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Abstract: This paper performs the numerical analysis and the compuataf a Spread option in a market with imperfect liquidity.
The number of shares traded in the stock market has a diretcinon the stock’s price. Thus, we considdulikfeedback modeh
which price impact is fully incorporated into the model. Tgréce of a Spread option is characterized by a nonlineargbalitferential
equation. This is reduced to linear equations by asympeansions. The Peaceman-Rachford scheme, as an aftgrdaéction
implicit method, is employed to solve the linear equationmarically. We discuss the stability and the convergenab@humerical
scheme. lllustrative examples are included to demondiinatgalidity and applicability of the presented method.aHinwe provide a
numerical analysis of the illiquidity effect in replicagiran European Spread option; compared to the Black-Schaldslrthe price of
the option is higher in the model with price impact.
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1 Introduction written on that stock. They characterize the derivative
price in terms of a nonlinear partial differential equation
Classical asset pricing theory assumes that traders act &mulations are used to compare the hedging strategies in
price takers, that is, they have no impact on the pricegheir model to classical Black-Scholes mod&]. §tudies
paid or received. The relaxation of this assumption and itghe nonlinear effects of trading strategies to prices. A
impact on realized returns in asset pricing models isnonlinear partial differential equation for an option
called liquidity risk. Consistent with this discussion, sho replication strategy is derived and is solved using
of the option pricing models assume that an option tradeinumerical simulations.4] analyzes how price impact on
can not affect the price in trading the underlying asset toan underlying asset modifies the replication of a European
replicate the option payoff, regardless of her trading.size option. They found that compared to the Black-Scholes
The papers of Black and Scholef],[and most of the case, a hedger buys more stock to replicate the option.
work undertaken in mathematical finance has been dond@he excess replicating cost over the Black-Scholes price
under this underlying assumption (which is reasonablgs significant. An excellent survey of these research can
only in a perfectly liquid market). be found in p]. In the context of price impactg] solves
In presence of a price impact, the replication of an optionthe nonlinear equation for an option replication strategy
becomes more involved. The first issues is whether or noby means of semidiscretization technique. Numerical
the option is perfectly replicable. Second, one has to findwvorks on this topic were developed ifi, 8,9].
out how the presence of price impact affects the the All these research works study how the price
replicating costs. This encouraged researchers to develapnpact affectsthe replication of an option written on a
a Black-Scholes model with price impact due to a largesingle underlying (stock).
trader who is able to move the price by his/her actions. The purpose of our paper is to investigate the effects
Let us go over the existing research on this top®f. [ of imperfect liquidity on the replication of an European
shows how an agent whose trades affect prices of som8pread option by a typical option trader in a full-feedback
stock can replicate the payoff of a derivative security model (any trade will impact the prices of the
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underlyings). Spread option is a simple example ofon Oil Markets and more specifically one of the most
multi-assets derivative, whose payoff is the differencefrequently quoted Spread options which are Crack
between the prices of two or more assets; for instance leSpreads. A Crack Spread represents the differential

the prices of two underlying assets at timne [0,T] be
Si(t) and S(t), then the payoff function of an European
Spread option with maturityl’ is [S(T) — S(T) — K™
(herek is the strike of the option and the functior is

between the price of crude oil and petroleum products
(gasoline or heating oil). The underlying indexes
comprise futures prices of crude oil, heating oil and
unleaded gasoline. Details of crack Spread options can be

defined asxt = maxx,0)). Therefore the holder of an found in the New York Mercantile Exchange (NYMEX)
European Spread option has the right but not theCrack Spread HandbooKl?]. In the oil markets with

obligation to buy the spread(T) — S(T) at the
prespecified prick and maturityT . In general, there is no
any analytical formula for the price of multi-assets

finite liquidity, trading does affect the underlying assets

price. In our study we investigate the effects of impact
price on Spread option pricing in oil markets, when

options (even in models with perfect liquidity). The only trading affects the crude oil price, but not petroleum
exception is Margrabe formula for exchange optionsproducts.

(Spread options with zero strike, se&(]). Margrabe

Our Contributions: By the best of our knowledge our

derived a Black and Scholes type solution for this class ofwork is the first to consider pricing of spread options

options as follows
M =50(d;) - SP(d), )

where @ is the standard normal cumulative distribution
function and

ILCT

oVvT 2

o= \/012 + 02 —2p0105.

)

Hereo; and o, are the volatility of two underlying assets
Si(t) andSy(t),t € [0,T]. Their price dynamics are given
by a stochastic differential

(options written on two stocks) in a full feedback model

of the stocks. The nonlinear partial differential equation
(PDE) which characterizes the price of the spread option
appeared for the first time in our work. We used the

matched asymptotic expansion technique to linearize this
nonlinear PDE. The standard alternating direction
implicit method (Peaceman-Rachford scheme)was
employed to solve the corresponding linear equations
numerically L7]. The stability and the convergence of the

numerical scheme was established. Numerical
experiments have shown that the price of the Spread
option is higher in a full feedback model.

This paper is organized as follows: Sectidh

equations based ondiscusses the general framework. In Sectdoowe apply

two-dimensional standard correlated Brownian motionan asymptotic expansion for the full nonlinear partial
with correlation p. Since a linear combination of differential equation which characterizes the Spread
correlated lognormals is not lognormal, for non-zerooption price. In Sectiond, we propose a numerical
strikes, there is no closed form Spread option valuationmethod for the linearized equation the Peaceman and
formula under the multivariate lognormal model. People Rachford numerical scheme. We discuss the stability and
rely on approximation formulas and numerical methodsconvergence of this scheme. In Sect@nwe carry out

for Spreads valuation. Kirki[l] suggested the following several numerical experiments and provide a numerical
analytical approximation for a Spread option with payoff analysis of the model for European Spread calls. Section
(SUT)—S(T)—k)* 6 contains the concluding remarks. The paper ends with

an Appendix.
M =50(d;) — (S + K @(d-), ®)
where
| ’ 2 Statement of the problem
AELICYCEI I
oVvT 2 @) In this section we describe the setup used for pricing
) S Lo S Spread options. Our model of a financial market, based on
0= 01+(Sz+k) 02—2mp0102. a filtered probability spacéQ,.7,{.% }ico7),P) that

satisfies the usual conditions, and consists of two risky
This formula provides a good approximation of Spreadassets (stocks). Their prices are modeled by a

option prices when the strikie is not far from zero. All  two-dimensional diffusion process
the existing works on spread options assume a model witlg(t) = (Si(t),S(t)),t € [0,T]. All the stochastic
perfect liquidity. processes in this work are assumed to be

Several Spread options are traded in the markets{.% }i>p-adapted. Their dynamics are given by the
Some popular Spread option products are: fixed Incomdollowing stochastic differential equations, in which
Spread options and commaodity Spread options (includingV(t) = (wi(t),ws(t)) is defined a two—dimensional
Crush Spread options, Crack Spread options, Sparlstandard correlated Brownian motion with correlatimn
Spread options). In this work, we will focus our interest and { % }icjo7] IS its natural filtration augment by all
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P-null sets: 3 Matched Asymptotic Expansion

das .
T()) = Hi(t,S(t))dt+0i(t,S(t)dwi(t); i=1,2. (5)  In this section we use a matched asymptotic expansion

technique toAIinearize 8). For this purpose we let
Herep;(t,S(t)) andoi(t,S(t)) are the expected returnand A (t,5;(t)) = €A (t,S1(t)), so that 8) becomes
the volatility of stocki in the absence of price impact. It is
possible to add a forcing term((t, S;(t)), i.e., oV 1

(02t (eA)?03SK( )2
ot 2 oist 0 d
dSi(t) = pu(t, Si(1)Su(O)dt + 01(t, Si (1) Su(t)dwa (1) 21-e3 0 ‘g> 51 s
+ALS(0)dA ), x ¥
AS(0) = 1ol 2SI+ 02 SO)ZOM). 1 20010,,5563 =02 ) 2% 1 102
© P010251S 081082 05% % S%
+71 (0102PSSp + €A 02— oV ) oV
Here A (t,S(t)) is the price impact function on the first ~ 0%V 1020 2 dslasz 050
stock,S;. The termA (t,S;(t))dA;(t) represents the price 1- 5’\0—5%
impact of the trading strategy;(t); at time t, A;(t)
denotes the number of shares of the first stock bought +r(sla_v +32 ) —0.
(A1(t) > 0), or sold @4 (t) < 0). Since the price per share 05 0
of S; depends on the number of shares bought or sold this 9)

model is reffered to as full-feedback model. We note that

the classical Black-Scholes model is a special case of this By replacingV(t, S, S,) in the equation9) with
model with A (t,S(t)) = 0. Our aim is to price a Spread

option in this illiquid market model. The option’s payoff v(t,5,,S) =V(t,5,S) +eVi(t, S, S) +o(£?), (10)
at maturityT is:

we get
h(SUT).S(T) = (SUT) -S(T) -k @) 0
wherek is the strike price. _ . (VO +evl) %;?Vl) 5
LetV(t,S;,S) denote the price (value) at timef the ot STV V! (01§
spread option with payoffS(T) — $(T) — k|* in our 2(1—¢ eA (V_+e ))
full-feedback model given thaf(t) = S, S(t) = S. 0
ThenV(t,5,S) solves the following nonlinear partial ) 02 Jrg\/l) )
differential equation (for details on this see The + 8)\ 07S5( W)
Appendix):
A02(V°+£V1 1 220%(VO0+evh
N 1 +20010:5%EN — s ) + 3OS
B o R e S
& 2(1— ‘951‘952 A 02(V°+8V )\ 92(vOrev)
ﬁ% N (0102p5_|.52+8 0282 081082 ) 0S50S,
oV 02v 1 ) ~0%(VO+evl)
l-eA———~
+20010299) a5 dSldSZ 05% g S% o2
1 o . o (VO +evl) d(VO eVl
r
+ A (0102p8152+)\02§081082 3595, +1(S 55— T2 g5 )
0s; —r(VO4-evl) +o(e?) =0,
oV (11)
+r (SLE'FSQ(?SZ) V=0 0<8§,$<00<t<T
8) By using Taylor series expansion one gets
with the terminal condition &F, 1 1 LoV ~ 92\/0 +o(e?)
—_32/\/0 1 )
V(T.5.9)=h(S.S). 0<S S <o 2013 e s
Notice that the classical Black-Scholes partial differant 1 ~92/0 ) (12)
equation which characterizes the price of the spread option RO 1+eA g +0(g%).
in a model without price impact is obtained by settihg- l-eA—————=
0in (8). oSt
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Therefore the following linear equations ﬂdP(t,Sl,Sz)

The functionsVO(t,x,y) and Vi(t,x,y) are defined on

andvi(t,S;,S) can be derived [0,T] x [0,00) x [0,00). For simplicity, we write:
A VAo s S LA VE e S AV PRVA J
v OV L=2 L At A+ Ay, (18)
ot T2 eg T2 ey T F 555, gt TRy
ovo VO where
+I’[Sl—+52 ]-rvl=o,
95 0% 1 ,,0
VOUT,8,9) =h(S,S), 0<S,S <, Ax=501%° ﬁﬂxax re,
(13) 9
y2 7t Yay - r(1—0), (19)
avl 2 202vl 22 aZVl 02vl
T 0181 2 O-ZSZ 2 + 010231329 02
ot 2 09 2 0SS 0S90S Axy = alalxypm,
ovt _ov?t 1
S5 S, 3 32] V=G, and 0< @ < 1. While symmetry considerations might
Vl(T,Sl,Sz) =0, 0<S, <. speak for ar® = 1 , it is computationally simpler to use
(14)  ©=00rO=1,i.e., include theV — term fully in one of
Here the two operators. Hence, we can write
0
520 02\/0 02\/0 { LV(t,xy) =0, (20)
G=-A(2 1 =
( palazslszaslasz d% d% LVi(t,xy) =G,
ey 02V° where
o:
2 dSldSZ 15 92v0 32\/0 920
(15) G= (Zpolazxyﬁ 3y + o&( 5 )2 on
Let us notice that PDELQ) is the standard Black-Scholes 2 2,0V,
PDE, soV°(t,S;,S) is the Black-Scholes price of the yz(axay) )-

European Spread option in a model without price impact.

In sequence we propose a numerical scheme foin order to find a numerical solution for these equations,

computingv(t,S;,S) andVi(t, S, S).

4 Alternating Direction Implicit Method

4.1 Peaceman-Rachford scheme

In this section, we present a numerical method for solving

the following PDEs:

a—vo N 0'12X2 02\/0 o y2 02 0 T o1x 02\/0
ot 2 o 2 oy r92%%Poay
ove VO 0 (16)
+r[xW+ya—y]—fV =0,
VOTxy) =h(xy), 0<xy<e,
and
vt N o2x? 92Vl agzy? 92Vt PP o2Vt
ot 2 o 2 gy P95y
ovt  ovt 1 (17)
+r[xW+ya—y]—fV =G,
VYT, xy) =0, 0<xy< o,

we need to truncate the spatial domain to a bounded
domain as:{(X,¥);0 < X < Xmax0 <Y < Ymax}. Let us
introduce a grid of points in the time interval and in the
truncated spatial domain as:

.

t =14t 1=01,.L, At=r,

¥m= MAX, m=0,1,..M, Ax:xmvax, (22)
Ymax

Yn=nAy, n=0,1,..N, Ay= N
Without loss of generality leXmax = Ymax and Ax = Ay.
The functionsVO(t,x,y) and V(t,x y) evaluated at a

pomt on the grid are denoted le(fpom t| ,Xm, Yn) and

an = V(t,Xm,yn). If we need to refer to the solution at
a specific time point, we will use notation
VO = VOt xm,yn)  and VY = V() Xm,Yn).
Furthermore, let symbolsAgy,Aqy and Agyqy denote
second-order approximations to the operaishAy and
Ayy. Since the differential operator can be split asfif)(
we can use Alternating Direction Implicit (ADI) method.
The general idea is to split a time step into two and
consider one operator or one space coordinate at a time
[16]. In other words, ADI involves the reduction of the
problem to several one-dimensional implicit problems by
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factoring the scheme. We implement
Peaceman-Rachford sched] Let us begin by
discretizing (L6) in the time-direction:

0l+1 _ V07|
At
1
(AX + Ay + Axy)vo’l = EA)((VO’|+1 —|—V0’I )

VO((1 +1/2)At, x,y) = +0(A1)?)

1
+ EAy(VO’IJFl _|_VO,| )

+ %Axy(vov'+l +Voh L o((at)?).

(23)
Using 23) in the equation8) yields:
(I — %AtAX — %AtAy)VO" =+ %AtAXJr %AtAy)VO*'”
+ %AtAxy(VoJJrl +VOh
+0((4r)°),
(24)
where | denotes the identity operator. If we add

%(At)ZAXAyVOv' on the left hand anc%(At)ZAXAyVO,IH

on the right hand then we commit an error which i

O((At)®) and therefore:

(I — :—ZLAtAX)(I - %AtAy)VO*' =

1 1
(1 + 5AtA) (1 + éAtAy)VO*'”

1
+ iAtAxy(Vo”l +Voh
+0((At)3).

(25)

We now discretize in the space coordinates replaéing

by Agx, Ay by Agy andAxy by Agxdy

1 1 ol _
(- EAtAdx)(l - EAtAdy)V =

} } 0,+1
(1 + SAtAG)(1 + 5AtAg)V 26)

+ %AtAdxdy(Vo*'” +VOo
+0O((A1)%) + O(At(Ax)?).
This leads to the Peaceman-Rachford method (& [

At
(==

(1= S ARV = (1 S ARVOI 121

AdX)VO!H»l/Z — (I + %Ady)vo,H*l_’_ a,
(27)

where the auxiliary functionv®'+1/2 Jinks the above

equations. We have introduced the valaeandf to take

the into account the mix derivative term because it is not

obvious how this term should be split. To aligi7/{ with
(26), we require that

At At 1
(14 5 Aa)a + (1 = Adx) B = EAtAdxdy(Vo"+l+V°"),
(28)
where a discrepancy of ord@((At)%) may be allowed

with reference to a similar term in2§). One possible
choice fora andp is

At At
a= 7Adxdyvo’|+la B= ?Adxdyvo’“rl/z- (29)

Finally, the Peaceman-Rachford schemeM8rin (16) is
obtained as follows

At At At
(1— EAdX)VO,H-l/Z =(I+ EAdy)VOJH—l— EAdxdyVO’IH,
At At At
(| _ 7'A‘dy)VoJ — (| + EAdX)VO"IJrl/Z"'— ?Adxdy\/o,|+l/2.
(30)

In a first step we calculadé®'+1/2 usingv%'*1, This step
is implicit with respect tox. In a second step, defined by
equations30), we useV?'+1/2 to calculate/%'. This step
is implicit in the direction ofy. The Peaceman-Rachford

s scheme fo* in (17) is obtained as follows:

At
|- =
( 2

At At
(1= S AV = (14 5 ApVH Y24 B,

Adx)vl,|+1/2 — (I 4 %Ady)vl’l+l+ a,
(31)

where auxiliary functio/2'+1/2 |inks above equations.
To align (31) with (26) we require that

At At 1
(1 + S5 Aa)a + (1 = A B = SAtAGay(V - +VH)

_%At(e'+l+e').

(32)
One of the possible choice forandf is
a = %AdxdyVLH_l _ %G“rl’
At At (33)
B — ?Adxdyvo,H-l/Z _ 7(3| .

The Peaceman-Rachford schemediof (17) is obtained
as follows:

(| _ %Adx)vl,lJrl/Z _ (| + %Ady)vl,ﬂrl

At At
4 ?AdxdyvlJ-‘rl _ 7G|+1,

At At
(- AgVH = (1 + - Agx)VH+1/2
At At
+5 AdxaV 12 — - G.

(34)
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In a first step calculate'+1/2 usingv'+1. This stepis  factor g. This Theorem does not apply directly to
implicit with respect tox. In a second step, defined by problems with variable coefficients. Nonetheless, the
equations 34), we useV1!+1/2 to calculatevl! . This  stability conditions obtained for constant coefficient
step is implicit with respect tg. schemes can be used to give stability conditions for the
Notice that due to the use of centered approximations osame scheme applied to equations with variable
the derivatives, aXo = Yo = 0, Xm = Xmax @NdYn = Ymax coefficients. The general procedure is that one considers
there appear external fictiious nodes; = —AX, each of the frozen coefficient problems arising from the
y 1= —4Y, Xxm+1 = (M +1)Ax andyns1 = (N + 1)Ay. scheme. The frozen coefficient problems are the constant
The approximations OVS’ll,navla’Ll,mV;?{Ll and Vr?1:|l\l+1 coefficient problems obtained by fixing the coefficients at
are obtained by using linear interpolation. Thus we haveneir valu_es atfained at each point in the doma}ln of the
the following relations computation. If each frozen coefficient problem is stable,
then the variable coefficient problem is also stable (see

o, 0l 0l y,0,| (o ol . 14,15).
V—l,n = 2VO,n _V17anM+1,n = 2VM,n _VM—l,n* n= 1(1)N, [ 5])

Vr%l—l = ZV%'O _Vr?ﬂlrvr?ﬂlml = ZVr?{lN _Vngle—l? m=1(1)M.
(35)
For finding the amplification factor, a simpler and
Similarly, we can write the same relations in term&/éf . equivalent procedure is to replats/e% and anqr'] in the
Now all valuesviay, andVin are available. By repeating  scheme byy~'em@e"? for each value of,n andm. In this
this procedurefor=L—-1,L—2,....0we obtair}\/r%n and o‘|+}
Vi, atall time points. The price of a Spread option at time Scheme  the main issue ¥ 2, the intermediate

to = 0 can be approximated as : quantity that links two separate steps in the scheme. To
eliminate all reference to the intermediate quantity
V(toxy) 2 VO(to,xy) +&Vi(to,xy).  (36) 1 ores

0l+—= L. . .
V2, obtaining an equation fofmn 2 in terms 01"\/%,'1
for each value of,n andm, we use an equivalent and
4.2 Stability Analysis of the Numerical Scheme simpler procedure, which is to replace all occurrences of
1

In this section, we discuss stability and convergence o2 by Gg'émPen? as well as the usual replacement
the numerical schemes introduced in Section 4.1. First weyf 3! py g~'éM8en® for each value of,n andm, where
?n?r'])_’ze the stability of thetrli’ea\l;:emsn-Rachford SICh’?thj is a function of, @ which in general will also depend
n this case, we can use the Von Neumann analysis tq . . 0l+1/2 0|
establish the conditions for stability. This approach wasgnét’_ée,)-(mlgﬁg' F?jllq\ﬂv&%q%éllns(; replacet\_/mrl] ¢ anthmn
described in 13](Chapter 2.2). The Von Neumann a9 andg respeclivelyto ge
analysis is based on calculating the amplification factor of
a scheme and deriving conditions under which it is less

than one in absolute value. %Adxv,%'rfl/z = @g*'eimgei”‘”(—alsinzge + byising)
Theorem 1.A one-step finite difference scheme (with At _ L ima i i .
constant coefficients) is stable in a stability regior{(any ?Ad Vn(%,’nI =9 Ie|m9e|n<p(_a25|r12§¢+ baising —c1)
bounded nonempty region of the first octant dtiRat has At 0141/ imBa o

the origin as an accumulation point) if and only if there ?Adxdyvm:n = —gg €me"?cysindsing

exist a constant ¢ (independent &f ¢, dt, dx and dy) At o

such that AdxaVak = —g 7' éMPe?c,sindsing.

9(6. @, dt,dx,dy)| < 1+ cdt. 37) 2 (39)

Here g6, ¢,dt,dxdy) is the amplification factor of
scheme with(dt,dx,dy) € A. If g(0,q,dt,dxdy) is
independent of dx, dy and dt, the above stabilityHere
condition can be replaced with the restricted stability

condition " .
0,p)| <1 38 Atofx Ato.
19(6, )| < (38) a1 m) = 201 oy ) = (A;))zlnv
ProofSee [L3]. ) Atrxen . Atry, w0
RemarkThis Theorem shows that to determine the Ham 2Ax 2" 24y
stability of a finite difference scheme with constant rAt At01020XmYn
coefficients, we only need to consider the amplification €1 = —,C2(Xm;Yn) = T 2Axay
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Also, by replacindviin' /% andViih by Gg~'émén® and  Notice that
g~ 'émPen? respectively, one gets 1
a1 Sin?= 6 + CaysinBsing
At ima i Y .
?Adxvnl];'n“/z - gg*'e'mge'”“’(—alslnzze + byising) 2 L
At o 1 < ay|sir?= 6| + Cay|sinBsing|
?Adyv,%;'n =g émge'”¢(—azsin2§(p+ baising — ¢;) 12 L L (48)
At 1111/2 o < ay|sin= 6][|sin= 0] + 2C|cos= Bsing|]
= AdxayVimn 7 = —gg ' €mOe?c,singsing 2 2 2
Z < ay[1+20).
EAdxder%jLH = —g'dM0&"?c,sinBsing. Thus )
(41) 1- alsinzé 6 — Caysindsing > 0,
According to "Duhamel’s principle” we ignore th@'*1 ) .
andG' terms in stability analysis (for more details on this Provided thagy [1+2C] < 1. Furthermore we have
see [L3]). We obtain the amplification factor 1 R
1 apsir g+ baising — ¢1 — cosindsing 42) C313|n2§q0+ Caysinfsing
- 51 .. —~ ) -
(14 aysin?;6 — byising)g < Ca1|sin2}(p| + Cay|sindsing|
with 2 (49)
1 1 ~ 1
1+ agsir? 3 — bpising + ¢, ) < a1|sm§(p|[Csm§(p+4C|cos§(psm9|
9= 43

1—aySin?3 6 + byisin® — csindsing”
This factor can simplify to
[1—aysin?36 — cosindsing + (bysind)i]
(14 a1si?36 — (bysind)i]
y [1—apsi?3 g — ¢1 — Cosindsing -+ (bysing)i] .
[1+4 agsi?3 @+ c1 — (bosing)i]

(44)
Thus
»  [(1—aysi?36 — cosindsing)? + bZsin?6)]
[(1+ aysir?16)2 + bZsin?6)
y [(1— agsir? ¢ — c1 — cosindsing)? + b3sir? ¢
[(1+ aSi?3 @+ ¢1)2 + b3sirkg)

(45)

According to @0), we can writea, = Cay, Cp = éalwhere
~ b .

C andC are constants. Moreov%l — 0,asAx — 0. Since

1
Ax= Ay, thenby = by, =c¢; = £a;, with € — 0asAx— 0.
In light of this, taking the limit in 45) one gets

(1— aysir?16 — Caysindsing)?

img” = (1+asi?16)2 )
(1—Caysir?3 ¢ — Caysindsing)?
(14 Casir?g)?
It is enough to find conditions so that
(1—aysir?36 — Caysindsing)?
(1+ alsinZ%e)Z 47)
y (1—Caysir? 1 — Caysindsing)?
(14 Casir?3¢)? -

<ay[C+2C].

Then 1
1- Calsinzi @ — Caysinfsing > 0,

-~

provided thata;[C + 2C] < 1. Therefore we should find
conditions so that
(1—aysir?16 — Caysindsing)
(14 assin?36)
(1—Caysir?1¢p— Caysindsing) -1
(1+Caysir?e) -

(50)

or equivalently

al(sinzge +ésirﬁsin(erCsinZ%(p)(—Z—kalésinesin(p) <0.

(51)
Sincely| < 1, then for anyx € R, xy > —|x|, and byC >
4C?, we have that

Y 51
S|n2§6+Csmesmqo+Cst§qoz
02— - - —op|c= (52
|sm29| 4C|S|n265|n2q0|+4C |sm2qo| (52)
(|sin%6| —~ 26|sin%qo|)2 > 0.

. P 2
Thus 60) is satisfied ifay < c and|g(8,¢)| < 1 holds
true if
1 1

—— ﬁ} or
142C 4C?+2C

. 2
a1 <A=min{ =,
{C

At A At A (53)

< , < .
(AX)Z B U]?X%ax (Ay)z Uzzy%ax
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SinceAx = Ay andXmax = Ymax @ Sufficient condition for  plot the absolute error of our approximation (usihg- O,

stability of the scheme is strike 0 and Margrabe’s closed formula as benchmark)
against the stocks in Fid. Results of the numerical
At A (54) method for Spread option in illiquid market are stated in

(Ax)? = max 02, 02} Xz ax Table3.
Thus, the Peaceman-Rachford scheme is stabletlife
number of steps in the time interval, akdN the number

of steps in the spatial domain satisfy inequalby)( This
condition is a consequence of the cross-derivative terms
In the absence of these terms, the scheme would be
unconditionally stable.

The remaining issue we need to address is the
convergence of the numerical method to the true value of
the problem. According tolf3] , this scheme is first-order
accurate in time and space and due to its stability the
scheme is convergent. Results of this convergence ar¢
summarized in the next section.

Absolute Error

100

90
Stock Price 1 Stock Price 2
70 70

5 Numerical Results

Let us fix the values of the parameters of the marginalrig. 1: Absolute errors between our approximation and
dynamical equations according to Table We also  Margrabe’s closed formula, wittoy = 0.15,0» = 0.10,r =

assume the following form for price impact 0.05,0 =0.7,T = 0.7 year,m= 50 andl = 100.
3/2 =
Ay = [e1-ePTY) s<5 <5
0, otherwise

where € is a constant price impact coefficierit,—t is

time to _explry,B IS a decay coeﬁ|C|e;n§ ands rePresent. Table 2: Convergence of the Peaceman-Rachford method to Magraieiftor
respectively, the lower and upper limit of the stock price pata are given in Table.

within which there is a impact price. m 1 T =T =T =T =]7=1

We considerS = 60,S= 140,¢ = 0.01 andj3 = 100 for p=01 | 50 | 100 2'1979 8?570 2.(;5051) 258369 11.8622

the subsequent nleelricaI analysis. Choos_ing a different © 7 | 00| 100! 82110| 9.1892| 10.0930 108757 11.9579

value for 3,S and S will change the magnitude of the ) 200 200 ggégg 32323 18.16(2)7 18'3;32 13'82:3%
: o Margrabg . 2462 10.1723 10. 12.

subsgquer)t results, however, the main qualitative results 5—05 | 50| 00| 8.0088| 8.5425] 0.1276| 96667 [ 10,505

remain valid. 100| 100| 8.0591| 8.5983| 9.1961| 9.7205 | 10.5405

200| 200| 8.0687| 8.6222| 9.2209| 9.7843 | 10.5636

Margrabg 8.0692| 8.6235| 9.2294| 9.7949 | 10.5648

p=07 | 50 | 100| 7.9195| 8.2199| 8.6180| 9.0019 | 9.5315

. o 100| 210| 7.9734| 8.2509| 8.6296| 9.0929 | 9.6244

Table 1: Model data together with= 0.04 200| 200| 7.9950| 8.3023| 8.7106| 9.1035 | 9.6728

S(to) o Shin | Snax Margrabg 8.0186| 8.3128| 8.7115| 9.1110 | 9.6775

Asset 1| 112 0.15 0 200 p=09 | 50 100 | 7.9252| 7.9803| 8.1740| 8.3417 | 8.6412

100| 100| 7.9310| 7.9852| 8.1894| 8.3532 | 8.6498

Asset2| 104 | 0.10] O 200 200| 200| 7.9938| 8.0515| 8.2032| 8.3686 | 8.6571

Margrabg 8.0005| 8.0588| 8.2015| 8.3799 | 8.6675

Convergence of Numerical Scheme. As we
mentioned in Sectiod, the exact option values for the Replicating Cost. Next investigate the effects of the
option in illiquid market are unknown. Sinde= 0 leads  price impact (full feedback model) on the replication cost
to the standard Black-Scholes model, we compare thef Spread option. We investigate the excess price which is
results obtained from the numerical method (with= 0 the difference between the call price in the full feedback
and strike 0) with the Margrabe’s closed formula for model and the corresponding Black-Scholes price.
exchange options (i.e. Spread Option with strike 0). WeThese figure®, 3 and4 indicate that the Spread option
fix the values of the parameters according to Tdhland  price in the full feedback model is higher than the
vary the values of the correlation coefficigntResults of  classical Spread option price.
this convergence study are summarized in Tabl&Ve
can see from the table that the agreement is excellent. We
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Table 3: The values of a 0.4 year European call Spread option baseifferedt

correlation, and strikes. Ex-P (Excess Price) shows tHerdiice in call Spread
option from Black-Scholes. The values of the parameterd fmethese runs are x10
01 =0.150, = 0.10,r = 0.05 withm=1 = 100.

8
]
@
k=15 [ k= 5 [ k=2 [ k=0 k=2 [ k=5 [ k=10 | k=20 3
P01 | 150929 | 7.1600 | 53275 | 42036 | 3.4027| 2.3305| 1.1267 | 0.1905 s
Ex-P 00001 | 00005 | 00005 | 00005 | 00005| 00005 00003 | 0.00006 g
D05 | 147002 | 62072 | 43645 | 33368 | 2.4486] 1.4900] 05435 | 00426 2
Ex-P 00001 | 00007 | 00009 | 00009 | 00009| 00007| 00003 | 0.00003 g
D07 | 14.7085 | 57956 | 3.7731 | 2.7085 | 18642] 0.0981] 0.2593 | 00055 H
Ex-P 000006 | 00009 | 00013 | 00013 | 00012| 00009| 00004 | 0.00001 H
p—00 | 146833 | 52299 | 30523 | 10601 | 11531| 0.4387] 0.0088 | 0.0029 8 108
Ex-P 000003 | 00013 | 00020 | 00020 | 00018| 00012| 0.0003 | 0.00000 20

Stock price2 60 70

Stock pricel

Fig. 4. The call price difference (classical model and full
feedback model) as a function of stock price at time 0 against
S andS,. K =5,01 =0.3,0» = 60.2,r =0.05,0=0.7,T =1,
andm=1=100.

= Excess amount over Black-Scholes

70 70

Stock price2 Stock pricel

Fig. 2. The call price difference (classical model and full
feedback model) as a function of stock price at time 0 against
S and$. K =500 =0.3,0,=0.2,r=0.05p=0.7T =0.1,
andm=| = 100.

Excess amount over Black-Scholes

L L L L L L
-25 -20 -15 -10 -5 0 5 10
Strike price

Fig. 5. The call price difference (classical model and full
feedback model) against the strike priceS; (tg) = 100, S (tg) =
110071 = 0.15,0» = 0.10,r = 0.05,0 = 0.7, T = 0.4 year and
m=| = 100.

Excess amount over Black-Scholes
=4
o

N
N}
So

6 Conclusion

100
stock price2 00 e In this work, we have investigated a model which
incorporates illiquidity of the underlying asset into the
Fia 3 i . . classical multi-asset Black-Scholes framework. We
ig. 3: The call price difference (classical model and full . . . )
feedback model) as a function of stock price at time 0 againstccmSldered the full feedback model in which the hedger is
S andS,. K = 5,01 = 03,0, = 02,1 — 0.05,p = 0.7,T — 0.4, assumed to be aware of the feedback effect and so would
andm= | — 100. change the hedging strategy accordingly. Since there is no
analytical formula for the price of an option within this
model, we applied the Matched Asymptotic Expansions
technique to linearize the partial differential equation
characterizing the price. We applied a standard altergatin
Excess Cost. Figure 5 shows the numerical results direction implicit method (Peaceman-Rachford scheme)
from the excess replicating costs above the correspondintp solve the corresponding linear equations numerically.
Black-Scholes price for a call as a function of the strike We also discussed the stability and the convergence of the
price (with S (tg) = 100 S(tg) = 110 07 = 0.15,0, = numerical scheme. By running a numerical experiment,
0.10,r = 0.05,0 = 0.7, T = 0.4 year). As the option we investigated the effects of liquidity on the Spread
becomes more and more in the money and out of theoption pricing in the full feedback model. Finally, we
money, the excess price converges monotonically to zerofound out that the Spread option price in the market with
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finite liquidity (full feedback model), is higher than the Plugging this into equatiorb@) yields
Spread option price in the classical Black-Scholes

av 221 9%V v
framework. ZZ 29505, d[S,Sj]=r(V(t)— —051810)
ov
Acknowledgement — ESz(t))dt.

(60)

? order to proceed further we need the expressions for
d[S1,S],d[S, S andd[S;, S;]. Note that from the second

The authors are grateful to the anonymous referee for
careful checking of the details and for helpful comments
that improved this paper.

Appendix

Consider a portfolidT, which is long the option and short

A; shares of stock; andA, shares of stock,. The value
of this portfolio at timet is

(Da1(1)S1(t) + D2(t)S(1)).-

According to the self financing equation

M) =V(t) -

dri(t) = dV(t) - As()dSi(t) — Ax(t)dSp(t).  (55)
Using Itd’s lemma one gets
ov ov ov 107V
dv = EdH— dSldSl( )+—Szd32( )+ 20—Sfd[sl’sl]
1 o%v 02v
+§asldsg d[S1,S] + 208 d[S, S
1 02V
(56)
By substituting equatiorb@) into (55) one gets
ov ov
dari() = (E —A1(1)dS(t) + (E —A5(1))dS ()
2 21 2y
+_‘“+ZZ 503051 d[S.Sj]
(57)
Next set
ov ov
A1) = Eaﬂz(t) =95 (58)

such that the change in value of the portfolio becomes

2 2 1 02\/
d+Z 53505 d[S,Si] = dri(t).

The portfolio is required to have returni.e.,

(59)

dri(t) = ri(t)dt.

equation of 6) one gets
d[S2, Sl (t) = 03 (t, S(1)) S5 (t)dlt.

[td’s formula applied tad; = Z_\Sll yields

(61)

oAV

S dsi(t)
21
U+ 2950

d[S1, S

a2V
dAg(t) = aslatd“r

o3V

+ a3 dS 5.5] (62)

LoV
0S$0S,
Substituting this into the first equation d@)(yields
(92
Vog
0%V

MESI0)02(t S0)S (0 32 dvelt)
A
+ul<t,sl<t>>sl<t>dt+A(t,slm)%dt

[S.S],

[1-At,S(t) = ou(t,S(t))Su(t)dwa(t)

21 93V

AL 212081032

(63)
By taking quadratic variation and covariation leads to

d[&a?](t): — ! T (07t S (1) SK(1)
(1-AtS0)5g)

03 (t,S2(1)) S (1)(

oV
0S50S,

+pau(t, (1)) 02(t, S)SUD S (A (1,51 (1))

A2(t,Si(1)) )2
oAV

(64)

and

d[Si(0),S(1)] _
dt

(01(t,S1) 02 (t, S2)PSIS2 + A (1, S1) 02 (t, )3
o2V

o5

o2V
aslasﬁ'

1-A(t,S(1)
(65)
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By substituting 61),(64) and @5) into equation§0) leads  [14] Lax P.D., and Nirenberg L., On stability of difference
to schemes; a sharp form of Gdrding’s inequality, Comm. Pure
Appl. Math., 19 (1966), pp. 473-492.

ov 1 2§ A2 2§ oV 2 [15] Wade, B. A., Stability and Sharp Convergence Estimates
E"' 22V (018 +A%0; ([951[952) for Symmetrizable Difference Operators, Ph.D. Thesis,
2(1-2 0—)2 University of Wisconsin-Madison, 1987.
S% [16] Duffy, D. J., Finite Difference Methods in Financial
oN N 1 , 0V Engineering, Wiley Finance 2006.
+2p010:5SA 031032) IS +§UZS§ IS [17] Peaceman, D. W. and Rachford H. H., The Numerical
1 Y Y Solution of Parabolic and Elliptic Differential Equatigns
2 Journal of the Society for Industrial and Applied
+ 12 oAV (0102pS5+A 02%051052) 0S50S Mathematics, Vol. 3, No. 1, 1955, 28-41.
_ E
ov ov
H(Slﬁ +SzE) —1V=00<S5,$<00<t<T. AhmadReza Yazdanian
(66) is an Assistant Professor
in faculty of Mathematics,
Statistics &  Computer
Science at the University
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