθ ,k,m+1
1 ,∇

(

vi
1−uθ ,k,m+1

1

))

Ω1

−

(

∂uθ ,k,m+1
1

∂η1
,vi

1−uθ ,k,m+1
1

)

Γ1

thus we can deduce

(

−∆uθ ,k,m+1
1 ,v1−uθ ,k,m+1

1

)

Ω1

=
(

∇uθ ,k,m+1
1 ,∇

(

v1−uθ ,k,m+1
1

))

Ω1

−

(

∂uθ ,k,m+1
1

∂η1
,v1−uθ ,k,m+1

1

)

∂Ω1−Γ1

+

(

∂uθ ,k,m+1
1

∂η1
,v1−uθ ,k,m+1

1

)

Γ1

=
(

∇uθ ,k,m+1
1 ,∇

(

v1−uθ ,k,m+1
1

))

Ω1

−

(

∂uθ ,k,m+1
2

∂η2
+α1 uθ ,k,m

2 −α1uθ ,k,m+1
1 ,v1−uθ ,k,m+1

1

)

Γ1

=
(

∇uθ ,k,m+1
1 ,∇

(

v1−uθ ,k,m+1
1

))

Ω1

+
(

α1uθ ,k,m+1
1 ,vi

1−uθ ,k,m+1
1

)

Γ1

=
(

∇uθ ,k,m+1
1 ,∇

(

v1−uθ ,k,m+1
1

))

Ω1

+
(

α1uθ ,k,m+1
1 ,v1−uθ ,k,m+1

1

)

Γ1

−

(

∂uθ ,k,m+1
2

∂η1
+α1uθ ,k,m

2 ,v1−uθ ,k,m+1
1

)

Γ1

,
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thus the problem15 equivalent to; finduθ ,k,m+1
1 ∈V1 such

that

c(uθ ,k,m+1
1 ,v1−uθ ,k,m+1

1 )+
(

α1uθ ,k,m
1 ,v1−uθ ,k,m+1

1

)

Γ1

≥
(

Fθ (uθ ,k−1,m+1
1 ),v1−uθ ,k,m+1

1

)

Ω1
+

+

(

∂uθ ,k,m+1
2

∂η1
+α1uθ ,k,m

2 ,v1−uθ ,k,m+1
1

)

Γ1

,∀v1 ∈V1

and for (27), uθ ,k,m+1
2 ∈V2, we have

c(uθ ,k,m+1
2 ,v2−uθ ,k,m+1

2 )+
(

α2uθ ,k,m+1
2 ,v2−uθ ,k,m+1

2

)

Γ2

≥
(

F(uθ ,k−1,m+1
2 ),v2−uθ ,k,m+1

2

)

Ω2

+

(

∂uθ ,k,m+1
1

∂η2
+α2uθ ,k,m

1 ,vi
2−uθ ,k,m+1

2

)

Γ2

.

4 A posteriori error estimate in continuous
case

Since it is numerically easier to compare the subdomain
solutions on the interfacesΓ1 and Γ2 rather than on the
overlap Ω12, thus we need to introduce two auxiliary
problems defined on nonoverlapping subdomains ofΩ .
This idea allows us to obtain the a posteriori error
estimate by following the steps of Otto and Lube [24]. We
define these auxiliary problems by coupling each one of
the problems15 and 27 with another problem in a
nonoverlapping way overΩ . These auxiliary problems
are needed for the analysis and not for the computation
section.

To define these auxiliary problems we need to split the
domainΩ into two sets of disjoint subdomains :(Ω1,Ω3)
and(Ω2,Ω4) such that

Ω = Ω1∪Ω3, with Ω1∩Ω3 =∅Ω = Ω2∪Ω4,

with Ω2∩Ω4 =∅.

Let (uk,m
1 ,uk,m

2 ) be the solution of problems15 and27,

we define the couple(uk,m
1 ,uk,m

3 ) over (Ω1,Ω3) to be the
solution of the following nonoverlapping problems



















































uk,m+1
1 −uk−1,m+1

1

∆ t
−∆ uθ ,k,m+1

1 +ak
0u

θ ,k,m+1
1

≥ F θ
(

uθ ,k−1,m+1
1

)

in Ω1,

uθ ,k,m+1
1 = 0, on∂Ω1∩∂Ω , k= 1, ...,n,

∂uθ ,k,m+1
1

∂η1
+αuθ ,k,m

1 =
∂uθ ,k,m+1

2

∂η1
+α1uθ ,k,m

2 , onΓ1

and


















































uk,m+1
3 −uk−1,m+1

3

∆ t
−∆ uθ ,k,m+1

3 +ak
0u

θ ,k,m+1
3

≥ Fθ
(

uθ ,k−1,m+1
3

)

in Ω3,

uθ ,k,m+1
3 = 0, on ∂Ω3∩∂Ω ,

∂uθ ,k,m+1
3

∂η3
+α3uθ ,k,m

3 =
∂uθ ,k,m+1

1

∂η3
+α3uθ ,k,m

1 , onΓ1.

It can be takenεθ ,k,m
1 = uθ ,k,m+1

2 − uθ ,k,m+1
3 on Γ1, the

difference between the overlapping and the
nonoverlapping solutionsuθ ,k,m+1

2 and uθ ,k,m+1
3 of the

problems (15) and (27) and (resp.,15 and 15) in
Ω3. Because both overlapping and the nonoverlapping
problems converge see [26] that is,uθ ,k,m+1

2 anduθ ,k,m+1
3

tend touθ ,k
3 (resp.uθ ,k

3 ), thenεθ ,k,m
1 should tend to naught

whenm tends to infinity inV2 .
By taking

Λk,m
3 =

∂uθ ,k,m
2

∂η1
+α1uθ ,k,m

2 .

Λk,m
1 =

∂uθ ,k,m
1

∂η3
+α3uθ ,k,m

1 .

Λk,m
3 =

∂uθ ,k,m
3

∂η1
+α1uθ ,k,m

3 +
∂εθ ,k,m

1

∂η1
+α1εθ ,k,m

1 .

Λk,m
1 =

∂uθ ,k,m
1

∂η3
+α3uθ ,k,m

1 .

(32)

Using Green formula, (15) and (15) can be
reformulated to the following system of elliptic
variational equations

c(uθ ,k,m+1
1 ,v1−uθ ,k,m+1

1 )+
(

α1uθ ,k,m
1 ,v1−uθ ,k,m+1

1

)

Γ1

≥
(

Fθ (uθ ,k−1,m+1
1 ),v1−uθ ,k,m+1

1

)

Ω1

+
(

Λk,m
3 ,v1−uθ ,k,m+1

1

)

Γ1
,∀v1 ∈V1

(33)
and

c(uθ ,k,m+1
3 ,v3−uθ ,k,m+1

3 )+
(

α3uθ ,k,m+1
3 ,v3−uθ ,k,m+1

3

)

Γ1
≥

(

Fθ (uθ ,k−1,m+1
3 ),v3−uθ ,k,m+1

3

)

Ω3
+

+
(

Λk,m
1 ,v3−uθ ,k,m+1

3

)

Γ1
,∀vi

3 ∈V3.

(34)
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On the other hand by taking

θ k,m
1 =

∂εθ ,k,m
1

∂η1
+α1εθ ,k,m

1 , (15)

we get

Λ θ ,k,m
3 =

∂uθ ,k,m
3

∂η1
+α1uθ ,k,m

3 +
∂ (uθ ,k,m

2 −uθ ,k,m
3 )

∂η1

+ α1(u
θ ,k,m
2 −uθ ,k,m

3 )

=
∂uθ ,k,m

3

∂η1
+α1uθ ,k,m

3 +
∂εk,m

1

∂η1
+α1εk,m

1 (16)

=
∂uθ ,k,m

3

∂η1
+α1uθ ,k,m

3 +θ k,m
1 .

Using (15) we have

Λk,m+1
3 =

∂uθ ,k,m
3

∂η1
+α1uθ ,k,m

3 +θ k,m+1
1

=−
∂uθ ,k,m

3

∂η3
+α1uθ ,k,m

3 +θ k,m+1
1

= α3uθ ,k,m
3 −

∂uθ ,k,m
1

∂η3
−α3uθ ,k,m

1 +α1uθ ,k,m
3 +θ k,m+1

1

= (α1+α3)u
θ ,k,m
3 −Λk,m

1 +θ k,m+1
1

(17)
and the last equation in (17), we have

Λk,m+1
1 =−

∂uθ ,k,m
1

∂η1
+α3uθ ,k,m

1

= α1uθ ,k,m
1 −

∂uθ ,k,m
2

∂η1
−α1uθ ,k,m

2 +α3uθ ,k,m
1 +α3uθ ,k,m

1

= (α1+α3)u
θ ,k,m
1 −Λk,m

3 +θ k,m+1
3 .

(18)

4.1 Semi discrete algorithm

The sequences(uθ ,k,m
1 ,uθ ,k,m

3 )m∈N solutions of (15) satisfy
the following domain decomposition algorithm:

Step 1: k= 0, θ = 0.5

Step 2: Let Λk,0
s ∈ W∗

1 be an initial value,s = 1,3
(W∗

1 is the dual ofW1).

Step 3; Given Λk,m
t ∈ W∗ solve fors, t = 1,3,s 6= t :

Findui,k,m+1
s ∈Vs solution of

c(uk,m
s ,vi

s−uk,m
s )+

(

αsu
k,m
s ,vs

)

Γ s
≥
(

Fk(uk,m
s ),vs

)

Ωs
+

+
(

Λk,m+1
t ,vi

s

)

Γ s
,∀vs ∈Vs.

Step 4: Compute

θ k,m+1
1 =

∂εk,m+1
1

∂η1
+α1εk,m+1

1 .

Step 5: Compute new dataΛn+1,m
t ∈W∗ solve fors, t =

1,3, from

(

Λk,m+1
s ,ϕ

)

Γi
=
(

(αs+αt)u
k,m+1
s ,vs

)

Γ s
−

(

Λk,m+1
t ,ϕ

)

Γs
+
(

θ k,m+1
t ,ϕ

)

Γ t
,∀ϕ ∈Ws,s 6= t.

Step 6: Setm= m+1 go toStep 3.

Step 7: Setk= k+1 go toStep 2.

Lemma 1. Let uk
s = uk

Ωs, eθ ,k,m+1
s = uθ ,k,m+1

s − uk
s and

ηk,m+1
s = Λk,m+1

s −Λk
s . Then for s, t = 1,3,s 6= t, we have

cs(e
θ ,k,m+1
s ,vs−eθ ,k,m+1

s )+
(

αse
θ ,k,m+1
s ,vs−ek,m+1

s

)

Γ s

=
(

ηk,m
t ,vs−ek,m+1

s

)

Γs
,∀vs ∈Vs (19)

and
(

ηk,m+1
s ,ϕ

)

Γs
=
(

(αs+αt)e
k,m+1
s ,vs

)

Γs
−
(

ηk,m
t ,ϕ

)

Γs

+
(

θ k,m+1
t ,ϕ

)

Γ s
,∀ϕ ∈W1. (20)

Proof.1. We have


































cs(u
θ ,k,m+1
s ,vs−uθ ,k,m+1

s )+
(

αsu
θ ,k,m+1
s ,vs−uθ ,k,m+1

s

)

Γs
,

≥
(

Fθ (uθ ,k−1,m+1
s ),vs−uθ ,k,m+1

s

)

Ωs
,

+
(

Λk,m
t ,vs−uθ ,k,m+1

s

)

Γ s
,∀vs ∈Vs

and


































cs(u
θ ,k
s ,vi

s−uθ ,k
s )+

(

αsu
θ ,k
s ,vs−uθ ,k

s

)

Γs

≥
(

F(uθ ,k−1
s ),vs−uθ ,k

s

)

Ωs
,

+
(

Λk
t ,vs−uθ ,k

s

)

Γs
,∀vs ∈Vs.
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Sincec(., .) is a coercive bilinear form, it can be deduced

c(uθ ,k,m+1
s −uθ ,k

s ,vs)+
(

αsu
θ ,k,m
s −uθ ,k

s ,vs

)

Γs

≥
(

Λk,m
t −Λk

s ,vs

)

Γs
,∀vs ∈Vs

and so

ci
s(e

θ ,k,m+1
s ,vi

s−eθ ,k,m+1
s )+

(

αeθ ,k,m
s ,vs−eθ ,k,m+1

s

)

Γs

≥
(

ηk,m
s ,v1−eθ ,k,m+1

s

)

Γs
,∀vs ∈Vs.

2. We have lim
m→+∞

εθ ,k,m
1 = lim

m→+∞
θ θ ,k,m

1 = 0. Than

Λk
s = (α1+α3)ũ

i,k
s −Λ i,k

t .

Therefore

ηk,m+1
s = Λ k,m+1

s −Λ k
s

= (α1+α3)u
θ ,k,m
s −Λ k,m

t +θ k,m+1
t − (α1+α3)u

θ ,k,m+1
s

+Λ k
t

= (α1+α3)(u
θ ,k,m+1
s −uθ ,k

s )− (Λ k,m
t −Λ k

t )+θ k,m+1
t .

Lemma 2. By letting C be a generic constant which has
different values at different places, we get for s, t = 1,3,s 6=
t

(

ηk,m−1
s −αse

k,m
s ,w

)

Γ1
6C

∥

∥

∥
ek,m

s

∥

∥

∥

1,Ωs
‖w‖W1

(21)

and

(

αsws+θ k,m+1
1 ,ek,m+1

s

)

Γ1
6C

∥

∥

∥ek,m+1
s

∥

∥

∥

1,Ωs
‖w‖W1

.

(22)

Proof. Using Lemma 1 and the fact of the inverse of the
trace mappingTr−1

i : W1 −→Vs is continuous we have for
s, t = 1,3,s 6= t

(

ηk,m−1
s −αse

k,m
s ,wi

)

Γ s
= c(ek,m

t ,Tr−1w)

=
(

∇ek,m
s ,∇Tr−1w

)

Ωs

+
(

αek,m
s ,Tr−1w

)

Ωi
+λ

(

ek,m
s ,Tr−1w

)

Ωs

6

∣

∣

∣ek,m
s

∣

∣

∣

1,Ωs

∣

∣Tr−1w
∣

∣

1,Ωs
+ ‖α‖∞

∥

∥

∥ek,m
s

∥

∥

∥

0,Ωs

∥

∥Tr−1w
∥

∥

0,Ωs

+ |λ |
∥

∥

∥ek,m
s

∥

∥

∥

0,Ωs

∥

∥Tr−1w
∥

∥

0,Ωs

6C
∥

∥

∥ek,m
s

∥

∥

∥

1,Ωi
‖w‖W1

.

For the second estimate, we have
(

αsws+θ k,m+1
1 ,ek,m+1

s

)

Γs
=
(

αsws+θ k,m+1
1 ,ek,m+1

s

)

Γs

6

∥

∥

∥αsws+θ k,m+1
1

∥

∥

∥

0,Γ1

∥

∥

∥ek,m+1
s

∥

∥

∥

0,Γ1

6

(

|αs|‖ws‖0,Γ1
+
∥

∥

∥θ k,m+1
1

∥

∥

∥

0,Γ1

)

∥

∥

∥ek,m+1
s

∥

∥

∥

0,Γ1

≤ max(|αs| ,
∥

∥

∥θ k,m+1
1

∥

∥

∥

0,Γ1
)‖ws‖0,Γ1

∥

∥

∥ek,m+1
s

∥

∥

∥

0,Γ1

≤C
∥

∥

∥ek,m+1
s

∥

∥

∥

0,Γ1
‖ws‖0,Γ1

6C
∥

∥

∥ek,m+1
s

∥

∥

∥

0,Γ1
‖ws‖W1

.

Thus, it can be deduced

|αs|‖ws‖0,Γ1
+
∥

∥

∥
θ k,m+1

1

∥

∥

∥

0,Γ1

6 max
(

|αs| ,
∥

∥

∥
θ k,m+1

1

∥

∥

∥

0,Γ1

)

‖w‖0,Γ1
.

Proposition 2.For the sequences(uθ ,k,m+1
1 ,uθ ,k,m+1

3 )m∈N

solutions of (15) we have the following a posteriori error
estimation
∥

∥

∥
uθ ,k,m+1

1 −uk
1

∥

∥

∥

1,Ω1

+
∥

∥

∥
uθ ,k,m+1

3 −uk
3

∥

∥

∥

3,Ω3

6C
∥

∥

∥uθ ,k,m+1
1 −uk,m

3

∥

∥

∥

W1
.

Proof.From (19) and (20) and we takevs = v1−uk,m+1in
(33), then we have

c(ek,m+1
1 ,v1)+ c(ek,m

3 ,v3)

=
(

ηk,m
3 −α1ek,m+1

1 ,vi
1

)

Γ1
+
(

ηk,m−1
1 −α3ek,m

3 ,v3

)

Γ1

=
(

ηk+1,m
3 −α1ek+1,m+1

1 ,v1

)

Γ1
+
(

ηk+1,m−1
1 −α3ek+1,m

3 ,v3

)

Γ1

+
(

ηk,m−1
1 −α3ek+1,m

3 ,vi
1

)

Γ1
−
(

ηk+1,m−1
1 −α3ek+1,m

3 ,v1

)

Γ1
.

Thus, we have

c(ek,m+1
1 ,v1)+ c(ek,m

3 ,v3) =

(

ηk,m
3 −α1ek+1,m+1

1 +ηk,m−1
1 −α3ek,m

3 ,v1

)

Γ1

+
(

ηk,m−1
1 −α3ek,m

3 ,v3− v1

)

Γ1

=
(

(α1+α3)ek,m
3 +θ k,m

1 −α1ek,m+1
1 −α3ek,m

3 ,v1

)

Γ1

+
(

ηk,m−1
1 −α3ek,m

3 ,v3− v1

)

Γ1

=
(

α1(e
k,m
3 −ek,m+1

1 )+θ k,m
1 ,v1

)

Γ1
+
(

ηk,m−1
1 −α3ek,m

3 ,v3− v1

)

Γ1
.

(43)
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Taking v1 = ek,m+1
1 andv3 = ek,m

3 in (22), then using
1
2
(a+b)6 a2+b2 and the lemma 2, we get

1
2

(

∥

∥

∥uθ ,k,m+1
1 − ũi,k+1

1

∥

∥

∥

1,Ω1
+
∥

∥

∥uθ ,k,m+1
3 − ũi,k+1

3

∥

∥

∥

3,Ω3

)2

6

∥

∥

∥uθ ,k,m+1
1 −uθ ,k

1

∥

∥

∥

2

1,Ω1
+
∥

∥

∥uθ ,k,m+1
1 −uθ ,k

1

∥

∥

∥

2

3,Ω3

≤
∥

∥

∥ek,m+1
1

∥

∥

∥

2

1,Ω1
+
∥

∥

∥ek,m
3

∥

∥

∥

2

3,Ω3

≤
(

∇ek,m+1
1 ,∇ek,m+1

1

)

Ω1
+
(

a0ek,m+1
1 ,ek,m+1

1

)

Ω3

+
(

∇ek,m
3 ,∇en+1,m

3

)

Ω1
+
(

a0ek,m
3 ,ek,m

3

)

Ω3

6

(

∇ek,m+1
1 ,∇ek,m+1

1

)

Ω1
+ ‖a0‖∞

(

ek,m+1
1 ,ek,m+1

1

)

Ω1

+
(

∇ek,m
3 ,∇ek,m

3

)

Ω1
+
∥

∥ai
0

∥

∥

∞

(

ek,m
3 ,ek,m

3

)

Ω3
.

Then

1
2

(

∥

∥

∥uθ ,k,m+1
1 −uθ ,k,

1

∥

∥

∥

1,Ω1
+
∥

∥

∥uθ ,k,m+1
3 −uθ ,k,m+1

3

∥

∥

∥

3,Ω3

)2

6 max(1,‖a0‖∞)
(

c
(

ek,m+1
1 ,ek,m+1

1

)

+ c
(

ek,m
3 ,ek,m

3

))

= max(1,‖a0‖∞)
(

α1(e
k,m
3 −ek,m+1

1 )+θ k,m
1 ,ek,m+1

1

)

Γ1

+
(

ηk,m−1
1 −α3ek,m

3 ,ek,m
3 −ek,m+1

1

)

Γ1

6C1

∥

∥

∥ek,m+1
1

∥

∥

∥

1,Ω1

∥

∥

∥ek,m
3 −ek,m+1

1

∥

∥

∥

W1

+C1

∥

∥

∥ek,m
3

∥

∥

∥

3,Ω3

∥

∥

∥ek,m
3 −ek,m+1

1

∥

∥

∥

W1

6C1

[

∥

∥

∥ek,m+1
1

∥

∥

∥

1,Ω1
+
∥

∥

∥ek,m
3

∥

∥

∥

3,Ω3

]

∥

∥

∥ek,m
3 −ek,m+1

1

∥

∥

∥

W1
,

thus
∥

∥

∥ek,m+1
1

∥

∥

∥

1,Ω1
+
∥

∥

∥ek,m+1
3

∥

∥

∥

3,Ω3
6

∥

∥

∥ek,m+1
1 −ek,m+1

3

∥

∥

∥

W1
.

Therefore
∥

∥

∥uθ ,k,m+1
1 −uθ ,k

1

∥

∥

∥

1,Ω1
+
∥

∥

∥uθ ,k,m+1
3 −uθ ,k

3

∥

∥

∥

3,Ω3

6 2C1

∥

∥

∥uθ ,k,m+1
1 −uθ ,k,m+1

3

∥

∥

∥

W1
.

In the similar way, we define another nonoverlapping
auxiliary problems over(Ω2,Ω4) , we get the same result.

Proposition 3. For the sequences
(uθ ,k,m+1

2 ,uθ ,k,m+1
4 )m∈N. We get the the similar following a

posteriori error estimation
∥

∥

∥uθ ,k,m+1
2 −uθ ,k

2

∥

∥

∥

2,Ω2
+
∥

∥

∥uθ ,k,m+1
4 −uθ ,k

4

∥

∥

∥

4,Ω4

6C
∥

∥

∥uθ ,k,m+1
2 −uθ ,k,m+1

4

∥

∥

∥

W2
. (23)

Proof.The proof is very similar to proof of Proposition 2.

Theorem 2. Let uθ ,k
s = uθ ,k

Ωs
,s = 1,2. For the sequences

(uθ ,k,m+1
1 ,uθ ,k,m+1

2 )m∈N solutions of problems (15), one
have the following result
∥

∥

∥uθ ,k,m+1
1 −uθ ,k

1

∥

∥

∥

1,Ω1
+
∥

∥

∥uθ ,k,m
2 −uθ ,k

2

∥

∥

∥

2,Ω2
6

C (
∥

∥

∥uθ ,k,m+1
1 −uθ ,k,m

2

∥

∥

∥

W1
+
∥

∥

∥uθ ,k,m
1 −uθ ,k,m+1

1

∥

∥

∥

W2
+

+
∥

∥

∥ei,k,m
1

∥

∥

∥

W1
+
∥

∥

∥ek,m+1
2

∥

∥

∥

W2
).

Proof.We use two nonoverlapping auxiliary problems over
(Ω1,Ω3) and over(Ω2,Ω4) resp. From the previous two
propositions, we have
∥

∥

∥uθ ,k,m+1
1 −uθ ,k

1

∥

∥

∥

1,Ω1
+
∥

∥

∥uθ ,k,m+1
2 −uθ ,k

2

∥

∥

∥

2,Ω2

6

∥

∥

∥
uθ ,k,m+1

1 −uθ ,k
1

∥

∥

∥

1,Ω1

+
∥

∥

∥
uθ ,k,m+1

3 −uθ ,k
3

∥

∥

∥

3,Ω3

+
∥

∥

∥uθ ,k,m+1
2 −uθ ,k

2

∥

∥

∥

2,Ω2
+
∥

∥

∥uθ ,k,m+1
4 −uθ ,k

4

∥

∥

∥

4,Ω4

6C
∥

∥

∥uθ ,k,m+1
1 −uθ ,k,m

3

∥

∥

∥

W1
+C

∥

∥

∥uθ ,k,m+1
2 −uθ ,k,m+1

4

∥

∥

∥

W2

6C
∥

∥

∥
uθ ,k,m+1

1 −uθ ,k,m
2 + εk,m

1

∥

∥

∥

W1

+C
∥

∥

∥uθ ,k,m
2 −uθ ,k,m+1

1 + εk,m+
2

∥

∥

∥

W2
,

then
∥

∥

∥uθ ,k,m+1
1 −uθ ,k

1

∥

∥

∥

1,Ω1
+
∥

∥

∥uθ ,k,m
2 −uθ ,k,m

2

∥

∥

∥

2,Ω2
6

C
(∥

∥

∥uθ ,k,m+1
1 −uθ ,k,m

2 + εk,m
1

∥

∥

∥

W1
+
∥

∥

∥uθ ,k,m
2 −uθ ,k,m+1

1 + εk,m−1
2

∥

∥

∥

W2

+
∥

∥

∥εk,m
1

∥

∥

∥

W1
+
∥

∥

∥εk,m+1
2

∥

∥

∥

W2

)

.

5 A Posteriori Error Estimate in the Discrete
Case

5.1 The space discretization

Let Ω be decomposed into triangles andτh denote the set
of all those elementsh > 0 is the mesh size. We assume
that the family τh is regular and quasi-uniform. We
consider the usual basis of affine functionsϕi
i = {1, ...,m(h)} defined byϕi (M j) = δi j , whereM j is a
vertex of the considered triangulation.

We discretize in space, i.e., that we approach the
spaceH1

0 by a space discretization of finite dimensional
Vh ⊂ H1

0 . In a second step, we discretize the problem with
respect to time using the semi-implicit scheme.
Therefore, we search a sequence of elementsuθ ,n

h ∈ Vh

which approachesuh (tn, .) , tn = n∆ t, k = 1, ...,n, with
initial datau0

h = u0h.
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Let uθ ,k,m+1
h ∈ Vh be the solution of the discrete

problem associated with (14), uθ ,k,m+1
s,h = uθ ,k,m+1

h,Ωs
.

We construct the sequences
(uθ ,k,m+1

s,h )m∈N,u
θ ,k,m+1
s,h ∈ Vh

s ,(s = 1,2) solutions of
discrete problems associated with (33) and (34).

whererh is the usual interpolation operator defined by

rhv=
m(h)

∑
i=1

v(M j)ϕi (x) . (45)

In similar manner to that of the previous section, we
introduce two auxiliary problems, we define for(Ω1,Ω3)

the following full-discrete problems: finduθ ,k,m+1
1,h ∈ Kh

solution of



























































c(uθ ,k,m+1
1,h , ṽ1,h−uθ ,k,m+1

1,h )+
(

α1,huθ ,k,m+1
1,h , ṽ1,h−uθ ,k,m+1

1,h

)

Γ1

≥
(

Fθ (uθ ,k−1,m+1
1,h ), ṽ1,h− ũi,k,m+1

1,h

)

Ω1
, ṽ1,h ∈Vh,

uθ ,k,m+1
1,h = 0, on∂Ω1∩∂Ω ,

∂uθ ,k,m+1
1,h
∂η1

+α1uθ ,k,m+1
1,h =

∂uθ ,k,m
2,h

∂η1
+α1uθ ,k,m

2,h , onΓ1

(24)

by taking the trial function ˜v1,h = v1,h − uθ ,k,m+1
1,h in

(24), we get



























































c(uθ ,k,m+1
1,h ,v1,h)+

(

α1,huθ ,k,m+1
1,h ,v1,h

)

Γ1

≤
(

F(uθ ,k−1,m+1
1,h ),v1,h

)

Ω1
, v1,h ∈Vh,

uθ ,k,m+1
1,h = 0, on ∂Ω1∩∂Ω ,

∂uθ ,k,m+1
1,h

∂η1
+α1uθ ,k,m+1

1,h =
∂uθ ,k,m

2,h

∂η1
+α1uθ ,k,m

2,h , onΓ1.

(47)

Similarly, we get



































c(uθ ,k,m+1
3,h ,v1,h)+

(

α3,huθ ,k,m+1
3,h ,v1,h

)

Γ1

≤
(

Fθ (uθ ,k−1,m+1
3,h ),v1,h

)

Ω3
,

uθ ,k,m+1
3,h = 0, on ∂Ω3∩∂Ω ,

∂uθ ,k,m+1
3,h

∂η3
+α3uθ ,k,m+1

3,h =
∂uθ ,k,m

1

∂η3
+α3uθ ,k,m

1 , onΓ1.

(48)

For (Ω2,Ω4) , we have


















































c(uθ ,k,m+1
2,h ,v2,h)+

(

α2,huθ ,k,m+1
2,h ,v2,h

)

Γ1

≤
(

Fθ (uθ ,k−1,m+1
2,h ),v2,h

)

Ω2
,

uθ ,k,m+1
2,h = 0, on ∂Ω2∩∂Ω ,

∂uθ ,k,m+1
2,h

∂η2
+α2uθ ,k,m+1

2,h =
∂uθ ,k,m

1

∂η2,h
+α2uθ ,k,m

1 , onΓ2

(49)
and



















































c(uθ ,k,m+1
4,h ,v4,h)+

(

α4,huθ ,k,m+1
4 ,v4,h

)

Γ1

≤
(

Fθ (uθ ,k−1,m+1
4 ),v4,h

)

Ω4
,

uθ ,k,m+1
4,h = 0, on ∂Ω1∩∂Ω ,

∂uθ ,k,m+1
4,h

∂η4
+α4uuθ ,k,m+1

4,h =
∂uθ ,k,m+1

2,h

∂η4
+α4uθ ,k,m+1

2,h , onΓ2.

(50)

Theorem 3.[8]The solution of the system of QVI (47) and
(48), and 49 is the maximum element the set of discrete
subsolutions.

We can obtain the discrete counterparts of
propositions 1 and 2 by doing almost the same analysis as
in section above (i.e., passing from continuous spaces to
discrete subspaces and from continuous sequences to
discrete ones). Therefore,

∥

∥

∥uθ ,k,m+1
1,h −uθ ,k

1,h

∥

∥

∥

1,Ω1
+
∥

∥

∥uθ ,k,m+1
3,h −uθ ,k

3,h

∥

∥

∥

1,Ω3
6C

∥

∥

∥uθ ,k,m+1
1,h −uθ ,k,m

3,h

∥

∥

∥

W1

(51)
and

∥

∥

∥uθ ,k,m+1
2,h −uθ ,k

2,h

∥

∥

∥

1,Ω2
+
∥

∥

∥uθ ,k,m+1
4,h −uθ ,k

4,h

∥

∥

∥

1,Ω4
6C

∥

∥

∥uθ ,k,m+1
2,h −uθ ,k,m

4,h

∥

∥

∥

W2
.

(52)
Similar to that in the proof of Theorem 2 we get the

following discrete estimates
∥

∥

∥uθ ,k,m+1
1,h −uθ ,k

1,h

∥

∥

∥

1,Ω1
+
∥

∥

∥uθ ,k,m
2,h −uθ ,k

2,h

∥

∥

∥

1,Ω2
6

C (
∥

∥

∥uθ ,k,m+1
1,h −uθ ,k,m

2,h

∥

∥

∥

W1
+
∥

∥

∥uθ ,k,m
2,h −uθ ,k,m

1,h

∥

∥

∥

W2

+
∥

∥

∥ek+1,m
1,h

∥

∥

∥

W1
+
∥

∥

∥ek+1,m
2,h

∥

∥

∥

W2
).

Next we will obtain an error estimate between the
approximated solutionuθ ,k,m+1

s,h and the semi discrete

solution in time uθ ,k. We introduce some necessary
notations. We denote by

εh = {E ∈ T : T ∈ τh andE /∈ ∂Ω}
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and for everyT ∈ τh andE ∈ εh, we define

ωT = {T ′ ∈ τh : T ′∩T 6=∅} , ωE = {T ′ ∈ τh : T ′∩E 6=∅} .

The right hand sidef is not necessarily continuous
function across two neighboring elements ofτh havingE
as a common side,[ f ] denotes the jump off acrossE and
ηE the normal vector ofE.

We have the following theorem which gives an a
posteriori error estimate for the discrete GODDM.

Theorem 4.Let uθ ,k
s = uθ ,k |Ωs where u is the solution of

problem (1), the sequences
(

uθ ,k,m+1
1,h ,uθ ,k,m

2,h

)

m∈N
are

solutions of the discrete problems (33) and (34). Then
there exists a constant C independent of h such that
∥

∥

∥
uθ ,k,m+1

1,h −uθ ,k
1

∥

∥

∥

1,Ω1

+
∥

∥

∥
uθ ,k,m

2,h −uθ ,k
2

∥

∥

∥

1,Ω2

6C

{

2

∑
i=1

∑
T∈τh

(

ηT
i

)

+ηΓs

}

,

where

ηΓs
=
∥

∥

∥uθ ,k,∗
h,s −uθ ,k,∗−1

h,t

∥

∥

∥

Wh,s

+
∥

∥

∥εθ ,k,∗
i,h

∥

∥

∥

Wh,s

and

ηT
s = hT

∥

∥

∥
F
(

uθ ,k−1,∗
h,s

)

+uθ ,k−1
h,s +∆ uθ ,k,∗

h,s −
(

1+λak
h0

)

uθ ,k
h,s

∥

∥

∥

0,T

+ ∑
E∈εh

h
1
2
E

∥

∥

∥

∥

∥

∥





∂uθ ,k,∗
h,s

∂ηE





∥

∥

∥

∥

∥

∥

0,E

, (25)

where c is Lipschitz constant of the right hand side and
the symbol∗ is corresponds to m+1 when s= 1 and to m
when s= 2.

Proof.The proof is based on the technique of the residual a

posteriori estimation see [24] and Theorem 3. We give the
main steps by the triangle inequality we have

2

∑
s=1

∥

∥

∥uθ ,k
s −uθ ,k,∗

h,s

∥

∥

∥

1,Ωs
6

2

∑
s=1

∥

∥

∥uθ ,k
s −uθ ,k

h,s

∥

∥

∥

1,Ωs

+
2

∑
s=1

∥

∥

∥uθ ,k
h,s −u∗s,h

∥

∥

∥

1,Ωs
. (26)

The second term on the right hand side of (26) is bounded
by

2

∑
s=1

2

∑
i=1

∥

∥

∥uθ ,k
h,s −u∗s,h

∥

∥

∥

1,Ωs
6

2

C∑
s=1

ηΓs
.

To bound the first term on the right hand side of (26)
we use the residual equation and apply the technique of

the residual a posteriori error estimation [24] , to get for
vh ∈Vh











































































c(uθ ,k
s −uθ ,k

h,s ,vs) = c(uθ ,k
s −uθ ,k

h,s ,vs− vh,s)

≤ ∑
T⊂Ωs

∫

T

(

F i,θ
(

uθ ,k−1
h,s

)

+uθ ,k−1
h,s + µ∆ uθ ,k

h,s

−
(

1+ µak
h0

)

uθk
h,s

)

(

vs− vh,s
)

ds

− ∑
E⊂Ωs

∫

E

[

∂uθk
h,s

∂ηE

]

(

vs− vh,s
)

ds− ∑
E⊂Γs

∫

E

∂uθk
h,s

∂ηE

(

vs− vh,s
)

ds
′

+ ∑
E⊂Ωs

∫

T

(

Fθ
(

uθ ,k
s

)

−Fθ
(

uθk
h,s

))

(vs− vh,s)dσ

+

(

∂uθk
h,s

∂ηs
,vs− vh,s

)

Γs

,

whereFθ
(

uθ ,k
h,s

)

is any approximation ofFθ
(

uθ ,k
s

)

.

Therefore

2
∑

s=1
c(uθ ,k

s −uθ ,k
h,s ,vs)

≤
2
∑

s=1
∑

T⊂Ωs

∥

∥

∥Fθ
(

uθ ,k
h,s

)

+uθ ,k−1
h,s + µ∆uθ ,k

h,s

−
(

1+ µak
h0

)

uθ ,k
h,s

∥

∥

∥

0,T

∥

∥vs− vh,s

∥

∥

0,T

+
2
∑

s=1
∑

E⊂Ωs

∥

∥

∥

∥

∥

[

∂uθ ,k
h,s

∂ηE

]∥

∥

∥

∥

∥

0,E

∥

∥vs− vh,s

∥

∥

0,E+

2
∑

s=1
∑

E⊂Γs

∥

∥

∥

∥

∥

∂uθ ,k
h,s

∂ηE

∥

∥

∥

∥

∥

0,E

∥

∥vs− vh,s

∥

∥

0,E

+
2
∑

s=1
∑

T⊂Ωs

c
∥

∥

∥uθ ,k
s −uθ ,k

h,s

∥

∥

∥

0,T

∥

∥vs− vh,s

∥

∥

0,T

+
2
∑

s=1
∑

T⊂Ωs

∥

∥

∥

∥

∥

∂uθ ,k
h,s

∂ηs

∥

∥

∥

∥

∥

0,T

∥

∥vs− vh,s

∥

∥

0,T ,

Using the following fact

∥

∥

∥uθ ,k
s −uθ ,k

h,s

∥

∥

∥

1,Ωs
6 sup

vi
s∈K

c(uθ ,k
s −uθ ,k

h,s ,vs+ chT
s )

‖vi
s+ chT

s ‖1,Ωi

,

we get

2

∑
s=1

c(uθ ,k
s −uθ ,k

h,s ,vs+ chT
s )≤

2

∑
s=1

(

∑
T⊂Ωs

ηT
s

)

2

∑
s=1

‖vs‖1,Ωs
.

(55)
Finally, by combining (52), (26) and (27) the required

result follows.

6 Numerical example

In this section we give a simple numerical example.
Consider the following evolutionary HJB equation which
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can approximated by PQVIs [7] and [10] which
investigated the stationary case.











max
1≤ i ≤ 2

(
∂ui

∂ t
+Aiui − f i) = 0, in Ω × [0,T] ,

u(0, t) in Ω = 0,

(56)

whereΩ = ]0.1[ , u(0,x) = 0, T = 1 and

A1u=
∂ 2u
∂x2 , A2u=

∂ 2u
∂x2 +u, f 1 = f 2 = x+ t

The exact solution of the problem is

u(x, t) =
(

x4− x5
)

sin(10x)cos(20πt).

For the finite element approximation, we take uniform
partition and linear conforming element. For the domain
decomposition, we use the following decompositions
Ω1 = ]0, 0.55[ , Ω2 = ]0.45, 1[ .

We compute the bilinear semi implicit scheme
combined with Galerkin solution inΩ and and we apply
the generalized overlapping domain decomposition
method to compute the bilinear sequences
ui,k,m+1

h,s , (s= 1,2) to be able to look at the behavior of the

constantC, where the space stepsh =
1
10

,
1

100
,

1
1000

and the time steps of discetization∆ t =
1
10

,
1
50

,
1

100
.

We denote by

Es =
∥

∥

∥ui,k
s −ui,k,m

h,s

∥

∥

∥

1,Ωs
, T1 =

∥

∥

∥ui,k,m+1
h,1 −ui,k,m

h,2

∥

∥

∥

W1
h

and T2 =
∥

∥

∥ui,k,m
h,2 −ui,k,m−1

h,1

∥

∥

∥

W2
h

.

The generalized overlapping domain decomposition
method, withα1 = α2 = 0.55, converges. The iterations
have been stopped when the relative error between two
subsequent iterates is less than 10−6, we get the following
results

∆ t =
1
10

, θ =
1
2

h 1/10 1/100 1/1000
Es 0.5081043(−4) 0.264825(−6) 0.4725905(−6)
Es 0.6265874(−4) 03852017(−6) 0.3837247(−6)
T1 0.9650827(−4) 0.573981(−6) 0.1286211(−6)
T2

Iterations
0.892843(−4)

8
0.6418371(−6)

14
0.9430526(−6)

20

∆ t =
1
20

,θ =
1
2

h 1/10 1/100 1/1000
Es 0.4759595(−3) 0.8496273(−4) 0.9482601(−4)
Es 0.5083649(−3) 0.7892758(−4) 0.8542894(−4)
T1 0.7592478(−3) 0.927307(−4) 0.9785809(−4)
T2

Iterations
0.8584208(−3)

8
0.855012(−4)

14
0.9438526(−4)

20

∆ t = 1/40

h 1/10 1/100 1/1000
Es 0.9276183(−2) 0.2937842(−3) 0.8297682(−4)
Es 0.8524725(−2) 0.2572064(−3) 0.87085497(−4)
T1 0.9793482(−2) 0.6079027(−3) 0.5433127(−4)
T2

Iterations
0.7582921(−2)

8
0.51975802(−3)

14
0.517528(−4)

20

7 Conclusion

In this paper, a posteriori error estimates for PQVI with
linear source terms are derived using the theta time
scheme combined with a finite element spatial
approximation. Also the techniques of the residual a
posteriori error analysis are used. Furthermore the results
of some numerical experiments are presented to support
the theory. In the future work, the a posteriori error
analysis for similar results will be obtained in the general
case of more than two subdomains.
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