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the properties of convex functions and divergences, coengareral divergences, and derive various important aedesiing relations
among divergences of these new series and other well knorengdince measures. Also get the bounds of a particular mreshieat
series together with numerical verification. Applicatiorthe mutual information is presented as well.

Keywords: New series of information divergences, various relatiansreg divergences, comparison of divergences, bounds,anutu
information, numerical verification

1 Introduction very useful to find the amount of average ambiguity or
difficulty in making a decision whether an element

. : : elongs to a set or not. Fuzzy information measures have
Divergence measures are basically measures of dlstannpe g y

between two probability distributions or compare two coently found applications to fuzzy aircraft control,
probability distributions. It means that any divergencefuz.Zy raffic control, ;angénger[ng, medklplnest, computer
megsure” must lae s minmm valie zero wnencoleh TGS MO nanO e
probability distributions are equal and maximum value ourselves to discrete robabiﬁt ’distributions so let
when probability distributions are perpendicular to eachl_ —(P—( p) o >Oy N p—1) s
other. Depending on the nature of the problem, different, " the s tpl’fz’ﬁ3"“’ p”I 'tp' e .t’z'd=.1 Pi o nrobabili
divergence measures are suitable. So it is always desirab[%e e Set ol all complete Tinite -discrete probabiiity
to develop a new divergence measure. ( istributions. The restriction he're.to discrete distribos
In recently years, lot of work had been done on is qnly for _convenience, similar results hold for
information divergénce measures by DragoririD, 11, continuous distributions. If we tak@ > 0 for some
12], Jain [15,16,19,20,21,23], Taneja B8,39,42,4344 | ffo)l;z(’)?"('ég"_ (t)he” we have o suppose that
and others, who gave the idea of divergence measure ome_ eneoral'_ d functional inf i di
their properties, their bounds and relations with other g ized Tunctional information  divergence
measures. measures had been mtroduceq, charqctenzed and applied
Divergence measures have been demonstrated very usef'gl varlety,of ff'eldé’. such as: Cmsza&l’s glvergelgce,fbjf],
in a variety of disciplines such as economics and political regman's f- divergence 2], Burbea- Rao's f-
science 46,47], biology [33], analysis of contingency
tables [L3], approximation of probability distribution$]
29, signal processing26,28], pattern recognitiond,4,
25], color image segmentation 3]], 3D image
segmentation and word alignmemnty], cost- sensitive
classification for medical diagnosis34], magnetic
resonance image analys#d etc. .
Also we can use divergences in fuzzy mathematics as Ci (P.Q) = Zlqif <pu)7 (1)
1=

fuzzy directed divergences and fuzzy entropies which are q

divergence 3], Renyi’s like f- divergence 34], and Jain-
Saraswaf - divergence22].

Many divergence measures can be obtained from these
generalized - measures by suitably defining the function
f. Especially Csiszar'd- divergence is widely used due

to its compact nature, which is given by
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wheref : (0,0) — R (set of real no.) is real, continuous, Some means can be seen in literatut#],[ these are as
and convex function and follows [(14)- (20)].

P: (pla p27"'a pn)aQ = (qlana ---aQn) S /_n: WherePi and

gi are probabilities. Some resultant divergences by . 2piqi
Ct (P.Q), are as follows. H*(PQ) = 2 —p. G = Harmonic mean (14)
n 2m
* (pl - ql)
En(PRQ =Y ——=~.m=1,23,..[23. (2 N oo . _
m(PQ) Zi (piqi)z_Z_1 S APQ) = P9 _ Arithmetic mean (15)
1=
0 (pi-a)™™ . (pi—a)
J(PQ)= —— exp ,m=1,23,..]23. n . -\ 2
; ; (piQi)% Pidi N1 (P,Q) = Z(M) = Square root mean
= : (16)
N (P.Q) = 31y P 9" e exp; (b9) m-123,. -[21]. .
(pi+ai) (Pi+ai) (4) N3 (R Q) _ Z%M — Heronian mean (17)
1=
" (p—a)* (pi+a) (PP +?)
P*(P,Q) = 3 [20. (5) (o] . e . .
i; pra; “(P.Q)= Ziilog o Iogqi’p' # (i Vi = Logarithmic mean
(P =3 PG 4 (18)
’ -Zi(pi+qi)2'“—1’ . (6) "
=Puri and Vineze Divergence&7). G'(PQ) = 'zl\/ pigi = Geometric mean (19

2m(p, :ni(p‘_q‘)zm, —1,23.. n . o
(RQ=3 gt " @) Nz(P,Q):Zi<m+\/q> /pmthlzszean

=Chi- mdivergences48], ? (20)

where
n

N (m_ )2 - o p|+0h

Jr——] i
= P = Relative J- Divergencelfl],
(21)
M (PQ)=A(PQ) = (% +ch.) ©) whereF (P,Q) and G(P,Q) are given by (13) and (12)
=1 A respectively.
=Triangular discrimination§],
and . n D — /G 2
i h(PQ =1-G (P,Q>:217(W _Y5) .
2 _ Pi—G) _ ~p . =
x“(RQ)= I;T = Chi- square divergencag]. = Hellinger discrimination]4],
(10) o
(8), (9), and (10) are the particular cases of (2), (6), apd (7 whereG* (P, Q) is given by (19).
respectively am= 1. 1
n D o . |(RQ)=§[F(RQ)+F(Q,P)]
K(PQ)= Zpi Ioga = Relative information30]. (11)
i= i 110 20; n 20:
| 3|3 e+ 3 aertly | 9
G(PQ) - Di+Qilog(pi+qi> E Pitd i< P+
7 a 2 2p; = JS divergence3 37,
=Relative Arithmetic- tric Di .
elative Arithmetic- Geometric |verger2<£2)1] whereF (P,Q) is given by (13).
2p; J(P.Q)=K(PQ)+K(Q,P)=Jr(PQ)+JIr(Q,P)

]

n

F(P,Q)=_Zpilog ™ _

= T , =S (pi—q) Iog& = J- divergenced4,30],
=Relative Jensen- Shannon diverger®g [ i& i

(13) (24)
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whereJr (P,Q) and K (P,Q) are given by (21) and (11) From (29), we get the following new convex functions at

respectively. m= 12 3... respectively.
_1 t2-1)° t2—1)* t2-1)°
T(PQ)=3[G(RQ+G(QP)] f1(t) = ( t ) o (t) = ( 5 ) 3 (t) = ( , )
PG Pt (25) _ _ o (32)
- 2 gzm Since, we know that the linear combination of convex
= , functions is also a convex function, i.e.,
= AG Mean Divergencé2, ayfy (t) +axfa (t) +agfa(t) + ... is a convex function as
o well, whereay, ap, ag, ... are positive constants. Therefore,
whereG (P, Q) is given by (12). we have following two cases to obtain new series of
5 convex functions.
D (pi—ag) (pi+a i) If we takea; =ay =1,a3=a4 = as = ... = 0, then we
LIJ(P,Q):XZ(P,Q)"‘XZ(Q,P): Z(pl ql) (pl ql) F])ave 1 2 ag=a4 5
i PiGi
= Symmetric Chi- square Divergenct], (-1 (2-1)* (21 (t-242)
fio(t) = f1(t)+ fa(t) = + = - .
(26) 12(t) = f1(t) + f2(1) ; T t (33)
L Similarly, if we takea; = a3 = 1,81 =ay =ag = ... = 0,
wherex?(P,Q) is given by (10). then we have
Divergences (2) to (4), (6), and (7) are series of
divergence measures corresponding to series of convex foa(t) = fo (1) + fa(t) = (t2—1)4+ (-1)°  (2-1)*(1*-12+1)
functions. Out of them, divergences (2) to (4) are °"/ " 72 sWeTe CE 5 (34)
introduced by Jain and others. Divergences (2) to (6), ; : _
Means (14) to (20), and (22) to (26) are symmetric while In this way, we can write fom=1,2,3...
(7), (11) to (13), and (21) are non- symmetric with respect (t2 1)2m (t2 1)2m+2
to probability distribution$?, Q € Ih. f t) = fo(t)+ f )= 4+
Now, for a differentiable functiori : (0,) — R, consider me2 (1) = (1) fmes (1) = o g2mt1
the associated functiam: (0,0) — R, is given by (12— 1)2'“ (t*—t2+1)
1 = t2mr1 ‘
g(t) = (t—1)f’ (%) . 27) (35)
(i) If we take

After putting (27) in (1), we get

2 3
a; = la = Iogeb,ag = <|0929!b> ,a4 = (Io%?!b) ,.,b> 1,
then we have

Eéf(P,Q)z_i(pi—qi)f/(M). (28)

2q; log,b)?
i o 01() = (1) logeb) £ () + (% gy 1) 4
. . (t2-1)° (2-1)°*
2 New series of convex functions and = +(10geh) ~—m—+ ..
properties (2 1)2 (t2— 1)2 (36)
= 1+ (logeb) 2 +..
In this section, we develop some new series of convex
functions and study their properties. For this, firstly let (tz_ 1)2 (t271)2
f 1 (0,0) — R(set of real no.) be a mapping defined as = fb 2 b>1
2m . .
(t2—1) Similarly, if we takea; = 0,a, = 1,a3 = log,b,ay =
fnt)= ~——2— m=12,3... 29
m(®) t2m-1 (29) %,a5:%,...,b>l,thenwe have
and (2 1)* (2-1)°
_ t) = + (loggh) ————+..,b>1
. (2—1)°™* [t2(2m+ 1) +2m— 1] 20 %(t) @ (08D
m(t) - t2m ’ ( ) (t2 _ 1)4 (t2 _ 1)2
=3 1+ (loggb) - +... (37)
am(t2-1)""2 4 2
fn(t) = omr— [t4(2m+ 1) + 4t (m— 1)+ 2m—1]. (-1 (-°
(31) = 3 b 2 b>1
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In this way, we can write

(t2—1)™ (2
Om(t) = Wb 2 b>1m=123.. (38)
Remark: If we takeb = e~ 2.71828 then from (38), we

obtain the following series.

n (2 2\ (b m2n2 1 o8
i G i — PIar G
pipy - § = i

|
Similarly put (39) in (1), we get the following new series
of divergences.

e (44)

2m 2
e Ci(RQ =pn(RQ) =51, M et m—12.
ot~ e (45)
t2_12m t2_12 n p2_q2 p2_q2
e mo12 pl(P,Q>=zi( 'p_qz') exp(('pq)'z) . )
i= idi i Ol
Properties of functions defined by (29), (35) and (39), are n (p_z_qz)4 (p_z_ qz)Z
as follows. p2(P.Q) = Zi L exp———, . (47)
. Since = R (Ppid)

fm(1) = 0= fm1(1) =9m(1) = fm(t), fmme1 (1) and
om(t) are normalized functions for eaah

e Sincef/i(t) >0Vt e (0,0),m=1,23... = fy(t) are
convex functions and stinm1 (t) ,gm(t) are as well.

e Sincef/,(t) < 0 at(0,1) and> 0 at(1,») = fn(t) are
monotonically decreasing if0,1) and monotonically
increasing in1, ), for each value omandf/,(1) = 0.

3 New series of information divergence
measures and properties

Properties of divergences defined by (40), (42) and (45),
are as follows.

e In view of theorem 3.1, we can say that
Vi (P.Q),Mm (P,Q), om (P.Q) > 0 and are convex in the
pair of probability distributiorP, Q € I.

e I(PQ) =0=nm(PQ) =pm(PQ) if P=0Q or

pi = g (attains its minimum value).

e Since wm((PQ # wm(QP),Mm(PQ) #
Mm(Q,P),pm(P.Q) # pPm(Q,P) = ym(P.Q),Nm(P,Q),
pm (P, Q) are non- symmetric divergence measures.

In this section, we obtain new series of divergence4 Csiszar's information inequality and its
measures corresponding to series of convex f””CtiO”%pplication
defined in section 2 and study their properties. For this,

firstly the following theorem is well known in literature
[7].

Theorem 3.1If the function f is convex and normalized,
ie, f”(t) >0Vt >0 andf (1) = O respectively, then
C:t (P,Q) and its adjointC; (Q,P) are both non-negative
and convex in the pair of probability distribution
(PQ) el xTh.

Now put (29) in (1), we get the following new series of
divergences.

n (pz_qz)Zm
Cf(RQ):Vm(PaQ): Wam:]-vaB"'
& ‘ ‘
| | (40)
2 4
0 (p? o) 0 (p? o)

Vl(PaQ):i; 7V2(PaQ):i;WW.

Similarly put (35) in (1), we get the following new series
of divergences.

pig?

(pP-02) ™" (b PPo?+af)
W

Ci(PQ =nmmPQ =53, .m=12._.

(42)
" (pf— pPg? + )
piaf

n 2 _ o2
nl(RQ):_Zl(pl ) L@

In this section, we are taking well known information
inequalities orCs (P, Q); such inequalities are for instance
needed in order to calculate the relative efficiency of two
divergences. By using these inequalities, we will obtain
the bounds of4 (P,Q) in terms of the other well known
divergence measures. The following theorem is due to
literature @0, which relates two generalizedf-
divergence measures.

Theorem 4.1Let f1,f; : | C (0,00) — R be two convex
and normalized functions, i.efy (t),fj (t) >0Vt >0
and f; (1) = f,(1) = O respectively and suppose the
following assumptions.

(i) f, and f, are twice differentiable on(a,p),
O<a<1l<pB<owitha#p.

(il) There exists the real constantsM such thatm < M
and

"
m< I},Eg <M,ff(t)#0Vte (a,B). (48)
2
It PQ c I is such that

O<ac< Bii <B<wVi=1,23..,n, then we have the
following inequalities
mCy, (P,Q) <Ct, (P,Q) <MCt, (PQ), (49)

whereC; (P,Q) is given by (1).
Now by using theorem 4.1 or inequalities (49), we will
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get the bounds of; (P, Q) in terms of other well known e
standard divergences. Firstly, let us consider w
t2—1)° t2-1) (3t2+1 0
n =" o0 nw=o = EEHY
t t 1 z 4
and ~
2(3t*+1) -0
7= "% (50)
Putfy (t) in (1), we get Fig. 1: Graph ofg/ (t)
0 (P -a?)’
CL(PQ =3 ~——=—=nPQ. (I

. ) . (i) If .67<a <1,then
Now, we will obtain bounds ofs (P,Q) in terms of other

well known divergences, by the following propositions. . 8 (3a4+ 1)
Proposition 4.1Let y; (P,Q) andh(P,Q) be defined as in m= tel(gfﬁ)g(t) =g(a)=————  (58)
(51) and (22) respectively. F®Q € I, we have ’ az
i) If < .67,th
() 1f0 < a <.67,then 8(3B4+1)

A M= sup g(t) =g(B) = ——5 .  (59)
234n(P.Q) < 11 (P.Q) < 8max [3" 1,1 h(PQ). te(@p) B

oz ? (52) The results (52) and (53) are obtained by using (51), (55),
(i) If .67 < a <1,then (56), (57), (58), and (59) in (49).

Proposition 4.2Let y; (P, Q) andG (P, Q) be defined as in
8(3a%+1) 8(3p%+1) (51) and (12) respectively. F&Q € I, we have
a—gh(P»Q)S n(PQ) < B—%h(P»Q)- () If0 < a < .51, then

(53)
Proof: , Let us consider 1424C(PQ=n(kQ)
1 _ / _ 1 1 4 4
RO=3(1- VO teOm). =00 =F(1-F)and _  T(@+1) Sa 1) (B+Y) (;B +1)] 6(PQ).
1
() =—. (54)
2 ( ) 4'[% (60)
Sincefy (t) >0Vt >0andfz(1) =0, sofz(t) isconvex  (ii)If .51< a < 1, then
and normalized function respectively. Now pfs(t) in
(1), we get 4(a+1)(3a*+1
2 @D 6hg) < (R Q)
" (VP —/G) 4 (61)
=y XY= V7 . 4(6+1)(3°+1
Cr(PQ=3 ~ h(PQ).  (55) A6 >é B+l s p0).
) 8(3*+1) / 4(154-3) ) ,
Now, letg(t) = ﬁ/(t) = — andd (t) = —, Proof: Let us consider
2 t2 t2
g’ (t)=30 (3\/f+ %) , wheref{' (t) andf (t) are given fo(t) = (%) Iog%,t € (0,0),
t2
by (50) and (54) respectively.
If g’ (t) =0=t = .6687403x .67. / 17 t+1 1
It is clear by Figure 1 ofy (t) thatg/(t) < 0 in (0,.67) f2(1)=0.f2() = 5 [Iogy - ;} and
and> 0in (.67,), i.e.,g(t) is decreasing irf0,.67) and
increasing in(.67,c). Sog(t) has a minimum value at " 1
t = .67 becausg’ (.67) = 1955276~ 1955 > 0. So fa (t) = D) (62)

() If0 < a < .67, then
_ Sincef) (t) >0Vt > 0andf, (1) =0, sof,(t) is convex
m:tel(gfﬁ)g(t) =9(.67) = 23405968~ 234. (56)  and normalized function respectively. Now pfst(t) in

' (1), we get
M = su.(o ) 9() = maxig(@).g(f)] = max| ML I g\ pg
(57) r, (P.Q) = ; 2 g op

G(PQ). (63)
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" 4

Now, let g(t) = I}/g; = w and  Proof: Let us consider
2

5, g4

g (1) = 2D g =8(18%+ 9+ L), where  fo(t)=(t— 1% te (0,), (1) =0, fj(t) =2(t— 1) and

ff( ) andfj (t) are given by (50) and (62) respectively.

Ifg(t)= O:>t =.507385«~ .51. £ (t) = (70)

000

- X0

( 1 2 3 4

Fig. 2: Graph ofg’ (t)

— 4000

It is clear by Figure 2 ofy (t) thatg'(t) < 0 in (0,.51)
and> 0in (.51, ), i.e.,g(t) is decreasing i0, .51) and
increasing in(.51,0). Sog(t) has a minimum value at
t = .51 becausay’ (.51) = 1344830294~ 134.45 > 0.
So

(i) If 0 < a < .51, then

Sincef) (t) >0Vt > 0andf, (1) =0, sof(t) is convex
and normalized function respectively. Now pfst(t) in
(1), we get

Ct,(PQ) = i

fl/(

=x*(PQ). (71)

3(t4-1
8 3t:'3+1 and ¢'(t) = ¥,

(t) and f/ (t) are given by (50) and

Now, let g()

Ht[\)\

g’ (t)= t5 , Wheref
(70) respectively.
Ifg(t)=0=t=1.

m= inf g(t)=g(.51) = 14.2467733% 14.24. (64) -
te(a,B) -3
-10
M= sup g(t) = max[g(a),g(B)]
te(a,B) Fig. 3: Graph ofg (t)
B 4(a+1)(3a*+1) 4(B+1)(3B*+1)
a ’ B It is clear by Figure 3 o/ (t) thatg' (t) < 0in (0,1) and
(65) > 0 in (1,»), ie., g(t) is decreasing in(0,1) and
. increasing in(1,). So g(t) has a minimum value at
(i) If .51<a <1, then t = 1 becausg” (1) = 12> 0. So
, 4(a+1)(3a%+1 — inf gt)=g(1) =4. 72
m— inf gt —gla) — ZEDETED g m= ot 90 =91 (72
te(a,B) a
() If0 < a <1, then
4(B+1)(3p*+1
M= sup g(t)=9(B) = B+ )- (67) M= sup g(t) =max[g(a),g(B)]
te(a,B) B te(a,B)
The results (60) and (61) are obtained by using (51), (63), 304+1 3B4+1 (73)
(64), (65), (66), and (67) in (49). ad 7 Bd |’
Proposition 4.3 Let y; (P,Q) and x?(P,Q) be defined as
in (51) and (10) respectively. F&Q € I',, we have (i) If a =1, then
() If0 <a < 1,then
M= supg)—g(B) - Brt (7a
3a4+1 3p4+1 - - R
4x°(PQ <y (PQ < o Bﬁg X*(PQ). te(Lp) A
(68)  Theresults (68) and (69) are obtained by using (51), (71),
(i) If a =1, then (72), (73), and (74) in (49).
3p4+1 By using the similar approach, we obtain the bounds of
2 2
4x°(PQ =n(PQ = B X (PQ). (69 \ (PQ) in terms of other standard divergences; these
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inequalities are as follows (we leave to the readers to 4 g
prove the followings, omitting the details). 3a”+1 - 3+l
Proposition 4.41f we take f, (t) = tlogt, then we have a3+1 YR =n Q) < B3+1 Y
if 25<a<1.

6.9K(P.Q) < n(PQ)
3a%+1 3B%+1
az ’ BZ

2(3a%+1
%K(RQ) <1 (PQ)
_2(3+1)
== g

Proposition 4.51f we take f, (t) =t Iogt%, then we have

197F (P.Q) <y (PQ)

(a+1)*(3a*+1) (B+1)*(3B*+1)

< 2max

}K(P,Q) if0<a<.76,

K(PQ)if .76<a <1

- omex i 7 5 F(PQ)
if0<a<.62
2 1)2(3a%+1
U B e (po) < wip)
2 (apd
- 2(B+1)BE3B +1)F(RQ) if 62<a <1

Proposition 4.6 If we take f, (t) = (t — 1)logt, then we
have
2871 (P.Q) <=n(PQ)
3a%+1 3B*+1
< 2max
= a(a+1) BB +1)

4
R CIIEALY)

2(3p*+1) :
<——-=J(PQ)if 65<a <1
CESTRAR
Proposition 4.7 If we take f, (t) = %Iog%, then we
have
218T (PQ) < n(P.Q)
(3a%+1) (a+1) (36*+1)(B+1)

J(P.Q)if0 < a < .65,

< 8max | e ) FErn | RO
ifo < a<.62

8(3a*+1)(a+1)

TPQ <w(P
8(364+1) (B+1) .

< T(PQ)if.62<a <1

gy 09
Proposition 4.8 If we take fa(t) = (t_l)tﬂ then we

have

3a%+1 3B%+1
Y (PQ) <y (PQ) < max 11 Br1

if0<a<.25

v (PQ)

Proposition 4.9 If we take f2 (t) = §logt + 52 logZ;,
then we have

23861 (PQ) <y (P.Q)
(a+1)(3a%+1) (B+1)(36*+1)
a? ’ B2

< 4max 1(P.Q)

if0 < a <.69,

4
4(a+1)a(23a o <P

4(B+1)(3*+1)
< B2

I (PQ)if.69<a <1

5 Some new relations among divergences

In this section, we obtain various new important and
interesting relations on new divergence measures (40),
(42), and (45) with other standard divergence measures.
Proposition 5.1Let P,Q € I,, then we have the following
new intra relation.

¥n(P,Q) < Nm(P,Q) < pm(P.Q), (75)

wherem=1,2,3... andym (P,Q), Nm (P, Q), andpm (P.Q)
are given by (40), (42), and (45) respectively.
Proof: Since

(-1 (4 —241) (-1 (2—1)*™?
t2m+1 T~ 1 t2m+1
and
(e-9™ (-1’
-1 SXPT 2
0™ (-1’ (-1
= Mttt

Therefore, form = 1,2,3... andt > 0, we have the
following inequalities.

(tz _ 1)2m (t2 _ 1)2m (tz o 1) 2mH-2
t2m-1 - t2m-1 t2m+1
7
e R 218

Now putt = %,i =1,2,3...,nin (76), multiply byq; and
then sum over all=1,2,3...,n, we get the relation (75).
Particularly from (75), we will obtain the followings.

1(P.Q) <ni(PQ) <p1(PQ),

% (P.Q) <n2(P.Q) < p2(PQ), ... (77)
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Now there are some new algebraic and exponential o
inequalities, which are important tool to derive some

interesting and important new relations in this paper. ™

These inequalities are as follows. 0
Proposition 5.2Lett € (0,0) andm= 1,2 3... then we
have the following new inequalities. 0
m=1
t2—12m t_lzm 10
G I Ut Vi 78)
t2m-1 t2_mz_1
2-1)%" (- 1)2m
(1) -y 79)
th 1 (t+1)2m 1 -
(t2_1)2m , x|
Y = > (t—1)"™, (80) .
and e |
-9 @2-1° -1 -1 ]
t2m-1 €xp t2 > t2m72—1 exp t ’ (81) s L0 L 20 s X
All functions involve in (78) to (81) are convex and Fig. 6: Graph of(t 4 1)2™ —t2m-1
normalized, sincef”(t) > 0Vt >0 and f(1) =0

respectively.
Proof:From (78), we have to prove that
proved the result (79).
(t?— 1)2'“ (t— 1)2'“ Similarly from (80), we have to prove that

1
= (t+ 12" >t™ 2
t2m71 t2_n12;1 ( + )

(t2—1)"

W > (t _ 1)2m = (t + 1)2m_t2m—1 > 07

= VEt+1)?"—t"> 0,

which is true (Figure 6) fot > O,m= 1,2 3.... Hence
proved the result (80).

Similarly from (81), we have to prove that

30

t-0)™  (2-1)° -1 (-1

&0

ex ex

- N 21 P s P

y (t-1)2(2+141)
0 (t + 1)2m e—tz—
me1 . >1
os = a0 tm-3
2 (t-1)2(P+t+1) N
m — -
Fig. 4: Graph of /i (t 4 1)2M —t™ =(t+1)"e @ —t™2 >0,

which is true (Figure 7) fot > O,m= 1,2, 3.... Hence
which is true (Figure 4) fot > 0,m= 1,2,3.... Hence  proved the result (81).

proved the result (78). Proposition 5.3 Let PQ € I, then we have the
Now from (79), we have to prove that followings new inter relations.
t2—1)"" —1)2m ym(P,Q) > En(PQ), (82)
( 7) s =D = (t4 1)t > 2t
t2m 1 (t+1)2m 1
S (t4 1)Lzl g Yn(P.Q) > A (P,Q), (83)
which is true (Figure 5) fot > 0,m= 1,2,3.... Hence ¥m(P.Q) > x*™(P.Q), (84)
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and

pm(P.Q) > In(P.Q), (85)
where
¥n(P.Q),Ex(P.Q),4m(P,Q), X" (P,Q),pm(P,Q), and

Jn(P.Q) are given by (40), (2), (6), (7), (45), and (3)

respectively.

Proof: If we putt = %,i =1,2,3...,nin (78) to (81),
multiply by gi and then sum over all= 1,2 3....n, we
get the desired relations (82) to (85) respectively.
Now we can easily say from (82) to (85) that

(P.Q)>22(PQ),...,
(87)

(PQ)>4:1(PQ)=A(PQ), )

n(PQ) >x?(PQ),%(P.Q >x*(PQ),..,

and

p1(P.Q) >J (PQ),,2(PQ) > (PQ),...,

respectively.

(88)

(89)

Proposition 5.4Let P, Q € I, then we have the followings

new inter relations.

Pm(P.Q) > Iy (P.Q) > Ep(P.Q), (90)

p1(P.Q)>24(PQ) > 2[N; (RQ) —N; (RQ), (91)

p1(P,Q) > 8T (P,Q)>J(PQ)>8h(PQ) >8I (R%’z)
and

p1(P,Q) > 8A(P,Q) > 8Nz (P,Q) > 8N3(P.Q) > 8Ny (P,Q)
>8L"(P.Q) >8G"(PQ) >8H"(PQ),

H*(P.Q),A(PQ). N1 (P.Q),Ns(P,Q),L" (P.Q),G"(P.Q),N2(P.Q)
are given by (45), (3), (2), (4), (9), (25), (24), (22), (23),
(14), (15), (16), (17), (18), (19), and (20) respectively.
Proof: Since we know the followings.

In(P.Q) = En(PQ)[17, (94)

2B (RQ)>A(PQ) > N (P.Q)—N; (PQ) (17, (95)

e P :=TRQ >

5 J(P.Q)=h(PQ)=>1(P.Q)[23,

(96)

| =

T(PQ) =A(PQ)[17, (97)

and

APQ) =N (PQ) >
>G'(PQ =H"(PQ
(98)

By taking (85) and (94) together, we get the relation (90).
By taking first and third part of the proved relation (90) at
m = 1 together with (95), we get the relation (91).

By taking first and third part of the proved relation (90) at
m= 1 together with (96), we get the relation (92).

By taking first and second part of the proved relation (92)
together with (97) and (98), we get the relation (93).

6 Application to the Mutual information

Mutual information B6] is a measure of amount of
information that one random variable contains about
another or amount of information conveyed about one
random variable by another.

Let X andY be two discrete random variables with a joint
probability mass function p(x,y;) = pij with

i=12,..mj=12 ..,nand marginal probability mass
functions p(x) = y|,i = 1,2..m and
ply;)) = IMp(yj).] = 12..n  where
X € X,yj € Y, then Mutual information (X,Y) is defined
by
m n
p(Xi,Yj)
I (X,Y) = p(x,yj)log—————
XY= 2) 2, POeYIog 6 Tty
P(XY) (59)
= p(x.y)log———=-.
(x,y)gz(X,Y) p (X) p (y)

Sincel (X,Y) is symmetric inX,Y therefore it can also be
written as

(93) X
LOX,Y) =1 (Y,X) = H (X) — H <_)
where Y (100)
Pm(PQ) Ih(P.Q),En(PQ),N;(PQ),A(PQ),T(PQ),J(PQ), CHY)_H Y
h(P.Q), |(P,Q) and means =H(Y)- <)
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where IfP,Qel'nsuchthat(kag%§B<ooVi:1,2,3...,n
m for somea andp with0< a <1< <o, a # 3, then
=_ Z\p(xi) logp(x) we have the following inequalities
N (101) 1 5
A Ci (PQ) —E¢, (PQ)| <z (M-—mx“(PQ), (107)
=—_212|0>w, Iog(z >qy,> f 8
| =1

whereCy (P.Q), x2(P,Q) andE, (P,Q) are given by (1),
is known as Marginal entropyp|] and (10), and (28) respectively.

X\ o< v Xi Now by using theorem 6.1, we introduce a new
H (Y) N izljzlp(’“’y')'ogp<y,-> (102) information inequalities which relatels(X,Y) and new
divergence measung (P, Q).
is known as Conditional entropB§]. Proposition 6.1
By viewing K (P,Q) (Relative entropy (11)), we can say For 0< a < p'(OX;‘V <B <oV (xYy) € (X,Y), we getthe
that the Mutual information is nothing but a Relative following new |nf0rmat|on inequalities in Mutual
entropy between joint distributiop(x,y) and product of  jnformation sense

marginal distributiong (x) and p(y) after replacingp(X)

dq(x) by p(x, d tively, in (11). B—a
o ) 2ah oot e e ag rePeee I -y ) -y, ol < (BT ek -
(X,Y) =K (p(xy), P(X) P(¥) g3202;)mmyx
_ P(x.y) (103)
_(X7y>ez<x,y)p(x’y)logp(X)p(y)' where | (X,Y),ly, (X.Y),l,2(X,Y), and I, (X,Y) are

given by (103), (104), (105) and (106) respectively.
Similarly, we can define the Mutual information in Proof: Let us consider
following manners as well.
In y1 (P,Q) manner: f (t) =tlogt,t € (0,00), f (1) =0, f'(t) = 1+logt and

[P (xy) — PP PP ()]
PV EH Py O )= (109)

Sincef”(t) >0Vt >0 andf (1) =0, sof(t) is convex
and normalized function respectively. Now gut) in (1)
2 andf’(t) in (28) then after replacing;,q; Vi = 1,2,...,n
XY= 3 [P(%Y) —P(X) P(Y)] (105)  BYP(XY),P(X)P(y) V(xy) € (X.Y), we get

IVl (XvY) =
(XY)E(X.Y)

In x?(P,Q) manner:

(xy)e(X.Y) POIP(Y) ’ p(xy)

Ci(PQ) = p(Xy)log——""— =1(X,Y
and (PQI= 2 PG = XY
In Jr (P, Q) manner: (110)
L (X,Y) = 5 ey ey [P(6Y) = P(X) p(y)] log PEAZBHED), .

" "(los)  E& (PQ)
wherex?(P.Q),Jr(P.Q) andy (P.Q) are given by (10), X,Y) + p(x
(21) and (51) respectively. = z [P(x.y) = p(X) p(y)]log ul 2yp))( )pp((zl)p( )
So (103), (104), (105), and (106) tell us that how far the — (xy)E(X)Y)
joint distribution is from its independency or =1, (X,Y),
I(X)Y) =0 =1l,(X)Y) = |X2 (X,Y) = lir(X)Y) if (111)

distributions are independent to each other.

Now, the following theorem can be seen in literatut@]| respectively.

Theorem 6.1Let f : (a,B) C (0,0) — Rbe a mapping Now, letg(t) = f”(t) = ¥ andg' (t) = t2’ wheref” (t)
which is normalized, i.e.f(1) = 0 and f’ is locally s given by (109).

absolutely continuous orfa,) then there exist the Itis clear thaig(t) is always decreasing if0, ©), so
constantsn,M € Rwith m < M, such that

1
m< /() <MVte (a,B). m= nf 90 =9(B)=7 (112)
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Table 2: Evaluation of probability distributions
n=10p=0.7,g=0.3
M= swpg=gle)=o.  (13) (Pt
te(a.p) X
pi =~ | .0000059| .000137| .00144 | .009 | .036
The result (108) is obtained by using (104), (105), (110),[ g~ | .000911 | .00638 | .022 | .052 | .091
(1112), (112), (113) together with first inequality of (68) or % ~ | .00647 0214 | .0654 | .173| .395
(69) in '(107), after replacingi,q by p(x,y),p(x) p(y) I5 6 7 3 9 10
respectively. 102 | 20 | .266 | .233 | .121 | .0282
A77 ) .199 .149 .130 .101 | .0709
.871| 1.005| 1.785| 1.792 | 1.198 | .397

7 Numerical verification of the obtained
bounds

In this section, we give two examples for calculating the
divergence$ (P,Q),G(P,Q) and y (P,Q) and verify the
inequalities (52) and (60) or verify the boundsyefP,Q)
numerically.

Example 7.1 Let P be the binomial probability
distribution with parametergn=10,p=0.5) andQ its
approximated Poisson probability distribution with
parametefA = np = 5) for the random variabl¥, then

Table 1: Evaluation of probability distributions for
(n=10,p=0.5,g=10.5)
Xi 0 1 2 3 4
pi ~ | .000976| .00976| .043 | .117 | .205
g ~ .00673 .033 .084 | .140 | .175
§ ~ | 1450 | 2957 | 5119 .8357 | 1.171
5 6 7 8 9 10
.246 | 205 | .117 | .043 | .00976| .000976
175 | .146 | 104 | .065 | .036 .018
1.405] 1.404| 1.125| .6615| .2711 | .0542
by using Table 1, we get the followings.
a(=.0542 < % <B(=1405.  (114)
|
11 - =\2
h(P,Q):Zi(\/ﬁ 2\/@) ~.02549  (115)
i=
11 p+q p_|_q
G(P.Q) = ' Tlog( =) ~.031 (116)
i 2 2pi
1 (2 _ g2)?
Vi (P.Q) = Mx.9610 (117)

2

Put the approximated numerical values from (114) to (117)
in (52) and (60), we get the followings respectively

5964< .9610(= y1 (P,Q)) < 16.161 and
44144< 9610(= y1 (P,Q)) < 2.6936

Hence verify the inequalities (52) and (60) for= 0.5.
Example 7.2 Let P be the binomial probability

distribution with parametergn=10,p=0.7) andQ its
approximated Poisson probability distribution with
parametefA = np=7) for the random variablX , then

by using Table 2, we get the followings.

a (= .00647 < % <B(=1792.  (118)
h(P.Q) = EM ~ 0502 (119)
G(PQ) = ill b erqi log ( piz“;q) ~ 0746 (120)
y(PQ) = _11 L‘f)z ~ 2.25065 (121)

2

Put the approximated numerical values from (118) to (121)
in (52) and (60), we get the followings respectively

1.17468< 2.25065= y1 (P,Q)) < 77168 and
1.062304< 2.25065= y; (P,Q)) < 46.4161
Hence verify the inequalities (52) and (60) foe= 0.7.
Similarly, we can verify the other obtained inequalities
numerically for different values g andq by taking other

discrete probability distributions, like: Geometric,
Negative Binomial, Uniform etc.

[£04]
00
800
400

100

1

Fig. 8: Convex functionsfy (t)

Figure 8, 9, and 10 shows the behavior of convex
functions and shows thdt (t), fyms1 (t), andgm(t) has
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) 8 Conclusion and discussion
19300
In this paper, we introduced new series of information
divergencesym (P,Q) .im(P,Q), and pm(P.Q) together
with characterized their properties. Various importard an
interesting relations have been obtained among these new
divergences and other well known divergences with
comparison by using the standard algebraic and
exponential inequalities. The upper and lower bounds of a
member of new divergence series have been obtained in
terms of the other well known divergences in an interval
(a,B), 0<a <1< B <o with a+# by using
Csiszar's inequalities and have been verified numerically
by taking two discrete distributions: Binomial and
35107 Poisson. Lastly, a very important application to the
1 Mutual information has been discussed, which tells us
how far the joint distribution is from its independency and
relates new divergence and mutual information.
We found in our previous articlelB] that square root of
some particular divergences of Csiszars class is a metric
space butC; (P,Q) itself, is not a metric because of
violation of triangle inequality, so we strongly believath
1 2 3 + divergence measures can be extended to other significant
problems of functional analysis and its applications and
Fig. 10: Convex functiongym (t) such investigations are actually in progress becausesthis i
also an area worth being investigated.
We hope that this work will motivate the reader to
consider the extensions of divergence measures in

2000

5000

H00 H

i)

1 2 3 4

i ‘ . information theory, other problems of functional analysis
I'. I.' i and fuzzy mathematics. Such types of divergences are
3000 - 3 (3.8 atn=] 1o f ;" also very useful to find utility of an event i.e. an event is
--------- 2ir(3.3) a2 o | how much useful compare to other event.
fa div (3.5 atm=1 "'-L I|I I.' i
0004 - div(E 1 atme2 i) I.' ;,-"'
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