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Abstract: In this paper, Multiple-scales method is presented forieglgecond and third order singularly perturbed problenth wi
the boundary layer at one end either left or right. The oabsecond and third order ordinary differential equatiomsteansformed to
partial differential equations. These problems have bebred efficiently by using multiple-scales method and Nuo@simulations
are performed on standard test examples to justify the tobss of the proposed method.
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1 Introduction nontrivial task. A naive expansion in a power series of the
small parameter is often prevented by the appearance of

Differential equations with a small parameter multiplying '€Sonant terms in higher orders. These terms have to be
the highest order derivative terms are said to be singularlfompensated by the introduction of counter terms.
perturbed which are often found in mathematical Boundary layers are also a common feature of
problems arising in sciences and engineering. Numericasingular perturbed systems. In these cases higher order
solution of singularly perturbed boundary value problemsderivatives disappear in the unperturbed equations which
in ordinary differential equations is a well known researchlead to the cancellation of degree of freedom of the
area. Many numerical methods have been developed fogystem and finally in small regions where the system
solving singularly perturbed problems. For detail analysi changes rapidly. Boundary layer theory is a collection of
of this type of problems we refet]-[33]. perturbation methods for obtaining an asymptotic

The analysis of boundary layer problems and multipleapproximation to the solution of a differential equation
scale phenomena which have been generalized under thghose highest derivative is multiplied by a small
notion of singular perturbation problems played a parametee. Solutions to such equations usually develop
significant role in applied mathematics and theoreticalregions of rapid variation as — 0. If the thickness of
physics [L,15]. Regular perturbation theory is often not these regions approaches 0 as- 0, they are called
applicable to various problems due to resonance effects dpoundary layer and boundary layer theory may be used to
the cancellation of degree of freedom. In order to obtain a@pproximate solution. These rapid changes cannot be
uniformly valid asymptotic expansion of a solution for handled by slow scales, but they can be handled by fast or
these singular perturbed problems a variety of methodgnagnified or stretched scales.
has been developed such as boundary layer expansions, In boundary layer theory we treat the solution of the
multiple scales methods, asymptotic matching, stretchedlifferential equation as a function of two independent
coordinates, averaging and WKB expansions. variablesx and ¢ i.e. y(x; €). But the main target of this

A physical system often involves multiple temporal or analysis is to obtain a global approximation to solution as
spatial scales on which characteristics of the systema function of x, this is achieved by introducing the
change. In some cases the long time behavior of thestretched scalé = x/¢, which in this case is the same as
system can depend on slowly changing time scales whichhe inner variable = X, which in this case is the outer
have to be identified in order to apply multiple scale variable. The uniform expansion of the solution of a
theory. The choice of the slow or fast changing scales is aingular perturbation problem cannot be expressed in
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terms of a single scale i.e. a single combinatiom ahde In [8],[23-[25 approximate solution has been obtained
and , such ax or x/& or x/¥? or x/e2, making it an  while our proposed method gives the exact solution for
ideal problem for application of the method of multiple second order singularly perturbed boundary layer
scales 11]. problems. The original second and third order ordinary
The idea behind introducing multiple scales is to keepdifferential - equations are transformed to partial
expansions well ordered, minimize the error of the dlffe_rentlal equations. These problems have been sqlved
approximation and avoid sometimes the appearance Og_fflmenply by using multiple scale method and numerical
secular terms. An expansion of a function that depends ofimulations are performed on standard test examples to
an independent variable and a small parameter, such 4¥Stify the robustness of the proposed m.ethod:
y(x.€) depends strongly on the scale being used. In many The paper is organized as'follows. Multiple scales
situations, there exist multiple-boundary layers at oneMethod for the second and third order boundary layer
side, for which multiple calculations of inner and outer Problemsis described in Section 2. Numerical example of
solutions and their asymptotic matching have to be madég&cond and third order boundary layer problems solved
in different separated regions to obtain a uniformly valid Y Multiple scales method are presented in Section 3. In
solution. Again it turns out that the multiple scales Section 4, concluding discussion is briefly mentioned.

method manages to produce the solution without any

matching needed. 2 Multiple Scales Method for Second and
Author explores in 9] to solve the boundary layer ultiple es Methoa for ona an

second-order differential equations by using the I hird order Boundary L ayers Problems
interpolation perturbation method. An approximate . . . .

boundary layer solution is presented i for an axially In this section, description of multiple scales method for
moving beam with small flexural stifiness. The method of 9€neral second and third order boundary layer problems

multiple scales is applied to the problem and theas been presented.

composite expansion including two inner solutions and

one outer solution is found. InLP| the existence of the

exponential series solution to thg]boundary value problen?-1 Second Order Boundary Layer Problem
describing the boundary layer flows of Newtonian fluids
has been described. The Crane’s solution is generalize
for stretching walls with a power law stretching velocity.

In [20] authors study a boundary value problem for a ey’ +a(x)y +b(x)y=0, 0<x<1 1)
third order differential equation which arises in the study -
of self-similar solutions of the steady free convection and boundary conditions
problem for a vertical heated impermeable flat plate B -
embedded in a porous medium. Jong-Shenqg Guo et al. yO) =a, y1)=p @
considered the structure of solutions of the initial value Here, o, are constants and is the perturbation

problem for this third order differential equation. R.A. parameter. It is well known that in equatiori) (if

Khan [21] used the generalized approximation methoda(x) > 0, then the boundary layer is at= 0 and if
(GAM) to investigate the temperature field associateda(x) < 0, then the boundary layer isxat= 1.

with the Falkner-Skan boundary-layer problem. Authors — The point of interest is to solve problent)(with
applied in P2 the modified variational iteration method houndary conditions2j by using multiple scales method.
(MVIM) for boundary layer equation in an unbounded pye to the presence of the boundary layer in the problem

domain and Pade approximants had been employed ifn) we consider two scales; the outer scalegat= x and
order to make the work more concise and for the betteran inner or boundary layer scaleft= x/¢.

Lo explain multiple scales method we consider the general
second order singular perturbed equation

understanding of the solution behavior. Then, using chain rule, the derivatives are defined as
Classical methods find the inner solution and outerfollows

solution separately and match the two solutions using d 10 J 3)

physical constraints. The final solution is a composite dx €0d&  Ixg

expansion including the inner and outer solutions. On the
P g @ 14 2 2 92

other hand, using the method of multiple scales, the - _ - £ Y Y (4)
composite expansion can be retrieved at once using a dx?2  £20&2 £0&dx0 0%

single expansion37]. In this article, the method of e 18 4 3 23 3 2
multiple scales is applied to construct the solution of _—_ — (5)

= — — _|_ R — + —
second and third order boundary layer problems. It is @ €30&3 95 €20§%0x0  €9Edxg
shown that the method of multiple scales provides the  For the existence of the two scales, we assume the

exact solution for second order singularly perturbedfoliowing multi-scale expansion for the solution
boundary layer problems and approximate solution for

third order singularly perturbed boundary layer problems. Y =Yo(&,%0) + €y1(&,%0) + €2y2(E, %) +...  (6)
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Substituting 8), (4) and @) into original equationy) 2.2 Third Order Boundary Layer Problem.
we obtain

192 2 92 & ) To discuss the method of multiple scales method we
(?0—8+E—0£0x0+0_x§>(y°+8y1+8 Y2+ ...) consider the general third order singular perturbed
19 equation of the form;

X 4 2
+a(x) (Eﬁ N %) Yot-eyateyz ... ey” +a(x)y’ +b(x)y +c(x)y =0, 0<x<1 (16)

+b(X)(Yo+ ey1+€%2+...) =0 (7)
Thus, the original ordinary differential equatiof (s

and initial conditions are

transformed into the partial differential equatioi).( yO0)=a, y(0) =8 and Y'(1)=y. (17)
Separating the coefficients of each ordeiepbne obtain
the set of equations Here, a,B,y are arbitrary constants ané is the
2 perturbation parameter.
O@1/e): M+a%:0 (8) Substituting 8), (4), (5) and @) into the original
082 "¢ equation {6) then we have;
0%y1  dyr 9%yo o ( 10 o9 3 03 3 98 )
0.9y _OYy1_ .9 9o o ° 2
OE): Fgz 7358 = 5%, aw, 20 O £08 o3 2 08%% £ 080
2
92 i, 92 92 d X (Yo+€y1+ €Yz +...)
O(el):—yz2 a2 = o N SN R py 192 2 92 92
(10) £208%2  £0&dxg 0%}
The general solution o8] is given by ><(yo+£y1+£2y2+ )
_ —a 10 7]
Yo =Alxo) +B(x)e (11) +b(x) (Eﬁ + E) (Yo+&y1+E%2+...)
where A and B are undetermined at this level of 5
approximation; they are determined at this next level of +C(X)(Yo+ €y1+ €Yz +...) =0 (18)

approximation by imposing the solvability conditions.

. X ; Equating the coefficients of each powerea zero of
Puttingyg in (9) gives; 9 g P

equation 18), we can write

0%y1 | _0yr o ~ -
=5 +a—= =2aB'e ® —aA —aB'e ® —bA—bBe ¥ 33 92
982 %5¢ owe?): 52 L, a_dgg ~0 (19)
(12) ¢
o 3 2 3 2
%1 0% %Yo %o , 9Yo
2 1/¢): =3 _2 _p2Z¥
o 5 +aZl  (aB —bB)e* — (N +bA)  (19) O/e): 5gs Ta5e2 38%0x; Pazax, DoE
0¢ 9¢ (20)
A particular solution of {3) is o6 3y, 2y, FE PN , 0%y,
e T rasly = — — —2a
(aB' —bB), . (aA +DbA) 9083~ o¢? 0820% &g T 0&d%
Vp=- e - ¢ (14) %o dy1 9y
a a a0 M N 2

2
We seek a solution which is uniformly valid for<Q % 9¢ e

x <1 and 0< & < &1, but the latter implie€ — o (as The general solution of equatiohq) is
£ — 0™); thus we require, for uniformity the coefficients
of & andé& exp(—a¢) in (14) must vanish independently. yo = A(Xo) + B(X0)& +C(xo)e ¥, (22)
The result is
aB'—bB=0, aA +bA=0. (15) where A,B andC are undetermined at this level of

approximation; they are to be determined at the next level

Solving equation15), find the value ofA andB. Then of approxjmation by impo§ing the.solvability conditio_ns.
substituting these values in1Y) and imposing the Substituteyop from (22) in equation 20), we can write
boundary conditions fron2j, we find the values ciand ~ (20) in view of

b to obtain the approximate solution. This method hasa:«;y1 02y,

been illustrated more precisely by considering a specificﬁ tass = —3a%C'e ¥ —2a(B' —Clae™¥)

example of second order singularly perturbed boundary 3 3

layer problem in section 3. — b(B—aCe ¥) (23)
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2 2 2
or Oeh): 02, W2 91 0% v v
. , 0¢ 0¢ 0&d% dx§ 9  IX%
0 Y1 7 y1 2/ —aé / 0d
5—53 +a[9—€2 = —(a C —abC)e — (ZaB +bB) (24) _ 0_2 -y (32)
The particular solution of24) is The general solution o8(Q) is
/ /
o= gt 2B 2 (o Yo = Alo) + B(xo)e . (33)

Substitute the value ofp from (33) in equation 81),

which makesey;, much larger tharyg as & — « . we obtain

Hence, for a uniform expansion, the coefficients of 5
& exp(—aé) and &2 in (25) should vanish independently. 971 n oy1 _o(-Be€)+Bet— (A+Bed)

So, we have 082 9&

aC' ~bC=0, 2aB'+bB=0. (26) — (A+Be?) (34)
In the forthcoming section, we apply this procedure to find or 0%y, Ay
the approximate solution of a particular example of third — 422 =Bef- (A +A). (35)

0&2  9¢
A particular solution of 85) is

order singular perturbed boundary layer problem.

3 Numerical Simulation yip=—-B&et — (A +AE, (36)

To demonstrate the applicability and robustness of the ~Which makesey;, much bigger tharyp as§ — .
Multiple scales method, we consider three linear singulatience, for a uniform expansion, the coefficients cdnd
perturbation problems; one with left-end boundary layeré exp(—¢) in (36) must vanish independently. The result
and two with right-end boundary layer. These exampledS
have been chosen because they have been widely B'=0, A+A=0. (37)
discussed .in literature and exact solutions are available  The solution of 87)is
for comparison.

Example 1: Consider the following homogenous A=ae ™ B=b (38)
singular perturbation problem

wherea andb are arbitrary constants.

ey’ () +(1+ey (¥ +y(x)=0; xe[01]  (27) ~ Putting the values andB from (38) in equation 83)
with gives ;
y(0)=0 and y(1)=1. (28) Yo=ae % +be (39)
As this problem has a boundary layenat 0 i.e., at or, in terms of the original variable is
the left end of the underlying interval. L /e
Substituting 8), (4) and @) into the original equation Yo =ae “+be/*. (40)
(27), we get Substituting the value of in equation 6) gives
102 2 92 92 . e
£ ?d—8+g—dédxo+ﬁ_x§ y=ae *+be ¥ . (41)
X (Yo+ &y1+ €22+ ... Imposing the boundary conditions frordg) in (41)
yields

10 0
+(1+¢) (Eﬁ + %> (Yo+€y1+&%2+..)

+(Yo+&y1 + €%y2+...) = 0. (29)
Equating coefficients of each power efto zero of

a+b=0 and ae l4+be ¥f=1. (42)

Solving the equatior4@) for a andb, we obtain

equation 29), we have . )

aZyO 0y0 a= —m and b= m (43)

0(1/8) . —(9 5 0— =0 (30) . | - |
¢ ¢ Putting these values in4Q), we obtain the final
A%y dy 0%y, do  dy solution
). 22 D, 2%  ZH 20 _ _
O(€) 0&2 & 0Edxg 0& 0dxo Yo o o x N - "
(31) (ele_el)  (ele_el)
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/ or
(e—x £ _ e—X)
y=-—>———-= (45) 2
(ete—e) —(; gzl aa_;? =(-B'+Be‘+(A+A) (56)
Equation 45) is the exact solution of equatior2?)
which is given in B] A particular solution of $6) is
Example 2:Consider the following homogeneous Yip = (B’—B)Ee‘5+(A/+A)E (57)

singular perturbation problem
: which makesey;, much bigger tharyp asé — o .
ey’ () =Y (X) — (1+&)y(x) = 0; Hence, for a uniform expansion, the coefficient< cind

Eexp(—¢&) in equation $7) must vanish independently.

xe[0,1]  (46)

with Then the result is
y(0) =1+exp—(1+¢)/e) and y(1)=1+1/e (47) B-B=0, A+A=0 (58)
which has a boundary layer at= 1 because the The solution of §8) is
coefficient ofy’ is negative i.e., the boundary layer will be
situated at the right end of the underlying interval. For the A=ae ™ B=bheo, (59)

solution nearx = 1, we introduce the two scales,

¢ = (x—1)/¢ the inner scale and the outer scaje= x. wherea andb are arbitrary constants.
The derivatives can be defined in terms of these scales  pytting the value# andB from (59) in (54) and we

as d 10 d
&~ £a8 T axg (48)
2 1 92 2 92 92
o Fog eotox 0RO

Putting @8), (49) and @) into the original equatior4) it
becomes

(1o 2 2
€2082 €0&dxg 0%

(o9 (Yo+ €y1+ €%y +...)
£0f | 9% Yo+ €Y1 Y2+ ...

) (Yo+ €Y1+ E%ya+...)

—(14£)(Yo+ €y1+ £%y2 +...) = 0(50)

Equating coefficients of each power efto zero of
(50), we have

. 0%0 | dYo

O(1/e): 952 Tor = 0 (51)

0%y oyr %o | 9o

0y.97Y1 oY1 _ %Yo
O(s).052+05 2050x0+0xo+y0 (52)

(0%, Oy» %y1  9%o Oy
O(e): 0—524'%— m—ﬁ—)%*'%*—h*-w

(53)

The general solution of equatiofl) is
Yo =A(x0) +B(xo)e (54)

Substituting the value ofy from (54) in equation $2),
we obtain

9%y

0&2

+ Z—? =-28e ¢ +A+Bet+A+Be (55)

get
y=ae 4 (be?)e ¢ (60)
or, in terms of the original variable is
yo = ae ¥ + befe*V/¢ (61)
Putting the value o in equation €), we get
y=ae X+bee™ /ey (62)

Imposing the boundary conditions frond7) then
equation 62) yields

atbeV/e=1+ exp(—(%e)) and a+be?=e+1
(63)

Solving these equations we obtain
a=1 and b=1/e (64)

Putting these values ir62) and considering first two
terms, we obtain

y—et %eX<H>/f (65)

or
1+e)(x—1)/¢

y=e X+ (66)
Equation 66) represents the exact solution of

equation 46) which is given in B], [23]-[25]. In these
papers authors applied different numerical methods for
solving second order singular perturbed two point
boundary value problems with the boundary layers and
obtained the numerical solution, but our proposed
multiple scales method gives directly exact solution to
these problems.
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Example 3: Let us consider the following initial value
problem B]

e 1 (V2 +e+e¥2)y + (1+ e ey +y=0

where A,B and C are undetermined at this level of
approximation. They are determined at the next level of
approximation by imposing the solvability conditions.

Substituting the value ofy from (73) in equation 71),

(67)  we obtain
with initial conditions 2 22
y0)=3, Y0 =-1-¢2-¢1 and (68) ﬁy; ﬁyzl =-3Ce ¢ -2(B'-Ce)-Cet-BtCe*
Y'(0) =1+etye2 (74)
or

The coefficient ofy is positive, the boundary layer %y 0%y1 B
will be situated at the left-hand edge of the domain i.e. 988 T gE2 —Cle ¢ —(28'+B) (75)
nearx = 0. Pretending we do not know how to solve it,
we resort to conventional singular perturbation methods. A particular solution of T5) is
It turns out that the conventional perturbation calculatio 2B 4B
is very tedious and rather challenging. But our proposed Yip = —Cléet - ggﬂ (76)
multiple scales method successfully finds the approximate 2

solution without any matching by starting only with the

thinnest or innermost boundary layer by rescabing €&
and expanding(x) in terms ofe.

Substituting 8), (4), (5) and @) into the equationg7)
we have;

83/2<1"_3+‘9_3+§ 2 3 0 )
3083 9%} €208%0x €0&0x;
x(Yo+ &y1+...)
192 2 92 92
?0—52+505—0XO+0_X3>
x(Yo+ &y1+...)
19 4
+(1+€1/2+€)<Eﬁ+%>
x(Yo+&y1+...)
+(Yo+ey1+..)=0. (69)

Equating the coefficients of each powereao zero of
(69), we get

+(£1/2+£+£3/2)<

%o | 0%y
3/2y. Y Yo , ¢ Yo _
OW/e*?): 525+ 557 =0 (70)
yr 9%y
1/2. Y1 OY1
330 %o %o Yo
- _SaEZaxo C T0&oxg 082 9E (71)
3y, | 0%y 23y 33y
1/2y. 9°Y2 2 _ _ o 0
O™ 355 T 587 = 38200 Sa20%
.9 0% 9%
08dxg ~0&dxo 0%
oy1 0Yo
The general solution of equatiofd) is
Yo = ADX0) + B(x0)€ +C(x0)e ¢, (73)

which makesey;, much bigger tharyg asé — « .
Hence, for a uniform expansion, the coefficients of
& exp(—&) andé&? in (76) must vanish independently.

The results are

2B'+B=0, C'=0 77)
The solutions of 77) are
B=Dboe /2, C=cy, (78)

wherebgy andcg are arbitrary constants.
Putting the values oB andC from (78) in equation
(73), which gives

Yo = A-+boe /2 + coe (79)
or, in terms of the original variable
Yo =A+ ;boefx/ 2+ coe /E (80)
Substitutingyg in (6) we have
y:A+§boe‘X/2+coe‘X/5+... (81)

Imposing the boundary conditiong8) in (81), which
yields

A+cp=3, bg—co=—(1+€e"?+¢) and
—ebg+co = (14 &+€?)
Solving equationg?2) for A, by andcy we obtain

(82)

2-3c+eE g2/ 1—¢&e
B N
(83)

Then, putting these values i81) and then equation
(82) becomes

() ()

(&)

(84)
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>
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0.5 . .
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X
Fig.22€=04
then
1 (2= VE)X _y/n
=~ _{(2-3e+eye)+—YLe¥
Y=g {( Ve) :

+(1—£\/E)e*"/£}.

The equation &§5) represents the final approximate
solution of equation 7). Numerical simulations are
performed varyinge as it is shown in figure 1-4. The
figures indicate that the solution o8%) is very close to

the exact solution given irf].

Figure 1-4 of the numerical solution85) obtained by

MS
Exact

25

15

0.5
0 0.2 0.4 0.6 0.8 1

Fig.3: € =0.6

MS
Exact

25

15

0.5

Fig.4: ¢ =0.8

4 Conclusion

We present a numerical method for solving second and
third order singularly perturbed problems with the
boundary layer at one end (left or right) by Multiple
scales method. The original second and third order
ordinary differential equations i.e. boundary value
problems are transformed to partial differential equagion
This method is very easy for implementation. Numerical
results of standard examples chosen from the references
are presented in support of the proposed theory. Using the
method of Multiple scales, a single expansion is sufficient
and requires no matching between the expansions. In
references §], [23]-[25 authors applied different

Multiple scales (MS) method with the exact solution given numerical techniques to obtain the approximate solution

in [6].

of second order singularly perturbed boundary layer
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problems while in this article exact solution has been[16] P.P. Chakravarthy, K. Phaneendra and Y.N. Reddy, A

obtained by our proposed method. seventh order numerical method for singular perturbation
problems, Applied Mathematics and Computation, 186
(2007) 860-871.
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