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Abstract: The stability analysis and error estimates are some of thekwewn techniques carried out on a number of commonly
used numerical schemes for Allen-Cahn equation. We exjtlege techniques and design a reliable fully-discretemsehmonsisting

of coupling the Non-standard finite difference with the nilement method. We show that the solution obtained fromsitiieme

is stabled and attains its optimal rate of convergence ih butH! and L2-norms. We further show that this scheme replicates the
properties of the exact solution. Some numerical experisnare performed to support our theoretical analysis.
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1 Introduction and

) . o u(-,0) = up in Q x {0}. 3)
The time-dependent Allen-Cahn equation aries in the
description of a variety of physical phenomena in science Where Q is a bounded smooth domain &? with
and engineering. These phenomena include problemsmooth boundarydQ, a fixed constantT > 0, € a
such as the motion by mean curvatufié|[and crystal ~parameter representing the “interaction length” lying
growth [26] to mention a few. In summary, it is Within the interval 0< ¢ <1 andf a nonlinear function
well-known for being a basic model equation for the which will be specifically stated as we progress. Besides,
diffuse interface approach developed to study the phasée later specification of, we will modify f without
transitions and interfacial dynamics in materials scienceaffecting the solutiomandf € C*(R?) and assume thdt
[7]. For more on the physical background and discussiorand f’ are Lipschitz continuous such thiat’(x)||.» < C
of the model equation, we refer t8,p, 14,23]. where C is a Lipschitz constant off and f' for

The study of the error analysis of this equation hasconvenience. Note should be taken at this stage that, since

recently attracted considerable attention. The reaso#he nonlinear termf(u) in the numerical scheme
being the dependence of error bounds on the parametd?9)-(20) could yield some severe stability limitations in
£ < 1, appearing in the equation which we will clarify the time step, then we minimize these effects by
later. In this paper we consider the phase field model fornPerforming a nonlocal approximation éfu) in a special

of the problem represented by the equation way as in 85 without affecting the solution of the
problem u. An important feature of the Allen-Cahn

equation is one which can be viewed as the gradient flow

%—AM—E—lZf(U) _0inQx(0.T), ) with the Liapunov energy functional

e (u) :/ @ (u)dx, whered; (u) = 1/2|0u? + %F(u),
with ‘ Q €
du andF(u) is always positive in.?(Q) andH~%(Q) and
an =0 0noQx(0,T) (2)  f(u) = F'(u). The precise form in which we will be
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making use of (u) is as follows: 2 Preliminaries

F(u) = 1/4(u2— 1)2andf(u) —W®—u (4) We spgcify in t_his sectio_n, the notation, spaces an_d
properties that will be see in this paper. We depart in this
) ) . ection with the Sobolev spaces of real-valued functions
The numerical methods which have been designeyefined onQ and denoted for > 0 by H'(Q). The norm
and extensively used in the study of the time-dependeng, H"(Q) will be denoted b)7|\ |Ir. See L7] for the

Allen-Cahn equation are among many, the finite yefinitions and the relevant properties of these spaces. In
difference method found in8[11] and the a posteriori 5 particular case, where= 0 the spacé{%(Q) := L2(Q)

error estimate for the finite element approximation of the 5 jts inner product together with the norm will be stated
Allen-Cahn equation developed by Feng et B[ We and denoted by

also have the Quasi-optimal posteriori error estimate in

L®(0,T;L?(Q)) derived for the finite element (u,v) :/ uvdx uve L?(Q),
approximation found in4], the numerical approximation Q

of the celebrated Allen-Cahn equation and related diffuseand

interface models found in 2B and the stabilized B 1/2 2
semi-implicit (in time) scheme and the splitting schemeHuHLz(Q) = {(uu}”= uel Q).

for the Allen-Cahn equation introduced by Yargy]. Besides, C3(Q) will denote the space of infinitely
Instead of the methods stated above, we exploit adifferentiable functions with support compactly containe

similar conceptual approach and present in this paper, @ Q. The spaceH}(Q) will denote the subspace of

reliable technique consisting of coupling the nonstandard41(Q) obtained by completinGy (Q) with respect to the

finite difference (NSFD) method in time and the finite norm|| - ||1. Following [17], for X a Hilbert space, we will

element (FEM) method in the space variables. A similarmore generally use the Sobolev spatd(0,t); X], where

approach was used for the first time using the diffusiony > 0 and in the case whem = 0 we will have

equation in the non-smooth domain i8] fand the wave HO[(O,T);X] = LZ[(O,T);X] with norm

equation in a smooth domainl@. Since these two 12

problems were all linear, then our main aim in this paperHVII _ /T IV(-,) xdlt

is to extend the application of the above technique to' " 'L?(0.T):X] 0 HIX '

solve the nonlinear parabolic problems of which the . .

time-dependent AIIenFiCahn eqrilation is taken as arllPracticeX will be the Sobolev spadé™(Q) or Hg(Q).

example. As regard the comparisons of the standard a&SSociated withl) is the bilinear form

well as the Nonstandard coupled with the finite element _ 1

method we will refer to §]. For other comparison of the a(u,v) = /Q Dubvdx u,v, € HH(Q),

standard and Non-standard finite difference methods we -

refer to R0]. The NSFD method was initiated by Mickens

in [20] and major contributions to the foundation of the a(u,v) =a(v,u) and a(u,u) > 0. (5)

NSFD method could be seen i8,4]. Since its initiation,

the NSFD method has been extensively applied to a

variety of concrete problems in physics, epidermeology,3 Finite element method

business sciences, engineering and biological scienees se

[18,19,20,21] for more details and also2f] for an  We proceed under this section to gather essential tools

overview. In this different framework our primary necessary to prove the main result of this paper. We begin

objective is to prove that the discrete solution obtainedfirst by stating the following weak problem of)¢(3):

from this scheme is stable and attains its optimal rate ofindu € L?[(0,T);H3(Q)] such that

convergence in both the! andL?-norms. The reliability

of the technique comes from the fact that the NSFD-FEM (M,V) + (Qu(-,t),0v) = E—Z(f(u(.’t)%v)’ (6)

method replicates the monotonicity properties of the ot

solution of the decay equations.

The rest of the paper is organized as follows: In Section(u("t)’v) = (Uo,v), )
2, we present notations and the function spaces togethdor all v € H}(Q) andt € (0,T) a.e. For the existence and
with some important properties needed for the study of thethe uniqueness of a solutiar-,t) of (6)-(7), refer to [L3,
problem. Section 3 will be devoted to gather essential tool22] and [25]. Hence forth, in appropriate places to follow,
necessary to prove the main result of the paper. In Sectioadditional conditions on the regularity ofi which
4 we will introduce the theory and state the main result ofguarantee the convergence result will be imposed.
the paper together with its proof. A numerical exampleto ~ With the above continuous problem in place, we
confirm the validity of our main result will be presented proceed to provide the discrete framework for stating the
in Section 5 and finally the conclusion and future remarksdiscrete version of@)-(7). To this end, we let%, be a
will be stated in Section 6. regular family of triangulations ofQ consisting of

(+,-) will be symmetric and positive definite. i.e.,
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compatible triangles” of diameterh, < h, see L2 for from where if we takec = 1/2, the above equation
more. For each mesh sizé&;,, we associate the finite combined with {5) will yield

element spaceVy, of continuous piece-wise linear 1 1
functions that are zero on the boundary o ((uh,uh) 2(Duh,Duh) 2 — (F(un), I))
Vh = {w € C%(Q);Vhlgo = O, |7 € PLY.Z € T}, (8) 1 /Uy Up
(222 <o
(dt’dt) < 2(Un,Un)

whereP; is the space of polynomials of degree less than _ _ _
or equal to 1 and, is a finite dimensional subspace\sf ~ and this leads to the following equation:
which is contained in the Sobolev spadg(Q). Itis well d 1 1
known that, if we let g ((Uh, Un) + 5 (Btn, ) + =5 (F (Un). | ))

Ph i H(Q) = Vi, < 2(Un, Un). (16)
to denote thé.?-projection onv;, then forw € V we have  Using Gronwall’s inequality toX6) yield

(0w, Ovh) = (Ovh, Ow), Yw € Hg(Q) andvh €V, (9) <(uh,uh) ;(Duh,Duh) 81 (F (un), |)> (t)
ar;d < e ((u Un) + 1(Du Oun) + ! = (F(up), |)> (0)

> h; Yh h, h h
dg?k‘“) Pn(dtk> k=0,1,2, te[0,T]. (10) 2 &2

which completes the proof of the following preliminary

By the use of the energy method together with thereSU“ of the paper'

solutionty, € Vi such that problem @1)-(12) satisfies the energy stability
<00Lih h> + (Oup, Ovp) = —g 2 (f(Un,Vn), (11) <(uh7uh) ; (Bun, Oun) + 81 (F(Un), |)> (®
. 1 =& )+ 3 (O 0w+ 5 FE@).D) 0 @)

With the above framework in place, it should be We use the above preliminary results in Propositioto
recalled that the Liapunov energy of Allen-Cahn equationproof the stability result of the next Proposition
decay with respect to the timethat is, according to Feng refwirndzerem.
and Prohl L6], we have i @ (u). In view of this fact, we
can show the stability of problenl()-(12) by using a

similar energy stability approach as follows: 4 Coupled Non-standard finite difference and
If we takevy = % in (11) together with the boundary  fjnite element method
conditions (2) we have for ally, €

dun Aun aun aun Instead of the features of the traditional combination of
(W’W) (D hy, 0—— ot ) + & (f(uh) ot ) the finite difference together with the finite element

method manifested by some method listed earlier, we

=0. (13)  present in this section, a more reliable technique
NSFD-FEM, consisting of the Non-standard finite
difference method in the time and the finite element

/(F’(uh) auh)dx— / (F(un), 0uh)dx method in the space variable. We show in this regard, that

Using @) and the fact that

ot the above mentioned scheme is stable and attains its
d optimal rate of convergence in both thé andL?-norms.
(F(un),1), (14)  To achieve this, we start by letting the step dize- nAt
T dt
o for n=10,1,2,---N. For a sufficiently smooth function
we have in view of {3) that v(x,t), we set
Ju, dup d 1 k k
(5 50) + g (v20mom+ 5 Fuu) (2)v= (&) Vo) anavi=vt.t. k=0 19
=0. (15)

We proceed with this, to find the fully NSFD-FEM
Using Cauch-Schwarz inequality on the first term d§)(  approximation{U{} such that)} ~ up at discrete timey.

we have That is, find a sequenc€U N o in Vi, such that for
d - 0Uh < 1 Un Up n=12--,N-1
ai () = (2 ) < S+ (3. 50) (BUR ) + (DU, D) + & 2(F(UR) vh) = O, (19)
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(U vn) = (AU, Vi) ¥ Vh € W, (20)  We have in view of 24) the following equalities using}
(&UQ-H 5[Un+1) (DU'T'H D&Um'l)
1
where + = (U n+1)3 —Uh, 8U n+1)
(DU n+1 DdUnJrl)
Un+1_ Un 1 n+1\2 n+1
&Up = h(th)ha 1) * 4g2@(At) (((Uh - ) aby )
_ 1 n+1\2 n+1
4g2¢p(At) (((Uh ) - ) 14Uy )
: . 1
andg(At) = €21 s restricted between @ g(At) < 1. i m2_ n+1
oAy = &5 olay) + gergran (UDP-1)7.8007)
If the nonlinear functiorf = 0 in (1), we will have in 1 o 1
view of (19) an exact scheme ~ 32900 (((Uh) ~1)%,8Uf )
(aur?Jrl aUnJrl)
UMt _yn ouftt Oault)
N0 v |+ (DU, D) =0, (22) = 1
erdt-1 h 4+ (((U n+1) ) dU n+l)
A 482(p(At) h
—— ( n+1 6¢U n+1)
which according to Mickens20] replicates the positivity 45
and the decay to zero, which are the main features of the ( _ GU n+1)
exact solution of 1)-(3). 482(p At)
For the main goal of this section to be achieved, we 4 ((2+2 Un+1 ) (gunﬂ)

first state the afore-mentioned stability result in the next 482

proposition2.

T Zezpan ((URHUTD LR - URT%) . aur)

~0. (25)

Proposition 2The solution of a fully-discrete NSFD-FEM [N view of (25 we immediately see usingl4) and
scheme 19)-(20) of the Allen-Cahn equation satisfies the dropping some positive terms that
energy stability estimate (DU 1 OxU n+1)

1 n+1\2 n+1
1 1 i 4g2¢p(At) (((U ) - ) aby )
= (OUgH, 000 + S (FUith,) 1 M2 a2
_ < 0.
2 i - 4g2¢(At) (((Uh) Y ’l) =0
5 (OUR, 0UR) Using 1) and @) in the above inequality we have
1 1 1
+ = (FUR).1). (23) 5 (OUR,0uR) + = = (FUf,)
1 1
<5 (OUR, 0Up) + 2 — (F(Up).1)
which complete the proof.
Prooflf we take in (L9) v, = &UQH we have With this scheme, we are now in the position to state

the main Theorem below.

Theorem 3Assume that the solution u and its initial data
UMl _y up of the Allen-Cahn equatioré)-(7) are smooth enough
(hih U ”+1> (OuUP L, oau Y and u with its approximate solution, atisfy Proposition
P(At) 2. Then the solution of the fully-discrete stabled scheme
NSFD-FEM of (9) satisfies the energy law together with
((U n+1) —Up,au n+1) the following error estimate

(24)  |u(th) —Upllo < C(At+h?). (26)

®
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Furthermore, in the limit case wheAu = f = 0 on a and
subset Q' c Q, the discrete solution replicates the
P Il < CH RO (33)

properties of the solution of the probled){(3).
where C is a positive constant depending on

Proof We depart by decomposing the global error as”u”Lm (OT#H2(2) and independent on. Combining 81),

follows: (32) and @3 in (30) yield
U —u(tn) = Uf — Ru(tn) + Phu(tn) — u(tn) , 2 . 1 de
e e IRz S joRe? < ((f(u) - f(uh>>,aq>
\e/\:traotr)c;laz(;:gispace errpf via (19) and () by taking the LR <| —H N ||PnDe“||)
(5 P~ ). ) + (DRt~ ). ) <cit+ g ImIs P
1 2
+ 2 ((F(W) — f(un), ) + SRR (34)
=0, (28)  Since we specified that the nonlinear term on the right

hand side of34) was f (u) = u® — u, then we approximate
it by the following cubic expansion

|u(-,0) — un(-,0)|| < CH. (29)  f(u)— f(up) = F(U)(u—up)+ (U—up)3

If we takevi, = P,2&" wheree” = u— up then, we have the + 3u(u—up)?. (35)
following equation

together with its initial error estimate

In view of this, we bound the nonlinear term iB84) as

9" _ 9¢&" follows:
(PnW,PnW) + (R, DR e o
. o 2 (1w %)
+ o (- tu)AZ) i "
o oy o — 2 (- 1@
= (H‘E B E’H‘_> 1 oe
N + o (100~ ).
+ (PhD— - D—,F%De”)
ot 1/, o€
au au = ? (f (E)(U_H"IU%H"IW)
n (Ph— - —) (30)
ot ot 1 o€
| (1A= 1A
from where we denote the following terms on the right € ot
hand side by: =E+G
A <Pna; ,Pn ) where o
e— 2 (r@u-ruRZ)

Jdu Ju

and
du du and¢ is betweeru andRu.
C= <pnﬁ - ﬁ) Using Young inequality for any positive > 0 we have
1 ae"

The above terms are then bounded by the use ofg| < S|l [ (u— Pyu), pn_|
interpolation error bounds together with the €2

6= (A - im0 )

Cauchy—Schwarzinequalityasfollows: 1 </||Ph 24 | f /||L HU Phu|2>
Jdu a
1Al < I35 P HH || (31) | o o
and if we takee’ = & the above inequality yields
du du , Cht
< P
1Bl < 10(5; — g lIFDE) @) [El< IR T (36)
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whereC > 0 is depending omf/HLwé%; and [|u[|2 and

independent oh. To boundG we use 85) as follows:

6= 2 (VP Eu-w.A )

1 oe"
+ g | w4 SRR ) A

% [P AuRe + B+ AuES AT

1d

= 2z gt (A% (Ae?)

1 oe"
+ 2o (VAR 3AUAS 2 AT )
1d
= 22 dt ((PeM? (Re")?) +5S (37)
whereSin (37) is bounded as follows:
s < 4H =

+ 2 (|\Pne"|\2+ (P2, (Rre)?)) (38)

Assembling the inequalitie6), (37) and @8) into (34)
we have

oe"
ot

-1d
_42dt|\<

IIF’h ||2

o (II(F’he”) 2+ I1Re)?)

C
?h“. (39)

2
I[P H

|OP€|2 Phe")?)?

2&'
HPnDe”H2

+ Ch*+

Using Young inequality for any positive constant> 0 on
the first term of the left hand side yield

d 1 oe"
a (21Re) < 5 (IR IR)

and settingg’ = % we have

& (=1R1) < SR+ SR

and re-introducing it to39) and gathering the common

terms together yield
d 1 2 1 2 1 212
3 (FIR1+ SI0REI+ 2RI

< }HPnDe“||2+Ch4+ Sy

-2 gt

Multiplying both sides of the above inequality sy and

using the Gronwall’s inequality together with the initial

error 29) we have the required results

2 1
107 = lu—Prai|+ 510U — RWI2+ 7]l u— Aw?)?

< CK. (40)

= (IR (A2

sz = du(tj1) —

On the other hand, we bou® in (27) via (19) as follows:

),Vh)
), 0Vh)

(46", vh) + (06", 0vy) = (& (Uf — Phu(tn
+ (007 Rty

— (Ph&u(tn), vh
— S (),

— (ORU(th), Ovy)
— (Ph&u(tn), vh)

au(tp)
" ( ot ’V“)
= ((I = Ph)&u(tn), vn)
+ <0U0—(;[n) — dU(tn),Vh)

= (W{],Vh) + (WvaVh) . (41)

Takingv, = 6" and @1) we have

(&6".6") = ¢ }(At) (671 6", 0")
= @ 1(At)[|0"H2— @ (At) (6", 6™
which when combined with4() will yield
—1 [||6n+1H2 o (en’ 9n+1)]

< (W, 0") + (W', 8"). (42)

Using Cauchy-Schwarz inequality we have
16" lo < @(At)[IWD1§ + @(At) W5 + (16"

which yield the next result after the use of mathematical
induction

n .
16"o < [16%0+ (At) Z w113
. j12
ar) S W 5. (43)
=1

Bounding estimate4@) in view of (29) sinceug € H?(Q)
we have

116%/0 = ||un.o — Phtiollo < CH?|uo||o- (44)

The bound omp(At) 34 ||le |lo will be equivalent to that
on p" sinceu € L2 (0, 40);H?(Q)].

Finally we bound @(At) 37, ||W2 llo via (41) as
follows:
du(tj;1)

ot
— o7 ) () - utty)) - 220
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from where we have using Taylor theorem with the integralbest rate of convergence of approximately 1 of the

expansion on the remainder term

03 Wl < z ||/

T

tJ+1

zu

2
< (ay? /0 ||‘9 dsi)n%

+C(p(a))?

( )HZ

0

S
l<]<an ot

< CAt, (45)

sinceu € L?[(0,+); H?(Q)] andAt ~ ¢(At) asAt — 0.
Combining @4) and @5) in (43) and taking note that the
second term on the right hand side 48)is equivalent to
(40) then we have proved

16"o < C(At+h?). (46)

Hence in view of 40) and @6) we have proved the first

discrete to the exact solution of Allen-Cahn equation. To
achieve this, we begin by considering the equation

Jau 1
—A 5 f(u
5 Aut fu=

g(x.t) (47)
with the D|r|chlet boundary conditions on the dom&in=
[0,1] x [0,1] whereQ is discretized using regular meshes
of sizesh = 1/M in the space andt = T /N in the time
space. The forcing functiag(x, t) was taken in such a way
that it would yield an exact solution(x,t). If g(x,t) is
considered in such a way that

u(x,t) = e % sin(xq) sin(xz) (48)

wheree = 0.3 and the following data are considered with
the following valuesAt = €2, N =51 =3 andT = 0.1,
then using a Mathlab.70.0(R201(a) code, we obtained
the following figures fron to 6 for various values of =
0.08,0.1 and 012:

We exploit the data obtained from the numerical
computations to find the errors far = 0.12 with mesh
sizes varying from 15,20 and 25. The results from

part of the Theorem that show the solution of the these computations are illustrated in tableMaking use

Allen-Cahn equation converges optimally in baif(Q)

of the error values of the solutiar(x,t) from the tablel,

and L?-norms using the coupled Non-standard finite We compute forT = 0.12 with the same mesh sizes, the

difference with finite element method.

As regard the second part of the above proof which is In(&)
purely the replication of the properties of the exact Rate=

solution of @9)-(20), we proceed thanks to Adam§]|

Corollary 211 as follows: We use the fart that the

convergence in the? as well asH*-norms of the discrete
solutionU/" to the exact solutiom in (26) implies that,
there exists a subsequencelf still denoted byJ,! that
converges point-wise ta ash — 0 andn — +o0. In
view of this, if we assume thatu = 0 near a poina € Q

and v, in (19) is chosen in such a way that its support

containing the pointa is very small andv, = 1 neara,
then we use the approximation

[ (FUD) wax=1(Uf(a) K

whereK is the measure of theuppvy). Using the above
approximation in 19), it follows that the solutiorlJ} is
really the discrete solution of the exact schei2® {f we
also have

f(UD(a,t)) =0

rate of convergence af(x,t) using the formular

€1
h
In(f2)

whereh; and h, together withe; ande, are successive
triangle diameters and errors respectively. Furthermore,
the clarification of the convergence of the solution to be
more specific in thé&2-norm can be illustrated in figurz

In view of figurel to 6, we observed that the exact
solutions for each timd are almost identical to the
approximate solutions. Besides, taldleshows that the
solutionu(x,t) has an approximate rate of almost 2 for the
L?-norm and 1 for thé41-norm. All these results are self
explanatory and we would like to conclude that the results
as shown by all these experiments exhibit the desired
theoretical analysis as expected.

Table 1 Error in L2 and H1-norms of u using NSFD-FEM
method

and hence we complete the second part of the proof and [ M | LZ-error | L2-Rate | H -error | H!-Rate
therefore completing the proof of the Theorem. 10 | 2.9856E-2 5.0853E-1

15 | 1.4216E-2 1.83 3.5722E-1 0.86

20 | 8.2775E-3 1.87 2.6923E-1 0.98
5 Numerical experiments 25 | 5.3570E-3| 1.95 2.1538E-1| 0.99
Under this section, we present the numerical experiments
carried out using problent) and (9). Our expectations
are indeed to obtain in thé?-norm, the best rate
convergence of approximately 2 and in tHé-norm the
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Exact solution Aproximate solution

Fig. 1 Exact Solutions ofi(x,t) att = 008 Fig. 4 Approximate Solutions afi(x,t) att = 0.1

Aproximate solution Exact solution

Fig. 2 Approximate Solutions afi(x,t) att = 008 Fig. 5 Exact Solutions ofi(x,t) att = 0.12

Exact solution Aproximate solution

Fig. 3 Exact Solutions ofi(x,t) att = 0.1 Fig. 6 Approximate Solutions afi(x,t) att = 0.12
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