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Abstract: This paper presents a regression model for a special case of interval type-2 fuzzy sets based on the least squares estimation
technique. Unknown coefficients are assumed to be triangular fuzzy numbers. The basic idea is to determine aggregation intervals for
triangular fuzzy numbers membership functions of whose arelow membership function and upper membership function of interval
type-2 fuzzy set and to determine an affinity measure for two interval type-2 fuzzy sets based on these intervals.
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1 Introduction

Currently, there are three different approaches in fuzzy
regression analysis. Let us dwell briefly on each of them:

(a) Methods proposed by H. Tanaka [1] and
investigated by H. Tanaka, et al. [2,3,4], A. Celmins [5,
6], D. Savic and W. Pedrycz [7], Y.-H.O. Chang [8,9,10]
Y.-H.O. Chang and B.M. Ayyub [11] in current literature,
where the coefficients of input variables are assumed to
be fuzzy numbers. These fuzzy regression models are
based on the possibility theory instead of the probability
theory or they are based on both possibility and
probability theories.

(b) Method proposed by R.J. Hathaway and J.C.
Bezdek [12] where first the fuzzy clusters determined by
an fuzzy c-means clustering (FCM) algorithm define how
many ordinary regressions are to be constructed, one for
each cluster. Next each fuzzy cluster is used essentially
for switching purposes to determine the most appropriate
ordinary regression that is to be applied for a new input
from amongst a number of ordinary regressions
determined in the first place.

(c) Methods proposed by I.B.Turksen [13] and A.
Celikyilmaz [14], where the fuzzy functions (FFs)
approach to system modeling was developed. The new
FFs approach augments the membership values together
with their transformations to form a new input variable to
find local functions. First the given system domain is

fuzzy partitioned into c clusters using fuzzy c-means
clustering (FCM) algorithm. Then, one regression
function is calculated to model the behavior of each
partition. In [13] linear regression function to estimate the
parameters of each function is proposed. A new fuzzy
system modeling (FSM) approach that identifies the fuzzy
functions using support vector machines (SVM) is
proposed in [15]. This new approach is structurally
different from the fuzzy rule base approaches and fuzzy
regression methods. Method SVM is applied to determine
the support vectors for each fuzzy cluster obtained by
fuzzy c-means (FCM) clustering algorithm. Original
input variables, the membership values obtained from the
FCM together with their transformations form a new
augmented set of input variables. Methods proposed in
[13,14], were investigated in [16].

The methods of fuzzy regression from group (a) have
received a lot of developing in the past years [1,2,3,4,17,
18,19,20,21] A major difference between fuzzy
regression and ordinary regression is in dealing with
errors as fuzzy variables in fuzzy regression modeling,
and in dealing with errors as random variables in ordinary
regression modeling. The researchers have tried to
integrate both fuzziness and randomness into regression
model. As a result of this the hybrid fuzzy least-squares
regressions were developed [8,9,10,11,22,23,24].
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However, the methods of fuzzy regression analysis are
limited by consideration of type-1 fuzzy sets (T1 FSs).
Moreover, the fuzzy regression analysis must provide a
way to model the observed fuzzy data such as words (for
example linguistic descriptions of the type: “good”, “very
good”, “excellent”) models of whose may be interval
type-2 fuzzy sets (IT2 FSs), proposed by L.Zadeh and
developed by J. M. Mendel [25]. IT2 FSs have enough
degrees of freedom to save individual data of subjects
about a word (“words mean different things to different
people, and so are uncertain” [25]) and to obtain a
collective model for this word. In order to include IT2
FSs into a regression, a need for developing a new
method exists. The basic idea of this method is to
determine aggregation intervals for triangular fuzzy
numbers, membership functions of whose are low
membership function (LMF) and upper membership
function (UMF) of IT2 FS, to determine an affinity
measure for two IT2 FSs based on these intervals and to
use the least squares estimation technique.

2 Weighted intervals for interval type-2 fuzzy
sets

Let us consider a special case of IT2 FSÃ shown in Fig. 1.

Fig. 1. IT2 FSÃ with LMF µÃ and UMFµÃ.

This IT2 FS is defined by LMF and UMF , which are
denoted byµÃ and µÃ respectively, µÃ =

(

aL, aL
l ,a

L
r

)

,

µÃ =
(

aU ,aU
l ,a

U
r

)

. The first parameter in bracket is
abscissa of the apex of the triangle that is a graph of the
corresponding membership function, while the last two
parameters are the lengths of the left and right triangle
wings correspondingly.

The definition of weighted pointB for a triangular
numberB̃ = (b,bl,br) was given in [10]:

B =

1
∫

0

(

B1α+B2α
2

)

2αdα

1
∫

0
2αdα

=
1
∫

0

(

B1
α +B2

α
)

αdα =

1
∫

0
(b− (1−α)bl + b+(1−α)br)αdα= b+ 1

6 (br − bl)

According to this definition, two normalized
symmetrical triangular numbers with different fuzzy
widths are converted into one crisp number. For example,
let consider two triangular fuzzy numbers:Ã = (2,2,2),
B̃ = (2,1,1). The weighted points for numbersÃ,B̃ we
shall designate accordingly asA,B, then:

A =

1
∫

0

(4−2(1−α)+2(1−α))αdα = 2,

B =

1
∫

0

(4− (1−α)+ (1−α))αdα = 2.

While this may not present a problem to solve a
number of practical tasks, however, for example, in
decision-making problems and some other problems the
necessity arises to find aggregative indexes that will
possibly accumulate different bounds of input fuzzy
numbers.

That is why we propose to use the definition of
weighted point for a triangular number in order to
determine a weighted interval for this number.

Let define the weighted set for the triangular l fuzzy
numberÃ ≡ (a,al ,ar) as the set of weighted points of all
triangular numbersB̃ ≡ (b,bl ,br) that belong to the
numberÃ.

Proposition 1 [26]. The weighted set for the triangular
fuzzy numberÃ ≡ (a,al,ar) is an interval[A1,A2], such as
A1 = a− 1

6al , A2 = a+ 1
6ar.

We shall call the interval[A1,A2] the weighted interval
for the triangular fuzzy number̃A ≡ (a,al ,ar).

Let consider two triangular fuzzy numbers:
Ã = (2,2,2), B̃ = (2,1,1) again and define the weighted
intervals[A1,A2],[B1,B2] for numbers̃A, B̃.

A1 =

1
∫

0

(4−2(1−α))αdα = 2−2×
1
6
= 1

2
3
,

A2 =

1
∫

0

(4+2(1−α))αdα = 2+2×
1
6
= 2

1
3
,
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B1 =

1
∫

0

(4− (1−α))αdα = 2−
1
6
= 1

5
6
,

B2 =

1
∫

0

(4+2(1−α))αdα = 2+
1
6
= 2

1
6
,

[A1,A2] =

[

1
2
3
,2

1
3

]

, [B1,B2] =

[

1
5
6
,2

1
6

]

.

It can be observed that the weighted points ofÃ and
B̃are the same while the weighted intervals for these fuzzy
numbers are different. The greater wings of the triangle,
the greater the weighted interval.

The weighted intervals are suggested to be used in
situations where it is necessary to accumulate more
information about fuzzy numbers than aggregative point
crisp indexes contain when there is no requirement to get
only aggregative numbers.

Proposition 2 [26]. The weighted interval for number
Ã + B̃ can be obtained as[A1+B1, A2+B2], where
[A1,A2] , [B1,B2] are weighted intervals for triangular
numbers̃A, B̃.

Proposition 3 [26]. The boundaries of weighted
interval for numberD̃ = Ã × B̃ are defined by linear
combinations of parameters̃A, B̃.

Let us consider nonnegativẽA ≡ (a,al ,ar) and a
triangular number ˜a ≡

(

b,bl ,br

)

.
Proposition 4 [27]. Boundaries of the weighed interval

[

θ 1
ãÃ
, θ 2

ãÃ

]

of product of fuzzy numbers ˜a andÃ look like

θ 1
ãÃ = b

(

a+(−1)q 1
6

aMq

)

− bl

(

1
6

a+(−1)q 1
12

aMq

)

,

θ 2
ãÃ = b

(

a+(−1)p 1
6

aMp

)

+ br

(

1
6

a+(−1)q 1
12

aMp

)

,

q =

{

1, b− bl ≥ 0
2, b+ br < 0 , Mq =

{

l, q = 1
r, q = 2 ,

p =

{

2, b − bl ≥ 0
1, b+ br < 0 , Mp =

{

l, p = 1
r, p = 2 .

Let determine aggregation intervals
[

AL
1,A

L
2

]

,
[

AU
1 ,A

U
2

]

for LMF µÃ =
(

aL,aL
l ,a

L
r

)

and UMF

µÃ =
(

aU ,aU
l ,a

U
r

)

of IT2 FSÃ:

AL
1 = aL

−
1
6

aL
l ,A

L
2 = aL +

1
6

aL
r ,

AU
1 = aU

−
1
6

aU
l ,A

U
2 = aU +

1
6

aU
r .

Let us define an affinity measure for two IT2 FSsÃ, B̃
with weighed intervals
[

AL
1,A

L
2

]

,
[

AU
1 ,A

U
2

]

,
[

BL
1,B

L
2

]

,
[

BU
1 ,B

U
2

]

f 2(Ã, B̃
)

=
(

AL
1 −BL

1

)2
+
(

AL
2 −BL

2

)2
+

(

AU
1 −BU

1

)2
+
(

AU
2 −BU

2

)2
.

3 Problem formulation and solution

Let Ỹii = 1,n are output IT2 FSs , defined by LMFs
µỸi

=
(

yiL,yiL
l ,yiL

r

)

,i = 1,n and UMFs

µỸi
=
(

yiU ,yiU
l ,yiU

r

)

, yiU − yiU
l ≥ 0i = 1,n.

Let X̃ i
j, j = 1,m, i = 1,n input IT2 FSs, defined by

LMFs µX̃ i
j

=
(

x jiL,x jiL
l ,x jiL

r

)

and UMFs

µX̃ i
j
=
(

x jiU
,x jiU

l ,x jiU
r

)

, x jiU − x jiU
l ≥ 0,j = 1,m, i = 1,n.

LMFs and UMFs of output and input IT2 FSs are
triangular fuzzy numbers.

The linear fuzzy regression model relatesỸ (with
meaningsỸii = 1,n) to X̃ j, j = 1,m (with meaningsX̃ i

j,

j = 1,m, i = 1,n) as follows:

Ỹ = ã0+ ã1X̃1+ ...+ ãmX̃m.

ã j ≡

(

b j,b j
l ,b

j
r

)

, j = 0,m - unknown coefficients,

which are defined as triangular numbers (not necessarily
symmetrical).

The method of regression’s creation is based on the
transformation of the LMFs and UMFs of input and output
IT2 FSs into weighted intervals.

Let us determine the weighed intervals
[

θ 1L
Ŷi
, θ 2L

Ŷi

]

,
[

θ 1U
Ŷi

, θ 2U
Ŷi

]

for LMFs and UMFs of model output data

Ŷi = ã0+ ã1X̃ i
1+ ...+ ãmX̃ i

m using propositions 1-4:

θ 1L
Ŷi

= b0
−

1
6

b0
l +

m

∑
j=1

θ 1L
ã j X̃ i

j

(

b j
, b j

l , b j
r

)

,

θ 2L
Ŷi

= b0
−

1
6

b0
l +

m

∑
j=1

θ 2L
ã j X̃ i

j

(

b j
, b j

l , b j
r

)

,

θ 1U
Ŷi

= b0
−

1
6

b0
l +

m

∑
j=1

θ 1U
ã j X̃ i

j

(

b j
, b j

l , b j
r

)

,

θ 2U
Ŷi

= b0
−

1
6

b0
l +

m

∑
j=1

θ 2U
ã j X̃ i

j

(

b j
, b j

l , b j
r

)

,

θ 1L
ã jX̃ i

j

(

b j, b j
l , b j

r

)

= b j
(

x jiL +(−1)q 1
6x jiL

Mq

)

−b j
l

(

1
6x jiL +(−1)q 1

12x jiL
Mq

)

,
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θ 2L
ã j X̃ i

j

(

b j, b j
l , b j

r

)

= b j
(

x jiL +(−1)p 1
6x jiL

Mp

)

+b j
r

(

1
6x jiL +(−1)q 1

12x jiL
Mp

)

,

θ 1U
ã j X̃ i

j

(

b j, b j
l , b j

r

)

= b j
(

x jiU +(−1)q 1
6x jiU

Mq

)

−b j
l

(

1
6x jiU +(−1)q 1

12x jiU
Mq

)

,

θ 2U
ã jX̃ i

j

(

b j, b j
l , b j

r

)

= b j
(

x jiU +(−1)p 1
6x jiU

Mp

)

+b j
r

(

1
6x jiU +(−1)q 1

12x jiU
Mp

)

,

q =

{

1, b− bl ≥ 0
2, b+ br < 0 , Mq =

{

l, q = 1
r, q = 2 ,

p =

{

2, b − bl ≥ 0
1, b+ br < 0 , Mp =

{

l, p = 1
r, p = 2 .

LMFs and UMFs of model output data will not be
triangular fuzzy numbers. While multiplying fuzzy
numbers it is not always possible to set an analytical form
for membership function of a fuzzy number which is a
result out of the multiplication. But we can always
determine model output data with the help ofα-cuts.

For example if ˜a ≡
(

b,bl ,br

)

is a negative fuzzy
number (b+ br < 0), Ã = (a,al ,ar) is a nonnegative
number (a− al ≥ 0) then according to multiplication
operation for fuzzy numbers, theα-cut of ãÃ looks like
[

C1
α ,C

2
α
]

, where:

C1
α = ba+(1−α)bar − (1−α)bla− (1−α)2 blar,

C2
α = ba+(1−α)bal +(1−α)bra− (1−α)2 bral .

If ã ≡
(

b,bl,br

)

is a nonnegative fuzzy number
(

b− bl ≥ 0
)

and Ã = (a,al,ar) is a nonnegative number
(a− al ≥ 0) then according to multiplication operation
for fuzzy numbers, theα-cut of ãÃ looks like

[

C1
α ,C

2
α
]

,
where:

C1
α = ba− (1−α)bal − (1−α)bra+(1−α)2 bral ,

C2
α = ba+(1−α)bar +(1−α)bla+(1−α)2 blar.

Let us determine the weighed intervals
[

θ 1L
Ỹi
, θ 2L

Ỹi

]

,
[

θ 1U
Ỹi

, θ 2U
Ỹi

]

for LMFs and UMFs of initial output data

Ỹii = 1,n:

θ 1L
Ỹi

= yiL
−

1
6

yiL
l ,θ

2L
Ỹi

= yiL +
1
6

yiL
r ,

θ 1U
Ỹi

= yiU
−

1
6

yiU
l ,θ 2U

Ỹi
= yiU +

1
6

yiU
r .

Let us consider a functional

F
(

b j, b j
l , b j

r

)

=
n
∑

i=1
f 2
(

Ŷi,Ỹi
)

=

n
∑

i=1

[

(

θ 1L
Ŷi

−θ 1L
Ỹi

)2
+
(

θ 2L
Ŷi

−θ 2L
Ỹi

)2
]

+

n
∑

i=1

[

(

θ 1U
Ŷi

−θ 1U
Ỹi

)2
+
(

θ 2U
Ŷi

−θ 2U
Ỹi

)2
]

,which

characterizes an affinity measure between initial and
model output data. It is easy to demonstrate that

F
(

b j, b j
l , b j

r

)

=

n
∑

i=1

[

b0− 1
6b0

l − yiL + 1
6yiL

l +
m
∑
j=1

θ 1L
ã j X̃ i

j

(

b j, b j
l , b j

r

)

]2

+

n
∑

i=1

[

b0+ 1
6b0

r − yiL − 1
6yiL

r +
m
∑
j=1

θ 2L
ã j X̃ i

j

(

b j, b j
L, b j

R

)

]2

+

n
∑

i=1

[

b0− 1
6b0

l − yiU + 1
6yiU

l +
m
∑
j=1

θ 1U
ã j X̃ i

j

(

b j
, b j

l , b j
r

)

]2

+

n
∑

i=1

[

b0+ 1
6b0

r − yiU −
1
6yiU

r +
m
∑
j=1

θ 2U
ã j X̃ i

j

(

b j, b j
l , b j

r

)

]2

.

The optimization problem is set as follows:

F
(

b j, b j
l , b j

r

)

=
n
∑

i=1
f 2
(

Ŷi, Ỹi
)

→ min,

b j
l ≥ 0, b j

r ≥ 0, j = 0,m.

As θ 1L
ã j X̃ i

j

(

b j, b j
l , b j

r

)

, θ 2L
ã jX̃ i

j

(

b j, b j
l , b j

r

)

,

θ 1U
ã jX̃ i

j

(

b j, b j
l , b j

r

)

and θ 2U
ã j X̃ i

j

(

b j, b j
l , b j

r

)

are piecewise

linear functions in the fieldb j
l ≥ 0, b j

r ≥ 0, j = 0,m, then
F is piecewise differentiable function, and solutions of an
optimization problem are found by means of known
methods [28].

After obtaining the regression coefficients, it is of
interest to evaluate the hybrid regression equation. For
reliability evaluation, the standard deviation (Sỹ), a hybrid
correlation coefficient (HR), a hybrid standard error of
estimates (HSe) are defined as follows:

Sỹ =

√

1
n−1

n

∑
i=1

f 2
(

Ỹi,
¯̃Y
)

,
¯̃Y =

n
∑

i=1
Ỹi

n
,

HR2 =

n
∑

i=1
f 2
(

Ŷi,
¯̃Y
)

n
∑

i=1
f 2
(

Ỹi,
¯̃Y
)
,
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HS =

√

1
n−m−1

n

∑
i=1

f 2
(

Ŷi,Ỹi
)

.

Let Ŷii = 1,n are model output IT2 FSs, defined by
LMFs µŶi

=
(

viL,viL
l ,viL

r

)

,i = 1,n and UMFs

µŶi
=

(

viU ,viU
l ,viU

r

)

,i = 1,n. After obtainingŶi,i = 1,n a
problem of identifying them with initial collection of
wordsYk, k = 1, p, that formalized with the help of IT2
FSs ˜̃Yk, k = 1, p defined by LMFs
µ ˜̃Yk

=
(

ykL,ykL
l ,ykL

r

)

,k = 1, p and UMFs

µ ˜̃Yk
=
(

ykU ,ykU
l ,ykU

r

)

,k = 1, p appears.
The weighted intervals for LMF and UMF of model

Ŷi , i = 1,n are designated by
[

CiL
1 ,CiL

2

]

,
[

CiL
1 ,CiL

2

]

, i =
1,naccordingly. The weighted intervals for LMF and UMF
of ˜̃Yk, k = 1, pare designated by

[

DiL
1 ,D

iL
2

]

,
[

DiL
1 ,D

iL
2

]

, k =
1, paccordingly.

Let

f 2
(

Ŷi,
˜̃Yk

)

=
(

CiL
1 −DkL

1

)2
+
(

CiL
2 −DkL

2

)2
+

(

CiU
1 −DiU

1

)2
+
(

CiU
2 −DiU

2

)2
, i = 1,n, k = 1, pThe

model̂Yiis identified toYs, if

f 2
(

Ŷi,
˜̃Ys

)

= min
k

f 2
(

Ŷi,
˜̃Yk

)

, k = 1, p.

4 Conclusions

A method for a multiple fuzzy linear regression was
developed in this paper. The input and output data of the
regression model are interval type-2 fuzzy sets. The basic
idea of this paper is to determine aggregation intervals for
triangular fuzzy numbers, membership functions of
whose are low membership function and upper
membership function of interval type-2 fuzzy sets, to
determine an affinity measure for two interval type-2
fuzzy sets based on these intervals and to use the least
squares estimation technique. The proposed method
extends a group of initial data membership functions, as it
can be applied not only to type-1 fuzzy sets, but also to
are interval type-2 fuzzy sets. For reliability evaluation,
the standard deviation, the hybrid correlation coefficient,
the hybrid standard error of estimates are defined.
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