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Abstract: This paper performs the numerical analysis and the computation of a Spread option in a market with imperfect liquidity.
The number of shares traded in the stock market has a direct impact on the stock’s price. Thus, we consider afull-feedback modelin
which price impact is fully incorporated into the model. Theprice of a Spread option is characterized by a nonlinear partial differential
equation. This is reduced to linear equations by asymptoticexpansions. The Peaceman-Rachford scheme, as an alternating direction
implicit method, is employed to solve the linear equations numerically. We discuss the stability and the convergence ofthe numerical
scheme. Illustrative examples are included to demonstratethe validity and applicability of the presented method. Finally we provide a
numerical analysis of the illiquidity effect in replicating an European Spread option; compared to the Black-Scholes model the price of
the option is higher in the model with price impact.
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1 Introduction

Classical asset pricing theory assumes that traders act as
price takers, that is, they have no impact on the prices
paid or received. The relaxation of this assumption and its
impact on realized returns in asset pricing models is
called liquidity risk. Consistent with this discussion, most
of the option pricing models assume that an option trader
can not affect the price in trading the underlying asset to
replicate the option payoff, regardless of her trading size.
The papers of Black and Scholes [1], and most of the
work undertaken in mathematical finance has been done
under this underlying assumption (which is reasonable
only in a perfectly liquid market).
In presence of a price impact, the replication of an option
becomes more involved. The first issues is whether or not
the option is perfectly replicable. Second, one has to find
out how the presence of price impact affects the the
replicating costs. This encouraged researchers to develop
a Black-Scholes model with price impact due to a large
trader who is able to move the price by his/her actions.

Let us go over the existing research on this topic. [2]
shows how an agent whose trades affect prices of some
stock can replicate the payoff of a derivative security

written on that stock. They characterize the derivative
price in terms of a nonlinear partial differential equation;
simulations are used to compare the hedging strategies in
their model to classical Black-Scholes model. [3] studies
the nonlinear effects of trading strategies to prices. A
nonlinear partial differential equation for an option
replication strategy is derived and is solved using
numerical simulations. [4] analyzes how price impact on
an underlying asset modifies the replication of a European
option. They found that compared to the Black-Scholes
case, a hedger buys more stock to replicate the option.
The excess replicating cost over the Black-Scholes price
is significant. An excellent survey of these research can
be found in [5]. In the context of price impact, [6] solves
the nonlinear equation for an option replication strategy
by means of semidiscretization technique. Numerical
works on this topic were developed in [7,8,9].

All these research works study how the price
impact affects the replication of an option written on a
single underlying (stock).

The purpose of our paper is to investigate the effects
of imperfect liquidity on the replication of an European
Spread option by a typical option trader in a full-feedback
model (any trade will impact the prices of the
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underlyings). Spread option is a simple example of
multi-assets derivative, whose payoff is the difference
between the prices of two or more assets; for instance let
the prices of two underlying assets at timet ∈ [0,T] be
S1(t) andS2(t), then the payoff function of an European
Spread option with maturityT is [S1(T)− S2(T)− k]+

(herek is the strike of the option and the functionx+ is
defined asx+ = max(x,0)). Therefore the holder of an
European Spread option has the right but not the
obligation to buy the spreadS1(T) − S2(T) at the
prespecified pricek and maturityT. In general, there is no
any analytical formula for the price of multi-assets
options (even in models with perfect liquidity). The only
exception is Margrabe formula for exchange options
(Spread options with zero strike, see [10]). Margrabe
derived a Black and Scholes type solution for this class of
options as follows

CM = S1Φ(d+)−S2Φ(d−), (1)

whereΦ is the standard normal cumulative distribution
function and

d± =
ln(S1/S2)

σ
√

T
± 1

2
σ
√

T,

σ =
√

σ2
1 +σ2

2 −2ρσ1σ2.

(2)

Hereσ1 andσ2 are the volatility of two underlying assets
S1(t) andS2(t), t ∈ [0,T]. Their price dynamics are given
by a stochastic differential equations based on
two-dimensional standard correlated Brownian motion
with correlation ρ . Since a linear combination of
correlated lognormals is not lognormal, for non-zero
strikes, there is no closed form Spread option valuation
formula under the multivariate lognormal model. People
rely on approximation formulas and numerical methods
for Spreads valuation. Kirk [11] suggested the following
analytical approximation for a Spread option with payoff
(S1(T)−S2(T)− k)+

CM = S1Φ(d+)− (S2+ k)Φ(d−), (3)

where

d± =
ln(S1/(S2+ k))

σ
√

T
± 1

2
σ
√

T,

σ =

√
σ2

1 +(
S2

S2+ k
)2σ2

2 −2
S2

S2+ k
ρσ1σ2.

(4)

This formula provides a good approximation of Spread
option prices when the strikek is not far from zero. All
the existing works on spread options assume a model with
perfect liquidity.

Several Spread options are traded in the markets.
Some popular Spread option products are: fixed Income
Spread options and commodity Spread options (including
Crush Spread options, Crack Spread options, Spark
Spread options). In this work, we will focus our interest

on Oil Markets and more specifically one of the most
frequently quoted Spread options which are Crack
Spreads. A Crack Spread represents the differential
between the price of crude oil and petroleum products
(gasoline or heating oil). The underlying indexes
comprise futures prices of crude oil, heating oil and
unleaded gasoline. Details of crack Spread options can be
found in the New York Mercantile Exchange (NYMEX)
Crack Spread Handbook [12]. In the oil markets with
finite liquidity, trading does affect the underlying assets
price. In our study we investigate the effects of impact
price on Spread option pricing in oil markets, when
trading affects the crude oil price, but not petroleum
products .

Our Contributions: By the best of our knowledge our
work is the first to consider pricing of spread options
(options written on two stocks) in a full feedback model
of the stocks. The nonlinear partial differential equation
(PDE) which characterizes the price of the spread option
appeared for the first time in our work. We used the
matched asymptotic expansion technique to linearize this
nonlinear PDE. The standard alternating direction
implicit method (Peaceman-Rachford scheme)was
employed to solve the corresponding linear equations
numerically [17]. The stability and the convergence of the
numerical scheme was established. Numerical
experiments have shown that the price of the Spread
option is higher in a full feedback model.

This paper is organized as follows: Section2
discusses the general framework. In Section3 we apply
an asymptotic expansion for the full nonlinear partial
differential equation which characterizes the Spread
option price. In Section4, we propose a numerical
method for the linearized equation the Peaceman and
Rachford numerical scheme. We discuss the stability and
convergence of this scheme. In Section5, we carry out
several numerical experiments and provide a numerical
analysis of the model for European Spread calls. Section
6 contains the concluding remarks. The paper ends with
an Appendix.

2 Statement of the problem

In this section we describe the setup used for pricing
Spread options. Our model of a financial market, based on
a filtered probability space(Ω ,F ,{Ft}t∈[0,T],P) that
satisfies the usual conditions, and consists of two risky
assets (stocks). Their prices are modeled by a
two-dimensional diffusion process
S(t) = (S1(t),S2(t)), t ∈ [0,T]. All the stochastic
processes in this work are assumed to be
{Ft}t≥0-adapted. Their dynamics are given by the
following stochastic differential equations, in which
W(t) = (w1(t),w2(t)) is defined a two–dimensional
standard correlated Brownian motion with correlationρ ,
and {Ft}t∈[0,T] is its natural filtration augment by all
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P-null sets:

dSi(t)
Si(t)

= µi(t,Si(t))dt+σi(t,Si(t))dwi(t); i = 1,2. (5)

Hereµi(t,Si(t)) andσi(t,Si(t)) are the expected return and
the volatility of stocki in the absence of price impact. It is
possible to add a forcing term,λ (t,S1(t)), i.e.,

dS1(t) = µ1(t,S1(t))S1(t)dt+σ1(t,S1(t))S1(t)dw1(t)

+λ (t,S1(t))d∆1(t),

dS2(t) = µ2(t,S2(t))S2(t)dt+σ2(t,S2(t))S2(t)dw2(t).

(6)

Here λ (t,S1(t)) is the price impact function on the first
stock,S1. The termλ (t,S1(t))d∆1(t) represents the price
impact of the trading strategy∆1(t); at time t, ∆1(t)
denotes the number of shares of the first stock bought
(∆1(t) ≥ 0), or sold (∆1(t)≤ 0). Since the price per share
of S1 depends on the number of shares bought or sold this
model is reffered to as full-feedback model. We note that
the classical Black-Scholes model is a special case of this
model withλ (t,S1(t)) = 0. Our aim is to price a Spread
option in this illiquid market model. The option’s payoff
at maturityT is:

h(S1(T),S2(T)) = (S1(T)−S2(T)− k)+, (7)

wherek is the strike price.
LetV(t,S1,S2) denote the price (value) at timet of the

spread option with payoff[S1(T)− S2(T)− k]+ in our
full-feedback model given thatS1(t) = S1,S2(t) = S2.
Then V(t,S1,S2) solves the following nonlinear partial
differential equation (for details on this see The
Appendix):

∂V
∂ t

+
1

2(1−λ
∂ 2V

∂S2
1

)2

(σ2
1S2

1+λ 2σ2
2S2

2(
∂ 2V

∂S1∂S2
)2

+2ρσ1σ2S1S2λ
∂ 2V

∂S1∂S2
)

∂ 2V

∂S2
1

+
1
2

σ2
2S2

2
∂ 2V

∂S2
2

+
1

1−λ
∂ 2V

∂S2
1

(σ1σ2ρS1S2+λ σ2
2S2

2
∂ 2V

∂S1∂S2
)

∂ 2V
∂S1∂S2

+ r(S1
∂V
∂S1

+S2
∂V
∂S2

)− rV = 0, 0< S1,S2 < ∞,0≤ t < T

(8)

with the terminal condition atT,

V(T,S1,S2) = h(S1,S2), 0< S1,S2 < ∞.

Notice that the classical Black-Scholes partial differential
equation which characterizes the price of the spread option
in a model without price impact is obtained by settingλ =
0 in (8).

3 Matched Asymptotic Expansion

In this section we use a matched asymptotic expansion
technique to linearize (8). For this purpose we let
λ (t,S1(t)) = ελ̂ (t,S1(t)), so that (8) becomes

∂V
∂ t

+
1

2(1− ελ̂
∂ 2V

∂S2
1

)2

(σ2
1 S2

1+(ελ̂ )2σ2
2S2

2(
∂ 2V

∂S1∂S2
)2

+2ρσ1σ2S1S2ελ̂
∂ 2V

∂S1∂S2
)

∂ 2V

∂S2
1

+
1
2

σ2
2S2

2
∂ 2V

∂S2
2

+
1

1− ελ̂
∂ 2V

∂S2
1

(σ1σ2ρS1S2+ ελ̂σ2
2S2

2
∂ 2V

∂S1∂S2
)

∂ 2V
∂S1∂S2

+ r(S1
∂V
∂S1

+S2
∂V
∂S2

)− rV = 0.

(9)

By replacingV(t,S1,S2) in the equation (9) with

V(t,S1,S2) =V0(t,S1,S2)+ εV1(t,S1,S2)+o(ε2), (10)

we get

∂ (V0+ εV1)

∂ t
+

∂ 2(V0+εV1)

∂S2
1

2(1− ελ̂
∂ 2(V0+ εV1)

∂S2
1

)2

(σ2
1S2

1

+(ελ̂ )2σ2
2S2

2(
∂ 2(V0+ εV1)

∂S1∂S2
)2

+2ρσ1σ2S1S2ελ̂
∂ 2(V0+ εV1)

∂S1∂S2
)+

1
2

σ2
2S2

2
∂ 2(V0+ εV1)

∂S2
2

+
(σ1σ2ρS1S2+ ελ̂σ2

2S2
2

∂ 2(V0+ εV1)

∂S1∂S2
) ∂ 2(V0+εV1)

∂S1∂S2

1− ελ̂
∂ 2(V0+ εV1)

∂S2
1

+ r(S1
∂ (V0+ εV1)

∂S1
+S2

∂ (V0+ εV1)

∂S2
)

− r(V0+ εV1)+o(ε2) = 0,
(11)

By using Taylor series expansion one gets

1

2(1− ελ̂
∂ 2(V0+ εV1)

∂S2
1

)2

=
1
2
+ ελ̂

∂ 2V0

∂S2
1

+o(ε2)

1

1− ελ̂
∂ 2(V0+ εV1)

∂S2
1

= 1+ ελ̂
∂ 2V0

∂S2
1

+o(ε2).

(12)
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Therefore the following linear equations forV0(t,S1,S2)
andV1(t,S1,S2) can be derived

∂V0

∂ t
+

σ2
1S2

1

2
∂ 2V0

∂S2
1

+
σ2

2S2
2

2
∂ 2V0

∂S2
2

+σ1σ2S1S2ρ
∂ 2V0

∂S1∂S2

+ r[S1
∂V0

∂S1
+S2

∂V0

∂S2
]− rV0 = 0,

V0(T,S1,S2) = h(S1,S2), 0< S1,S2 < ∞,
(13)

∂V1

∂ t
+

σ2
1S2

1

2
∂ 2V1

∂S2
1

+
σ2

2S2
2

2
∂ 2V1

∂S2
2

+σ1σ2S1S2ρ
∂ 2V1

∂S1∂S2

+ r[S1
∂V1

∂S1
+S2

∂V1

∂S2
]− rV1 = G,

V1(T,S1,S2) = 0, 0< S1,S2 < ∞.
(14)

Here

G=−λ̂ (2ρσ1σ2S1S2
∂ 2V0

∂S1∂S2

∂ 2V0

∂S2
1

+σ2
1S2

1(
∂ 2V0

∂S2
1

)2

+σ2
2S2

2(
∂ 2V0

∂S1∂S2
)2).

(15)

Let us notice that PDE (13) is the standard Black-Scholes
PDE, soV0(t,S1,S2) is the Black-Scholes price of the
European Spread option in a model without price impact.
In sequence we propose a numerical scheme for
computingV0(t,S1,S2) andV1(t,S1,S2).

4 Alternating Direction Implicit Method

4.1 Peaceman-Rachford scheme

In this section, we present a numerical method for solving
the following PDEs:

∂V0

∂ t
+

σ2
1x2

2
∂ 2V0

∂x2 +
σ2

2y2

2
∂ 2V0

∂y2 +σ1σ2xyρ
∂ 2V0

∂x∂y

+ r[x
∂V0

∂x
+ y

∂V0

∂y
]− rV0 = 0,

V0(T,x,y) = h(x,y), 0< x,y< ∞,

(16)

and

∂V1

∂ t
+

σ2
1x2

2
∂ 2V1

∂x2 +
σ2

2y2

2
∂ 2V1

∂y2 +ρσ1σ2xy
∂ 2V1

∂x∂y

+ r[x
∂V1

∂x
+ y

∂V1

∂y
]− rV1 = G,

V1(T,x,y) = 0, 0< x,y< ∞,

(17)

The functionsV0(t,x,y) and V1(t,x,y) are defined on
[0,T]× [0,∞)× [0,∞). For simplicity, we write:

L =
∂
∂ t

+Ax+Ay+Axy, (18)

where

Ax =
1
2

σ2
1x2 ∂ 2

∂x2 + rx
∂
∂x

− rΘ ,

Ay =
1
2

σ2
2y2 ∂ 2

∂y2 + ry
∂
∂y

− r(1−Θ),

Axy = σ1σ1xyρ
∂ 2

∂x∂y
,

(19)

and 0≤ Θ ≤ 1. While symmetry considerations might

speak for anΘ =
1
2

, it is computationally simpler to use

Θ = 0 orΘ = 1, i.e., include therV− term fully in one of
the two operators. Hence, we can write

{
LV0(t,x,y) = 0,
LV1(t,x,y) = G,

(20)

where

G=−λ̂(2ρσ1σ2xy
∂ 2V0

∂x∂y
∂ 2V0

∂x2 +σ2
1x2(

∂ 2V0

∂x2 )2

+σ2
2y2(

∂ 2V0

∂x∂y
)2).

(21)

In order to find a numerical solution for these equations,
we need to truncate the spatial domain to a bounded
domain as:{(x,y);0 ≤ x ≤ xmax,0 ≤ y ≤ ymax}. Let us
introduce a grid of points in the time interval and in the
truncated spatial domain as:

tl = l∆ t, l = 0,1, ...L, ∆ t =
T
L
,

xm = m∆x, m= 0,1, ...M, ∆x=
xmax

M
,

yn = n∆y, n= 0,1, ...N, ∆y=
ymax

N
.

(22)

Without loss of generality letxmax= ymax and∆x = ∆y.
The functionsV0(t,x,y) and V1(t,x,y) evaluated at a
point on the grid are denoted asV0,l

mn = V0(tl ,xm,yn) and
V1,l

mn = V1(tl ,xm,yn). If we need to refer to the solution at
a specific time point, we will use notation
V0,l = V0(tl ,xm,yn) and V1,l = V1(tl ,xm,yn).
Furthermore, let symbolsAdx,Ady and Adxdy denote
second-order approximations to the operatorsAx,Ay and
Axy. Since the differential operator can be split as in (19)
we can use Alternating Direction Implicit (ADI) method.
The general idea is to split a time step into two and
consider one operator or one space coordinate at a time
[16]. In other words, ADI involves the reduction of the
problem to several one-dimensional implicit problems by
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factoring the scheme. We implement the
Peaceman-Rachford scheme[17]. Let us begin by
discretizing (16) in the time-direction:

V0
t ((l +1/2)∆ t,x,y) =

V0,l+1−V0,l

∆ t
+O(∆ t)2)

(Ax+Ay+Axy)V
0,l =

1
2

Ax(V
0,l+1+V0,l )

+
1
2

Ay(V
0,l+1+V0,l )

+
1
2

Axy(V
0,l+1+V0,l )+O((∆ t)2).

(23)

Using (23) in the equation (18) yields:

(I − 1
2

∆ tAx−
1
2

∆ tAy)V
0,l = (I +

1
2

∆ tAx+
1
2

∆ tAy)V
0,l+1

+
1
2

∆ tAxy(V
0,l+1+V0,l )

+O((∆ t)3),
(24)

where I denotes the identity operator. If we add
1
4
(∆ t)2AxAyV0,l on the left hand and

1
4
(∆ t)2AxAyV0,l+1

on the right hand then we commit an error which is
O((∆ t)3) and therefore:

(I − 1
2

∆ tAx)(I −
1
2

∆ tAy)V
0,l =

(I +
1
2

∆ tAx)(I +
1
2

∆ tAy)V
0,l+1

+
1
2

∆ tAxy(V
0,l+1+V0,l )

+O((∆ t)3).

(25)

We now discretize in the space coordinates replacingAx
by Adx, Ay by Ady andAxy by Adxdy

(I − 1
2

∆ tAdx)(I −
1
2

∆ tAdy)V
0,l =

(I +
1
2

∆ tAdx)(I +
1
2

∆ tAdy)V
0,l+1

+
1
2

∆ tAdxdy(V
0,l+1+V0,l )

+O((∆ t)3)+O(∆ t(∆x)2).

(26)

This leads to the Peaceman-Rachford method (see [13])

(I − ∆ t
2

Adx)V
0,l+1/2 = (I +

∆ t
2

Ady)V
0,l+1+α,

(I − ∆ t
2

Ady)V
0,l = (I +

∆ t
2

Adx)V
0,l+1/2+β ,

(27)

where the auxiliary functionV0,l+1/2 links the above
equations. We have introduced the valuesα andβ to take

into account the mix derivative term because it is not
obvious how this term should be split. To align (27) with
(26), we require that

(I +
∆ t
2

Adx)α +(I − ∆ t
2

Adx)β =
1
2

∆ tAdxdy(V
0,l+1+V0,l ),

(28)

where a discrepancy of orderO((∆ t)3) may be allowed
with reference to a similar term in (25). One possible
choice forα andβ is

α =
∆ t
2

AdxdyV
0,l+1, β =

∆ t
2

AdxdyV
0,l+1/2. (29)

Finally, the Peaceman-Rachford scheme forV0 in (16) is
obtained as follows

(I − ∆ t
2

Adx)V
0,l+1/2 = (I +

∆ t
2

Ady)V
0,l+1+

∆ t
2

AdxdyV
0,l+1,

(I − ∆ t
2

Ady)V
0,l = (I +

∆ t
2

Adx)V
0,l+1/2+

∆ t
2

AdxdyV
0,l+1/2.

(30)

In a first step we calculateV0,l+1/2 usingV0,l+1. This step
is implicit with respect tox. In a second step, defined by
equations (30), we useV0,l+1/2 to calculateV0,l . This step
is implicit in the direction ofy. The Peaceman-Rachford
scheme forV1 in (17) is obtained as follows:

(I − ∆ t
2

Adx)V
1,l+1/2 = (I +

∆ t
2

Ady)V
1,l+1+α,

(I − ∆ t
2

Ady)V
1,l = (I +

∆ t
2

Adx)V
1,l+1/2+β ,

(31)

where auxiliary functionV1,l+1/2 links above equations.
To align (31) with (26) we require that

(I +
∆ t
2

Adx)α +(I − ∆ t
2

Adx)β =
1
2

∆ tAdxdy(V
1,l+1+V1,l )

− 1
2

∆ t(Gl+1+Gl).

(32)

One of the possible choice forα andβ is

α =
∆ t
2

AdxdyV
1,l+1− ∆ t

2
Gl+1,

β =
∆ t
2

AdxdyV
0,l+1/2− ∆ t

2
Gl .

(33)

The Peaceman-Rachford scheme forV1 of (17) is obtained
as follows:

(I − ∆ t
2

Adx)V
1,l+1/2 = (I +

∆ t
2

Ady)V
1,l+1

+
∆ t
2

AdxdyV
1,l+1− ∆ t

2
Gl+1,

(I − ∆ t
2

Ady)V
1,l = (I +

∆ t
2

Adx)V
1,l+1/2

+
∆ t
2

AdxdyV
0,l+1/2− ∆ t

2
Gl .

(34)
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In a first step calculateV1,l+1/2 usingV1,l+1. This step is
implicit with respect tox. In a second step, defined by
equations (34), we useV1,l+1/2 to calculateV1,l . This
step is implicit with respect toy.
Notice that due to the use of centered approximations of
the derivatives, atx0 = y0 = 0, xm = xmax andyn = ymax,
there appear external fictitious nodesx−1 = −∆x,
y−1 = −∆y, xM+1 = (M + 1)∆x andyN+1 = (N+ 1)∆y.
The approximations ofV0,l

−1,n,V
0,l
M+1,n,V

0,l
m,−1 and V0,l

m,N+1
are obtained by using linear interpolation. Thus we have
the following relations

V0,l
−1,n = 2V0,l

0,n −V0,l
1,n,V

0,l
M+1,n = 2V0,l

M,n−V0,l
M−1,n;n= 1(1)N,

V0,l
m,−1 = 2V0,l

m,0−V0,l
m,1,V

0,l
m,N+1 = 2V0,l

m,N−V0,l
m,N−1;m= 1(1)M.

(35)

Similarly, we can write the same relations in terms ofV1,l .
Now all valuesV0,l

m,n andV1,l
m,n are available. By repeating

this procedure forl = L−1,L−2, ...,0 we obtainV0
m,n and

V1
m,n at all time points. The price of a Spread option at time

t0 = 0 can be approximated as :

V(t0,x,y)≈V0(t0,x,y)+ εV1(t0,x,y). (36)

4.2 Stability Analysis of the Numerical Scheme

In this section, we discuss stability and convergence of
the numerical schemes introduced in Section 4.1. First we
analyze the stability of the Peaceman-Rachford scheme.
In this case, we can use the Von Neumann analysis to
establish the conditions for stability. This approach was
described in [13](Chapter 2.2). The Von Neumann
analysis is based on calculating the amplification factor of
a scheme and deriving conditions under which it is less
than one in absolute value.

Theorem 1.A one-step finite difference scheme (with
constant coefficients) is stable in a stability regionΛ (any
bounded nonempty region of the first octant of R3 that has
the origin as an accumulation point) if and only if there
exist a constant c (independent ofθ , φ , dt, dx and dy)
such that

|g(θ ,φ ,dt,dx,dy)| ≤ 1+ cdt. (37)

Here g(θ ,φ ,dt,dx,dy) is the amplification factor of
scheme with(dt,dx,dy) ∈ Λ . If g(θ ,φ ,dt,dx,dy) is
independent of dx, dy and dt, the above stability
condition can be replaced with the restricted stability
condition

|g(θ ,φ)| ≤ 1. (38)

Proof.See [13].

Remark.This Theorem shows that to determine the
stability of a finite difference scheme with constant
coefficients, we only need to consider the amplification

factor g. This Theorem does not apply directly to
problems with variable coefficients. Nonetheless, the
stability conditions obtained for constant coefficient
schemes can be used to give stability conditions for the
same scheme applied to equations with variable
coefficients. The general procedure is that one considers
each of the frozen coefficient problems arising from the
scheme. The frozen coefficient problems are the constant
coefficient problems obtained by fixing the coefficients at
their values attained at each point in the domain of the
computation. If each frozen coefficient problem is stable,
then the variable coefficient problem is also stable (see
[14,15]).

For finding the amplification factor, a simpler and
equivalent procedure is to replaceV0,l

mn and V1,l
mn in the

scheme byg−l eimθ einφ for each value ofl ,n andm. In this

scheme the main issue isV
0,l+

1
2, the intermediate

quantity that links two separate steps in the scheme. To
eliminate all reference to the intermediate quantity

V
0,l+

1
2 , obtaining an equation forV

0,l+
1
2

mn in terms ofV0,l
mn

for each value ofl ,n and m, we use an equivalent and
simpler procedure, which is to replace all occurrences of

V
0,l+

1
2 by ĝg−l eimθ einθ as well as the usual replacement

of V0,l
mn by g−l eimθ einφ for each value ofl ,n andm, where

ĝ is a function ofθ ,φ which in general will also depend

on ∆ t,∆x like g. Following [13] replaceV0,l+1/2
mn andV0,l

mn
by ĝg−l eimθ einφ andg−l eimθ einφ respectively to get

∆ t
2

AdxV
0,l+1/2
m,n = ĝg−l eimθ einφ (−a1sin2 1

2
θ +b1isinθ )

∆ t
2

AdyV
0,−l
m,n = g−leimθ einφ (−a2sin2 1

2
φ +b2isinφ − c1)

∆ t
2

AdxdyV
0,l+1/2
m,n =−ĝg−l eimθ einφ c2sinθsinφ

∆ t
2

AdxdyV
0,l
m,n =−g−leimθ einφ c2sinθsinφ .

(39)

Here

a1(xm) =
∆ tσ2

1x2
m

∆x2 ,a2(yn) =
∆ tσ2

2y2
n

(∆y)2 ,

b1(xm) =
∆ trxm

2∆x
,b2(yn) =

∆ tryn

2∆y

c1 =
r∆ t
2

,c2(xm,yn) =
∆ tσ1σ2ρxmyn

2∆x∆y
.

(40)
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Also, by replacingV1,l+1/2
mn andV1,l

mn by ĝg−leimθ einφ and
g−l eimθ einφ respectively, one gets

∆ t
2

AdxV
1,l+1/2
m,n = ĝg−l eimθ einφ (−a1sin2 1

2
θ +b1isinθ )

∆ t
2

AdyV
1,l
m,n = g−l eimθ einφ (−a2sin2 1

2
φ +b2isinφ − c1)

∆ t
2

AdxdyV
1,l+1/2
m,n =−ĝg−leimθ einφ c2sinθsinφ

∆ t
2

AdxdyV
1,l+1
m,n =−g−leimθ einφ c2sinθsinφ .

(41)

According to ”Duhamel’s principle” we ignore theGl+1

andGl terms in stability analysis (for more details on this
see [13]). We obtain the amplification factor

g=
1−a2sin2 1

2φ +b2isinφ − c1− c2sinθsinφ
(1+a1sin2 1

2θ −b1isinθ )ĝ
, (42)

with

ĝ=
1+a2sin2 1

2φ −b2isinφ + c1

1−a1sin2 1
2θ +b1isinθ − c2sinθsinφ

. (43)

This factor can simplify to

g=
[1−a1sin2 1

2θ − c2sinθsinφ +(b1sinθ )i]
[1+a1sin2 1

2θ − (b1sinθ )i]

× [1−a2sin2 1
2φ − c1− c2sinθsinφ +(b2sinφ)i]

[1+a2sin2 1
2φ + c1− (b2sinφ)i]

.

(44)

Thus

g2 =
[(1−a1sin2 1

2θ − c2sinθsinφ)2+b2
1sin2θ ]

[(1+a1sin2 1
2θ )2+b2

1sin2θ ]

× [(1−a2sin2 1
2φ − c1− c2sinθsinφ)2+b2

2sin2φ ]
[(1+a2sin2 1

2φ + c1)2+b2
2sin2φ ]

(45)

According to (40), we can writea2 =Ca1, c2 = Ĉa1where

C andĈ are constants. Moreover
b1

a1
→ 0, as∆x→ 0.Since

∆x= ∆y, thenb1 = b2 = c1 = ξ a1, with ξ → 0 as∆x→ 0.
In light of this, taking the limit in (45) one gets

lim
ξ→0

g2 =
(1−a1sin2 1

2θ −Ĉa1sinθsinφ)2

(1+a1sin2 1
2θ )2

× (1−Ca1sin2 1
2φ −Ĉa1sinθsinφ)2

(1+Ca1sin2 1
2φ)2

.

(46)

It is enough to find conditions so that

(1−a1sin2 1
2θ −Ĉa1sinθsinφ)2

(1+a1sin2 1
2θ )2

× (1−Ca1sin2 1
2φ −Ĉa1sinθsinφ)2

(1+Ca1sin2 1
2φ)2

≤ 1.

(47)

Notice that

a1sin2 1
2

θ +Ĉa1sinθsinφ

≤ a1|sin2 1
2

θ |+Ĉa1|sinθsinφ |

≤ a1|sin
1
2

θ |[|sin
1
2

θ |+2Ĉ|cos
1
2

θsinφ |]

≤ a1[1+2Ĉ].

(48)

Thus

1−a1sin2 1
2

θ −Ĉa1sinθsinφ ≥ 0,

provided thata1[1+2Ĉ]≤ 1. Furthermore we have

Ca1sin2 1
2

φ +Ĉa1sinθsinφ

≤Ca1|sin21
2

φ |+Ĉa1|sinθsinφ |

≤ a1|sin
1
2

φ |[Csin
1
2

φ +4Ĉ|cos
1
2

φsinθ |

≤ a1[C+2Ĉ].

(49)

Then

1−Ca1sin2 1
2

φ −Ĉa1sinθsinφ ≥ 0,

provided thata1[C+ 2Ĉ] ≤ 1. Therefore we should find
conditions so that

(1−a1sin2 1
2θ −Ĉa1sinθsinφ)

(1+a1sin2 1
2θ )

× (1−Ca1sin2 1
2φ −Ĉa1sinθsinφ)

(1+Ca1sin2 1
2φ)

≤ 1,

(50)

or equivalently

a1(sin2 1
2

θ +Ĉsinθsinφ +Csin21
2

φ)(−2+a1Ĉsinθsinφ)≤ 0.

(51)
Since|y| ≤ 1, then for anyx ∈ R, xy≥ −|x|, and byC ≥
4Ĉ2, we have that

sin2 1
2

θ +Ĉsinθsinφ +Csin21
2

φ ≥

|sin
1
2

θ |2−4Ĉ|sin
1
2

θsin
1
2

φ |+4Ĉ2|sin
1
2

φ |2 =

(|sin
1
2

θ |−2Ĉ|sin
1
2

φ |)2 ≥ 0.

(52)

Thus (50) is satisfied ifa1 ≤ 2

Ĉ
and |g(θ ,φ)| ≤ 1 holds

true if

a1 ≤ A= min{ 2

Ĉ
,

1

1+2Ĉ
,

1

4Ĉ2+2Ĉ
} or

∆ t
(∆x)2 ≤ A

σ2
1 .x

2
max

,
∆ t

(∆y)2 ≤ A

σ2
2 .y

2
max

.

(53)
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Since∆x= ∆y andxmax= ymax, a sufficient condition for
stability of the scheme is

∆ t
(∆x)2 ≤ A

max{σ2
1 ,σ2

2}x2
max

. (54)

Thus, the Peaceman-Rachford scheme is stable ifL the
number of steps in the time interval, andM,N the number
of steps in the spatial domain satisfy inequality (54). This
condition is a consequence of the cross-derivative terms.
In the absence of these terms, the scheme would be
unconditionally stable.

The remaining issue we need to address is the
convergence of the numerical method to the true value of
the problem. According to [13] , this scheme is first-order
accurate in time and space and due to its stability the
scheme is convergent. Results of this convergence are
summarized in the next section.

5 Numerical Results

Let us fix the values of the parameters of the marginal
dynamical equations according to Table1. We also
assume the following form for price impact

λ (t) =
{

ε(1−e−β (T−t)3/2
), S6 S1 6 S,

0, otherwise,

whereε is a constant price impact coefficient,T − t is
time to expiry,β is a decay coefficient,SandS represent
respectively, the lower and upper limit of the stock price
within which there is a impact price.
We considerS= 60,S= 140,ε = 0.01 andβ = 100 for
the subsequent numerical analysis. Choosing a different
value for β ,S and S will change the magnitude of the
subsequent results, however, the main qualitative results
remain valid.

Table 1: Model data together withr = 0.04
S(t0) σ Smin Smax

Asset 1 112 0.15 0 200
Asset 2 104 0.10 0 200

Convergence of Numerical Scheme. As we
mentioned in Section1, the exact option values for the
option in illiquid market are unknown. Sinceλ = 0 leads
to the standard Black-Scholes model, we compare the
results obtained from the numerical method (withλ = 0
and strike 0) with the Margrabe’s closed formula for
exchange options (i.e. Spread Option with strike 0). We
fix the values of the parameters according to Table1, and
vary the values of the correlation coefficientρ . Results of
this convergence study are summarized in Table2. We
can see from the table that the agreement is excellent. We

plot the absolute error of our approximation (usingλ = 0,
strike 0 and Margrabe’s closed formula as benchmark)
against the stocks in Fig1. Results of the numerical
method for Spread option in illiquid market are stated in
Table3.
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Fig. 1: Absolute errors between our approximation and
Margrabe’s closed formula, withσ1 = 0.15,σ2 = 0.10, r =
0.05,ρ = 0.7,T = 0.7 year,m= 50 andl = 100.

Table 2: Convergence of the Peaceman-Rachford method to Magrabe formula.
Data are given in Table1.

m l T =
0.1

T =
0.3

T =
0.5

T =
0.7

T = 1

ρ = 0.1 50 100 8.1979 9.1570 10.0519 10.8369 11.8622
100 100 8.2110 9.1892 10.0930 10.8757 11.9579
200 200 8.2153 9.2373 10.1607 10.9727 12.0041

Margrabe 8.2323 9.2462 10.1723 10.9892 12.0666
ρ = 0.5 50 100 8.0088 8.5425 9.1276 9.6662 10.5095

100 100 8.0591 8.5983 9.1961 9.7205 10.5405
200 200 8.0687 8.6222 9.2209 9.7843 10.5636

Margrabe 8.0692 8.6235 9.2294 9.7949 10.5648
ρ = 0.7 50 100 7.9195 8.2199 8.6180 9.0019 9.5315

100 210 7.9734 8.2509 8.6296 9.0929 9.6244
200 200 7.9950 8.3023 8.7106 9.1035 9.6728

Margrabe 8.0186 8.3128 8.7115 9.1110 9.6775
ρ = 0.9 50 100 7.9252 7.9803 8.1740 8.3417 8.6412

100 100 7.9310 7.9852 8.1894 8.3532 8.6498
200 200 7.9938 8.0515 8.2032 8.3686 8.6571

Margrabe 8.0005 8.0588 8.2015 8.3799 8.6675

Replicating Cost. Next investigate the effects of the
price impact (full feedback model) on the replication cost
of Spread option. We investigate the excess price which is
the difference between the call price in the full feedback
model and the corresponding Black-Scholes price.
These figures2, 3 and4 indicate that the Spread option
price in the full feedback model is higher than the
classical Spread option price.
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Table 3: The values of a 0.4 year European call Spread option based on different
correlation, and strikes. Ex-P (Excess Price) shows the difference in call Spread
option from Black-Scholes. The values of the parameters used for these runs are
σ1 = 0.15,σ2 = 0.10, r = 0.05 with m= l = 100.

k=−15 k= −5 k =−2 k= 0 k= 2 k= 5 k= 10 k=20
ρ = 0.1 15.0929 7.1600 5.3275 4.2936 3.4027 2.3395 1.1267 0.1905
Ex-P 0.0001 0.0005 0.0005 0.0005 0.0005 0.0005 0.0003 0.00006
ρ = 0.5 14.7992 6.2972 4.3645 3.3368 2.4486 1.4909 0.5435 0.0426
Ex-P 0.0001 0.0007 0.0009 0.0009 0.0009 0.0007 0.0003 0.00003
ρ = 0.7 14.7085 5.7956 3.7731 2.7085 1.8642 0.9981 0.2593 0.0055
Ex-P 0.00006 0.0009 0.0013 0.0013 0.0012 0.0009 0.0004 0.00001
ρ = 0.9 14.6833 5.2299 3.0523 1.9601 1.1531 0.4387 0.0088 0.0029
Ex-P 0.00003 0.0013 0.0020 0.0020 0.0018 0.0012 0.0003 0.00000

70
80

90
100

110
120

70
80

90
100

110
120

0

2

4

6

8

x 10
−4

Stock price1Stock price2

E
xc

es
s 

am
ou

nt
 o

ve
r 

B
la

ck
−

S
ch

ol
es

Fig. 2: The call price difference (classical model and full
feedback model) as a function of stock price at time 0 against
S1 andS2. K = 5,σ1 = 0.3,σ2 = 0.2, r = 0.05,ρ = 0.7,T = 0.1,
andm= l = 100.
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Fig. 3: The call price difference (classical model and full
feedback model) as a function of stock price at time 0 against
S1 andS2. K = 5,σ1 = 0.3,σ2 = 0.2, r = 0.05,ρ = 0.7,T = 0.4,
andm= l = 100.

Excess Cost. Figure 5 shows the numerical results
from the excess replicating costs above the corresponding
Black-Scholes price for a call as a function of the strike
price (with S1(t0) = 100,S2(t0) = 110,σ1 = 0.15,σ2 =
0.10, r = 0.05,ρ = 0.7, T = 0.4 year). As the option
becomes more and more in the money and out of the
money, the excess price converges monotonically to zero.
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Fig. 4: The call price difference (classical model and full
feedback model) as a function of stock price at time 0 against
S1 andS2. K = 5,σ1 = 0.3,σ2 = 60.2, r = 0.05,ρ = 0.7,T = 1,
andm= l = 100.
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Fig. 5: The call price difference (classical model and full
feedback model) against the strike priceK. S1(t0)=100,S2(t0)=
110,σ1 = 0.15,σ2 = 0.10, r = 0.05,ρ = 0.7, T = 0.4 year and
m= l = 100.

6 Conclusion

In this work, we have investigated a model which
incorporates illiquidity of the underlying asset into the
classical multi-asset Black-Scholes framework. We
considered the full feedback model in which the hedger is
assumed to be aware of the feedback effect and so would
change the hedging strategy accordingly. Since there is no
analytical formula for the price of an option within this
model, we applied the Matched Asymptotic Expansions
technique to linearize the partial differential equation
characterizing the price. We applied a standard alternating
direction implicit method (Peaceman-Rachford scheme)
to solve the corresponding linear equations numerically.
We also discussed the stability and the convergence of the
numerical scheme. By running a numerical experiment,
we investigated the effects of liquidity on the Spread
option pricing in the full feedback model. Finally, we
found out that the Spread option price in the market with
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finite liquidity (full feedback model), is higher than the
Spread option price in the classical Black-Scholes
framework.
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Appendix

Consider a portfolioΠ , which is long the option and short
∆1 shares of stockS1 and∆2 shares of stockS2. The value
of this portfolio at timet is

Π(t) =V(t)− (∆1(t)S1(t)+∆2(t)S2(t)).

According to the self financing equation

dΠ(t) = dV(t)−∆1(t)dS1(t)−∆2(t)dS2(t). (55)

Using Itô’s lemma one gets

dV =
∂V
∂ t

dt+
∂V
∂S1

dS1(t)+
∂V
∂S2

dS2(t)+
1
2

∂ 2V

∂S2
1

d[S1,S1]

+
1
2

∂ 2V
∂S1∂S2

d[S1,S2]+
1
2

∂ 2V

∂S2
2

d[S2,S2]

+
1
2

∂ 2V
∂S2∂S1

d[S2,S1].

(56)

By substituting equation (56) into (55) one gets

dΠ(t) = (
∂V
∂S1

−∆1(t))dS1(t)+ (
∂V
∂S2

−∆2(t))dS2(t)

+
∂V
∂ t

dt+
2

∑
i=1

2

∑
j=1

1
2

∂ 2V
∂Si∂Sj

d[Si ,Sj ]

(57)

Next set

∆1(t) =
∂V
∂S1

,∆2(t) =
∂V
∂S2

, (58)

such that the change in value of the portfolio becomes

∂V
∂ t

dt+
2

∑
i=1

2

∑
j=1

1
2

∂ 2V
∂Si∂Sj

d[Si,Sj ] = dΠ(t). (59)

The portfolio is required to have returnr, i.e.,

dΠ(t) = rΠ(t)dt.

Plugging this into equation (59) yields

∂V
∂ t

dt+
2

∑
i=1

2

∑
j=1

1
2

∂ 2V
∂Si∂Sj

d[Si,Sj ] = r(V(t)− ∂V
∂S1

S1(t)

− ∂V
∂S2

S2(t))dt.

(60)

In order to proceed further we need the expressions for
d[S1,S1],d[S2,S2] andd[S1,S2]. Note that from the second
equation of (6) one gets

d[S2,S2](t) = σ2
2 (t,S2(t))S

2
2(t)dt. (61)

Itô’s formula applied to∆1 =
∂V
∂S1

yields

d∆1(t) =
∂ 2V

∂S1∂ t
dt+

∂ 2V

∂S2
1

dS1(t)

+
∂ 2V

∂S1∂S2
dS2(t)+

2

∑
i=1

1
2

∂ 3V

∂S1∂S2
i

d[Si,Si ]

+
∂ 3V

∂S2
1∂S2

d[S1,S2].

(62)

Substituting this into the first equation of (6) yields

[1−λ (t,S1(t))
∂ 2V

∂S2
1

]dS1(t) = σ1(t,S1(t))S1(t)dw1(t)

+λ (t,S1(t))σ2(t,S2(t))S2(t)
∂ 2V

∂S1∂S2
dw2(t)

+ µ1(t,S1(t))S1(t)dt+λ (t,S1(t))
∂ 2V

∂S1∂ t
dt

+λ (t,S1(t))
2

∑
i=1

1
2

∂ 3V

∂S1∂S2
i

d[Si ,Si ],

(63)

By taking quadratic variation and covariation leads to

d[S1,S1](t)
dt

=
1

(1−λ (t,S1(t))
∂ 2V

∂S2
1

)2

(σ2
1 (t,S1(t))S

2
1(t)

+λ 2(t,S1(t))σ2
2 (t,S2(t))S

2
2(t)(

∂ 2V
∂S1∂S2

)2

+ρσ1(t,S1(t))σ2(t,S2)S1(t)S2(t)λ (t,S1(t))
∂ 2V

∂S1∂S2
),

(64)

and

d[S1(t),S2(t)]
dt

=

(σ1(t,S1)σ2(t,S2)ρS1S2+λ (t,S1)σ2
2 (t,S2)S2

2
∂ 2V

∂S1∂S2
)

1−λ (t,S1(t))
∂ 2V

∂S2
1

.

(65)
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By substituting (61),(64) and (65) into equation (60) leads
to

∂V
∂ t

+
1

2(1−λ
∂ 2V

∂S2
1

)2

(σ2
1S2

1+λ 2σ2
2S2

2(
∂ 2V

∂S1∂S2
)2

+2ρσ1σ2S1S2λ
∂ 2V

∂S1∂S2
)

∂ 2V

∂S2
1

+
1
2

σ2
2S2

2
∂ 2V

∂S2
2

+
1

1−λ
∂ 2V

∂S2
1

(σ1σ2ρS1S2+λ σ2
2S2

2
∂ 2V

∂S1∂S2
)

∂ 2V
∂S1∂S2

+ r(S1
∂V
∂S1

+S2
∂V
∂S2

)− rV = 0,0< S1,S2 < ∞,0≤ t < T.

(66)
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