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Abstract: In this work, entropy generations of a variable viscosity Hartmann flow through a rotating channel with Hall effects are
investigated numerically. It is assumed that the fluid and the channel rotate in agreement with the angular velocity about y-axis. The
governing non-linear partial differential equations are transformed and solved numerically using Runge Kutta - Fehlberg method with
shooting technique. Results obtained for velocities and temperature profiles are used to compute the entropy generation rate, skin
friction and Nusselt number. The important results are displayed and discussed.
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1 Introduction

In the field of magnetohydrodynamics (MHD), Hartmann
flow is the flow of a conductive liquid in between two
parallel plates in the presence of a transverse magnetic
field. This flow has attracted the attention of many
researchers due to its useful applications in many areas
such as propulsion, plasma confinement, liquid metal
pumping and microfluidic pumping. Hartmann [1] carried
out a pioneer work of Hartmann flow which is regarded as
the source of MHD channel flow. He examined flow of a
viscous incompressible electrically conducting fluid
within a parallel plate channel in the presence of a
transverse magnetic field. Many varieties of important
experimental, analytical and numerical studies as regards
flow of a conductive liquid in between two parallel plates
in the presence of a transverse magnetic field are found in
the literatures based on the work of Hartmann, Cramer
and Pai [2], Ghosh and Bhattacharjee [3], Seth and Singh
[4], Michael et a.l [5], Makinde and Onyejekwe [6],
Chinyoka and Makinde [7], Makinde [8] and Guria and
Jana [9]. Ansari et al. [10] studied unsteady
hydromagnetic flow of a viscous incompressible
electrically conducting fluid in a rotating channel with
finitely conducting walls, induced due to an oscillating
pressure gradient, in the presence of a uniform transverse

magnetic field. Attia and Aboul-Hassan [11] investigated
the influence of temperature dependent viscosity and
thermal conductivity on the transient

Hartmann flow with heat transfer. Anwar Bg et al.
[12] presented a theoretical study of unsteady
magnetohydrodynamic viscous HartmannCouette laminar
flow and heat transfer in a Darcian porous medium
intercalated between parallel plates, under a constant
pressure gradient. Eegunjobi and Makinde [13]
investigated theoretically the inherent irreversibilityin a
steady hydromagnetic permeable channel flow of a
conducting fluid with variable electrical conductivity and
asymmetric Navier slip at the channel walls in the
presence of induced electric field. Meanwhile, entropy
plays crucial roles in understanding of many diverse
phenomena ranging from cosmology to biology. Its
importance is manifested in areas such as engineering, the
origins of macroscopic irreversibility from microscopic
reversibility and the source of order and complexity in
nature. It forms the foundation of most of the
formulations of thermodynamics. Many researchers are
making progress in delving to the understanding of
entropy and entropy generation. Guillermo [14] studied
the combined effects of hydrodynamic slip, magnetic
field, suction/injection and convective boundary
conditions on the global entropy generation in steady flow
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of an incompressible electrically conducting fluid through
a channel with permeable plates. Eegunjobi and Makinde
[15] examined the effects of the thermodynamic second
law on steady flow of an incompressible variable
viscosity electrically conducting fluid in a channel with
permeable walls and convective surface boundary
conditions. Arikoglu et al. [16] investigated the effect of
slip on entropy generation in magnetohydrodynamic
(MHD) flow over a rotating disk by semi-numerical
analytical solution technique. In this present work, we
consider the analysis of entropy of variable viscosity
Hartmann flow through a rotating channel with Hall
effects. In the flow, conducting fluid between two infinite
parallel walls in the presence of a uniform transverse
magnetic field B0 is applied. Mathematical formulation of
the problem is given in section two. The model boundary
value problem is tackled numerically using shooting
quadrature coupled with Runge-Kutta-Fehlberg
integration scheme. Pertinent results are presented
graphically and discussed quantitatively for velocities,
skin friction, Nusselt number, entropy generation rate and
Bejan number in section three while section four gives a
concluding remarks.

2 Mathematical Model

Consider the steady flow of a variable viscosity,
incompressible, electrically and thermally conducting
fluid between two infinite parallel wallsy = 0 andy = L
in the presence of a uniform transverse magnetic fieldB0
which is applied parallel to y-axis taking Hall current into
account. Both the fluid and channel rotate in unison with
a uniform angular velocityΩ about y-axis. Fluid flow
within the channel is induced due to uniform pressure
gradient applied alongx-direction. The channel lower
wall is maintained at temperatureT0 while the upper wall
is maintained at temperatureT1 such that T0 < T1.
Physical model of the problem is presented in Figure 1.
Since channel walls are of infinite extent inx and
z-directions and the flow is fully developed, all physical
quantities, except pressure depend ony only.
Taking into consideration the assumptions made above,

the governing equations for steady flow of a viscous,
incompressible, electrically and thermally conducting
fluid in a rotating system taking Hall current into account
are presented in the following form:
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Fig. 1: Physical model of the problem
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where u,w,T,σ ,ρ ,m = ωeTe,ωe,Te,k,CP and Eg are
respectively, the fluid velocity in x-direction, fluid
velocity in z-direction, fluid temperature, fluid electrical
conductivity, fluid density, Hall current parameter,
cyclotron frequency, electron collision time, thermal
conductivity coefficient, specific heat at constant pressure
and the volumetric entropy generation rate. The fluid
dynamical viscosity is assumed to be an exponential
decreasing function of temperature given by

µ(T ) = µ0e−β (T−T0) (5)

whereµ is the fluid dynamic viscosity at the lower wall
and β is viscosity parameter variation. The boundary
conditions for the fluid velocities and temperature are
given as

u(0) = 0, w(0) = 0 T (0) = T0

u(L) = 0, w(L) = 0 T (L) = T1. (6)

We introduce the dimensionless variables and
parameters as follows:
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Substituting equation (7) into equations (1)-(6), we
obtain,
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with

U(0) = 0, W (0) = 0, θ (0) = 0

U(1) = 0, W (1) = 0, θ (1) = 1 (12)

where Pr is the Prandtl number,R is the rotation
parameter,Ec is the Eckert number,δ is the viscosity
variation parameter,M is the magnetic field parameter,
Br(= EcPr) is the Brinkmann number,γ is the
temperature difference parameter andA is the pressure
gradient parameter. Other quantities of interest are the
skin friction coefficients(C f1andC f2), Nusselt number
(Nu) and the Bejan number(Be) which are given as
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It is very important to note thatN1 represents the
thermodynamic irreversibility due to heat transfer while
N2 corresponds to the combined effects of fluid friction
and magnetic field irreversibility. WhenBe = 0.5 bothN1
andN2 contribute equally to the entropy generation in the
flow process. The model equations (8)-(13) are tackled
numerically using a shooting technique coupled with
Runge-Kutta-Fehlberg integration scheme. The procedure
involved transforming the model boundary value problem
(BVP) to initial value problem (IVP) and employing
shooting method to obtain the unknown initial values
while the Runge-Kutta-Fehlberg integration scheme is
utilized for the solution up to the prescribed boundary
conditions.

3 Results and Discussion:

The variation effects of the key parameters on the
velocities profiles are shown in figures 2-11. Generally,
we see that these figures are parabolic in natures. Figure 2
shows the effect of increasing pressure gradient(A) on

velocity profile in x-direction. It is noticed that asA
increases, the velocity also increases. Similarly, figure 3
shows the effect of increasing pressure gradient(A) on
velocity profile in z-direction. Increase inA leads to
increase in the velocity on the channel. Figure 4 shows
the effect on increasing magnetic field parameter(M) on
velocity profile. AsM is increasing, decrease in velocity
profile is noticed in the channel. Figure 5 depicts the
effect of M on z-direction velocity profile. In the figure,
the velocity profile increases asM is increasing. Figure 6
presents the effect of Hall current parameter(m) on
velocity profile in x-direction. It is noticed that the
velocity in x-direction increases asm is increasing and
velocity in z-direction decreases asm increases as shown
in figure 7. Figure 8 and 9 show the effect of
dimensionless viscosity parameter variation(δ ) on both
velocities profiles. We noticed that both velocities profiles
increase asδ increases. Figure 10 and 11 show the effect
of rotation parameter(R) on the velocities profiles.
Increase inR, decreases the velocity profile inx-direction
as shown in figure 10 and increases the velocity profile as
shown in figure11.

Figures 12-17 show the variation effects of key
parameter on the skin friction coefficients and Nusselt
number. Figure 12 presents the effect of increasingM
versusm on the skin friction(C f1). It is noticed that both
skin friction coefficient(C f1) at lower and the upper wall
decreases with increase inM versusm while figure 13
shows the effect of increasingδ versusm. Here,(C f1) at
the lower wall increases and decreases at the upper wall
with increasingδ and m. Figures 14 and 15 show the
effects of increasingδ versusm andM versusm on the
skin friction (C f2). It is noticed that as these parameters
are increasing, the skin friction coefficient(C f2) both at
lower and upper wall increased. Figure 16 depicts the
effect on increasingA versusδ on Nusselt number. As
these parameters are increasing, the nusselt number on the
lower wall increases while that of the upper wall
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decreases. Meanwhile, in figure 17 asM versusm are
increasing, the Nusselt number at lower wall decreases
and increases at upper wall. The variations of some of the
important key parameters on the entropy generation rate
are displayed in figures 18-20. Figure 18 shows as the
pressure gradient,A, increases, the entropy generation at
both lower and upper walls are increasing. Figure 19 put
into consideration the effect of rotation parameter,R, on
the entropy generation. As the rotation parameter is
increasing, the entropy generation at both walls is
decreasing but at the centre of the channel, there seems to
be no effect. The effect of group parameter(Brγ−1) on
the entropy generation rate is shown in figure 20. An
increase inBrγ−1 , leads to increase in the entropy
generation rate at both walls.

The analyses of some of the key parameters on the
Bejan number are presented in figures 21-25. Figure 21
shows that, as pressure gradient is increasing, the Bejan
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number at the both walls is decreasing. This shows that
the thermodynamic irreversibility due to heat transfer
dominate at both walls but at the centre of the channel
both thermodynamic irreversibility due to heat transfer
and the combined effects of fluid friction and magnetic
field irreversibility contributed equally. Figure 22 depicts
the effect of Hall current parameter on the Bejan number.
As m increases, it is noticed that the Bejan number at both
walls is decreasing and at the centre of the channel is
increasing. This means that the thermodynamic
irreversibility due to heat transfer dominates at the walls
but the combined effects of fluid friction and magnetic
field irreversibility dominates at the centre of the channel
while figure 23 indicates a reverse of scenario in figure 22
as magnetic field parameter,M, is increasing. The
combined effect of fluid friction and magnetic field
irreversibility dominates at the walls while
thermodynamic irreversibility due to heat transfer
dominates at the centre of the channel. In figure 24, as
rotation parameter is increasing, the Bejan number is
increasing. This shows that the combined effect of fluid
friction and magnetic field irreversibility dominates the
entire flow while thermodynamic irreversibility due to
heat transfer dominates the entire flow, as shown in figure
25, as group parameter is increasing

4 Conclusion

We have theoretically considered the entropy analysis of
variable viscosity Hartmann flow through a rotating
channel with Hall effects. Generally, the velocities
profiles are parabolic in nature and some of the results
obtained can be summarized as follows;

–Velocity profile in the z-direction increases with
increase inA, M,δ andR but decrease with increase in
m.

–Velocity profile in the x-direction increases with
increase inA, M andδ but decrease with increase in
M andR.

–Skin friction coefficient decreases at both walls with
increase inM versusm while with increase inδ versus
m increases at lower wall and decreases at upper wall.

–Skin friction coefficient(C f1) increases at both walls
with increase inδ versusm andM versusm.

–Entropy generation increase with increase inBrγ−1

andA but decrease with increase inR.
–The Bejan number increases in the entire flow with
increase inR and decreases in the entire flow with
increase inBrγ−1 andA.

References

[1] J. Hartmann, Theory of laminar flow of an electrically
conducting liquid in a homogeneous magnetic field, Hg-
Dynamics I, Kongelige Danske Videnskabernes Selskab,
Mathematisk-fysiske Meddelelse 15 (6) 1-28 (1937).

[2] K.R Cramer and S.I Pai, Magnetofluid Dynamics for
Engineers and Applied Physicists, McGrawHill, New York
(1973).

[3] S. K. Ghosh and P. K. Bhattacharjee,
Magnetohydrodynamic convective flow in a rotating
channel. Archives of Mechanics 52, 303-318 (2000).

[4] G. S. Seth and M .K. Singh, Combined free and forced
convection MHD flow in a rotating channel with perfectly
conducting walls. Indian Journal of Theoretical Physics 56,
203-222 (2008).

[5] K. Michaeli, K.S. Tikhonov, and A. M. Finkelstein, Hall
Effect in superconducting films. Physical Review B86,
014515 (2012).

[6] O.D. Makinde and O. O. Onyejekwe, A numerical study
of MHD generalized Couette flow and heat transfer with
variable viscosity and electrical conductivity. Journal of
Magnetism and Magnetic Materials 323, 2757-2763 (2011).

[7] T. Chinyoka and O. D. Makinde, Numerical investigation of
entropy generation in unsteady MHD generalized Couette
flow with variable electrical conductivity. The Scientific
World Journal Article ID 364695 (1-11 pages) (3013).

[8] O.D. Makinde, Thermal decomposition of unsteady
non-Newtonian MHD Couette flow with variable
properties.International Journal of Numerical Methods
for Heat and Fluid Flow 25 (2), 252-264 (2015).

[9] M. Guria and R.N. Jana, Hall effects on the hydromagnetic
convective flow through a rotating channel under general
wall conditions. Magnetohydrodynamics 43,287-300
(2007).

[10] Md. S. Ansari, G. S. Seth, N. Nandkeolyar, Unsteady
Hartmann flow in a rotating channel with arbitrary
conducting walls. Mathematical and Computer Modelling
54, 765-779 (2011).

[11] H. A. Attia and A. L. Aboul-Hassan, The effect of
variable properties on the unsteady Hartmann flow with heat
transfer considering the Hall Effect. Applied Mathematical
Modelling 27, 551-563 (2003).

[12] O. Anwar Bg, Joaqun Zueco and H. S. Takhar, Unsteady
magnetohydrodynamic HartmannCouette flow and heat
transfer in a Darcian channel with Hall current, ionslip,
viscous and Joule heating effects: Network numerical
solutions.Commun Nonlinear SciNumerSimulat 14, 1082-
1097 (2009).

[13] A. S. Eegunjobi and O.D. Makinde, Second law analysis
for MHD permeable channel flow with variable electrical
conductivity and asymmetric Navier slips. Open Phys.
13,100-110 (2015).

[14] Guillermo Ibez: Entropy generation in MHD porous
channel with hydrodynamic slip and convective boundary
conditions. International Journal of Heat and Mass Transfer
80, 274-280 (2015).

[15] A. S. Eegunjobi and O.D. Makinde, Entropy Generation
Analysis in a Variable Viscosity MHD Channel Flow with
Permeable Walls and Convective Heating. Mathematical
Problems in Engineering Volume 2013, Article ID 630798,
12 pages (2013)

[16] A. Arikoglu, I. Ozkol and G. Komurgoz, Effect of slip on
entropy generation in a single rotating disk in MHD flow.
Applied Energy 85, 1225-1236 (2008).

c© 2016 NSP
Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci.10, No. 4, 1415-1423 (2016) /www.naturalspublishing.com/Journals.asp 1423

Adetayo Samuel
Eegunjobi was brought
up in Nigeria. He obtained
his Bachelor degree honour
in Mathematics with First
Class Honour (Cum Laude)
from Federal University of
Technology, Akure, Nigeria,
and his Masters degree
in Mathematics (Distinction)

from University of Ibadan, Nigeria and received his PhD
degree from Cape Peninsula University of Technology,
Cape Town, South Africa. He is now working in the
Department of Mathematics and Statistics, Namibia
University of Science and Technology, Windhoek,
Namibia. His research interest covers fluid mechanics,
mathematical modelling, differential equations and heat
and mass transfer.

Oluwole Daniel
Makinde is currently
a Senior Research Professor
of Computational and
Applied Mathematics
at the Faculty of Military
Science, Stellenbosch
University, South Africa.
He is an Adjunct Professor at
the Nelson Mandela African

Institute of Science and Technology in Arusha-Tanzania;
visiting Professor at the African University of Science
and Technology in Abuja-Nigeria and visiting Professor
at Pan African University Institute for Basic Science
Technology and Innovation in Nairobi-Kenya. He
received the PhD degree in Applied MathematicsFluid
Mechanics at the University of Bristol (United Kingdom).
He is a Fellow of African Academy of Sciences, Fellow
of Papua New Guinea Mathematical Society and
Secretary General of African Mathematical Union. He
won several prestigious academic research awards
including: African Union Kwame Nkrumah Continental
Scientific Award; South African TW Kambule Senior
Researcher Award and Nigerian National Honour Award -
Member of Order of the Federal Republic (MFR). He is a
reviewer, editor and editorial board member of several
international journals in the frame of Engineering
Science, Applied Mathematics and Computations. His
main research interests are: fluid mechanics, nanofluid
dynamics, heat and mass transfer, hydrodynamic stability,
mathematical modelling, computational mathematics,
biomathematics and applications.

c© 2016 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp

	Introduction
	Mathematical Model 
	 Results and Discussion: 
	 Conclusion

