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Abstract: Incomplete data is an important problem in the data analysisof all areas. There have been a number of applications related
to inpainting problem which are intriguing. In these papersmathematical theory of shearlet and wavelet transforms related to inpainting
problem are studied and numerical application results are compared, and several inpainting methods are applied to images with vertical,
square and random masking. In one of these studies the suggested undone problems includes applying circular masking. Inthis paper
following this suggestion, firstly circular masking with arbitrary radius is developed and applied to images, then shearlet and wavelet
transforms are applied to images with circular masking to recover the images. Numerical results show that shearlets areable to inpaint
larger gaps than wavelets in the circular masking case.
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1 Introduction

In almost any research performed, there is the potential
for missing or incomplete data. Incomplete or missing
data can occur for many reasons. Incomplete data are a
common occurrence and can have a significant effect on
the conclusions that can be drawn from the data. It can
reduce the representativeness of the image and can
therefore distort inferences about the images. If it is
possible, preventing data from missingness before the
actual data gathering takes place is useful. However, this
technique may not be practical especially working with
medical data. In situations where incomplete data are
likely to occur, the researcher is often advised to plan to
use robust methods of data analysis.

Repairing gaps in images is a significant inverse
problem in both the analog and the digital area with many
applications. Removal of scratches in old photos, removal
of overlaid text or graphics, filling-in missing blocks in
unreliably transmitted images, scaling-up images,
predicting values in images for better compression, and
more, are all examples of inpainting. In many cases
medical technicians state that they may be missing
significant data during the recording as well. Inpainting
would be a better choice when repeating the process may

not be possible for one reason or another. In recent years
this topic attracted much interest, and many contributions
have been proposed for the solution of this interpolation
problem [2,3,5,9,10,12]. Two recent papers related to
inpainting problem are interesting [2,3]. In [2]
mathematical theory of shearlet and wavelet transforms
related to inpainting problem are studied and numerical
application results are compared. In [3] several inpainting
methods applied to images with different maskings. In [2]
one of the suggested undone problems includes applying
circular masking.

In this paper, our contribution is two-fold. We will
present a circular masking of arbitrary radius. Then we
will describe the missing traces recovery as an image
inpainting problem using wavelets and shearlets with
iterative thresholding.

The organization of the paper is as follows: In Section
2 we introduce the basics of wavelet and shearlet
transforms briefly. In Section 3 we outline a few methods
of inpainting problem in the literature. In Section 4 we
give algorithms of circular masking and wavelet/shearlet
inpainting problem. In the same section we apply the
circular masking to sample images and numerically test
shearlet-based inpainting algorithm against wavelet
inpainting method to the masked images.
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2 Basics of wavelet and shearlet transforms

2.1 Wavelet transform

For two dimensional wavelets letψ ∈ Ł2(R2). Let the
continuous affine systems of Ł2(R2) be defined as

ψM,t = TtD
−1
M ψ = |detM| 1

2 ψ(M(.− t)) : (M, t) ∈ GxR2.
HereG is a subset ofGL2(R), the group ofd-dimensional
invertible matrices, andDM is the dilation operator on
Ł2(R2), defined by

DMψ(x) = |detM|−1
2 ψ(M−1x),M ∈ GL2(R). Tt is the

translation operator on Ł2(R2), defined by
Ttψ(x) = ψ(x − t), t ∈ R2. Any f ∈ Ł2(R2) can be
recovered from its coefficients(〈 f ,ψM,t 〉)M,t . So, one
needs to determine conditions onψ . For this, define a
group structure as(M, t).(M

′
, t

′
) = (MM

′
, t + Mt

′
). The

resulting group, typically denoted byA2, is the so-called
affine group onR2. Reproducibility of functions inL2(R2)
is available as well [1,7].

Theorem: Let dµ be a left-invariant Haar measure on
G ⊂ GL2(R), and dλ be a left Haar measure ofA2.
Moreover, suppose thatψ ∈ Ł2(R2) satisfies the
admissibility condition

∫

G |ψ̂(MTξ )|2|detM|dµ(M) = 1.
Then any functionf ∈ Ł2(R2) can be recovered via the
reproducing formula f =

∫

A〈 f ,ψM,t 〉ψM,tdλ (M, t)
interpreted weakly [4]. When the conditions of the above
theorem are satisfied,ψ ∈ Ł2(R2) is called a continuous
wavelet. The Continuous Wavelet Transform is defined to
be the mapping.
L2(R2) ∋ f →Wψ f (M, t) = 〈 f ,ψM,t 〉,(M, t) ∈ A2.

2.2 Shearlet transform

Shearlets has emerged in recent years with many
successful applications; some related work can be listed
as [6,8,11]. The scaling operator is required to generate
waveforms with anisotropic support. We utilize the family
of dilation operatorsDAa,a > 0, based on parabolic

scaling matricesAa of the form(Aa) =

(

a 0
0
√

a

)

where

the dilation operator is given like wavelets. An orthogonal
transformation is to change the orientations of the
waveforms. As orthogonal transformation, we choose the
shearing operatorDSs,s∈ R where the shearing matrixSs

is given by (Ss) =

(

1 s
0 1

)

. The shearing matrix

parameterizes the orientations using the variables
associated with the slopes rather than the angles, and has
the advantage of leaving the integer lattice invariant,
provided s is an integer. Finally, for the translation
operator we use the standard operatorTt given by
wavelets. Combining these three operators, we define
continuous shearlet systems as follows [1]. For
ψ ∈ Ł2(R2), the continuous shearlet systemSH(ψ) is
defined by

SH(ψ) = {ψa,s,t = TtDAaDSsψ : a> 0,s∈ R, t ∈ R2}. Let
S denote the Shearlet group and define
(a,s, t).(a′,s′, t ′) = (aa′,s + s′

√
a, t + SsAat ′) group

multiplication on R+xRxR2. Letting the unitary
representation σ : S → U(L2(R2)) be defined by
σ(a,s, t)ψ = TtDAaDSsψ , whereU(L2(R2)) denotes the
group of unitary operators onL2(R2) a continuous
shearlet system SH(ψ) can be written as
SH(ψ) = {σ(a,s, t)ψ : (a,s, t) ∈ Ł2(R2)}.

3 Inpainting

The main inpainting methods are primarily divided into
three categories: sparsity-based, variational, and
patch-based. Sparsity-based methods involve a
combination of harmonic analysis with convex
optimization (see, for example, [9,10,13]). Recently the
compressed sensing methodology, namely exact recovery
of sparse or sparsified data from highly incomplete linear
nonadaptive measurements by minimization or
thresholding, has been very effectively applied to this
problem. The pioneering paper is [9] which uses curvelets
as sparsifying system for inpainting. The minimization
task in [9] is
x∗ = x∗1+ x∗2,(x

∗
1,x

∗
2) = argminx1,x2 ‖Φ∗

1x1‖1+ ‖Φ∗
2x2‖1+

λ‖PM(x0 − x1xn)‖2
2 + γTV{x2} where Φ1 is a parseval

frame consisting of parabolic molecules,Φ2 is an
oscillatory Parseval frame like DCT, Gabor, wavelet
packets, andλ ,γ are parameters. The algorithm used is
based on the block-coordinate relaxation method. Also,
some work has been done to compare variational
approaches with those built onℓ1 minimization [14,15]. It
also prohibits a deep understanding of why directional
representation systems such as shearlets outperform
wavelets when inpainting images strongly governed by
curvilinear structures such as seismic images. Variational
methods have been used on a number of papers in image
processing literature. A few of these are [16,17,18,19]
The main idea of variational-based inpainting is that
information is propagated from the boundary of the holes
along isophotes (edges) in the image to fill them in. Many
of the methods are inspired by real physical processes,
like diffusion, osmosis, and uid dynamics. In patch based
or exemplar based inpainting, information is also
propagated from the edge(s) of the missing data inward.
However, in contrast to the variational approaches, the
hole is iteratively filled using patches or averages of
patches from other parts of the image [3]. Some examples
of exemplar based inpainting are [20,21,22,23].

Compressed sensing techniques in combination with
both wavelet and directional representation systems have
been very effectively applied to the problem of image
inpainting recently. A mathematical analysis of these
techniques which reveals the underlying geometrical
content is presented in [2]. In the same paper, the first
comprehensive analysis is provided in the continuum
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domain utilizing the novel concept of clustered sparsity,
which besides leading to asymptotic error bounds also
makes the superior behavior of directional representation
systems over wavelets precise. The computational method
in our paper also follows this line. In our study we use
wavelet and shearlet transforms to circular masked
images. To our best knowledge this is the first time
shearlet based inpainting is applied to circular masked
images.

4 Numerical results

In this study we want to present the results of our
approach with four different data sets. The first two are
well known 512x512 Lena and Peppers images shown in
Fig. 1 and Fig. 2. The other two images, obtained through
Medical Schools Hospital at Kocaeli University in
Turkey, are vessel contour image shown in Fig. 3 and
chest X-ray image in Fig. 4.

Fig. 1: 512x512 Lena

Fig. 2: 512x512 Peppers

Circular masking code is written in Matlab for
arbitrary radius. A circular masking is shown in Figure 5
with radius 10 pixels. Obtained circular masking is

Fig. 3: Vessel contour image

Fig. 4: Chest X-Ray image.

applied to the all four images, see Figures 6(b), 7(b), 8(b)
and 9(b) covering in total 22% of the images. Masked
images are inpainted by wavelets shown in Figures 6(c),
7(c), 8(c), and 9(c) and shearlets in Figures 6(d), 7(d),
8(d), and 9(d). For shearlets, some part of the shearlet
program codes are obtained at the shearlet web site
www.shearlet.org.

Fig. 5: Circular Masking with radius 10 pixels.

The algorithms for both circular masking and
wavelet/shearlet inpainting problem are shown in Fig. 10
and Fig. 11, respectively.
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(a) (b)

(c) (d)

Fig. 6: (a) Lena; (b) Lena after circular masking; (c)
inpainting of Lena with wavelet transformation; (d)
inpainting of Lena with shearlet transformation.

(a) (b)

(c) (d)

Fig. 7: (a) Peppers; (b) Peppers after circular masking; (c)
inpainting with wavelets; (d) inpainting with shearlets.

The phrase peak signal-to-noise ratio, often
abbreviated PSNR, is an engineering term for the ratio
between the maximum possible power of a signal and the
power of corrupting noise that affects the fidelity of its
representation. Because many signals have a very wide
dynamic range, PSNR is usually expressed in terms of the
logarithmic decibel scale. As a performance measure,
computation of PSNR values can be calculated as

(a) (b)

(c) (d)

Fig. 8: (a) Vessel contour image; (b) Vessel contour
after circular masking; (c) inpainting with wavelets; (d)
inpainting with shearlets.

(a) (b)

(c) (d)

Fig. 9: (a) Chest X-Ray; (b) Chest X-Ray after circular
masking; (c) inpainting with wavelets; (d) inpainting with
shearlets.

PSNR= 10log10(
MAX2

I
MSE ). Here, MAXI is the maximum

possible pixel value of the image. The mean squared error
(MSE) which for two mn monochrome images I and K
where one of the images is considered a noisy
approximation of the other is defined as:
MSE= 1

nm∑m−1
i=0 ∑n−1

j=0(I(i, j)−K(i, j))2.
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Fig. 10: Cicular mask algorithm.

Fig. 11: Inpainting algorithm with wavelet /shearlet
transformation.

Table 1: Comparison of the PSNR values for the images
for both wavelet and shearlet inpainting methods.

Images Wavelet transform Shearlet transform
Lena 29.9672dB 31.6670dB

Pepers 29.4306dB 30.4066dB
Vessel contour 30.1067dB 31.0688dB
Chest X-Ray 35.0087dB 37.7624dB

In Table 1 PSNR values are calculated for each image
and compared for both methods applied with 10 pixel
radius masking. According to the PSNR values shearlet
transform gives better results in all four cases recovering
the images when applied circular masking. With the
masking applied in total a little more than 22% of the
images are circularly blocked. Figure 12 below shows
graph of compared PSNR values of the images for both
wavelet and shearlet inpainting methods with radii
8,10,12 and 15 pixels of circle maskings. Our numerical
results show that both wavelet and shearlet can tolerate if
the diameter size of the circle is less than 34 pixels. In
each case shearlets outperform wavelets.

(a) (b)

(c) (d)

Fig. 12:Comparison of the PSNR values of the images for
both wavelet and shearlet inpainting methods with radii
8, 10, 12 and 15 pixels of circle maskings. (a) Lena; (b)
Peppers; (c) Vessel contour; (d) Chest X-ray.

5 Conclusions

In this paper we develop a circular masking algorithm for
arbitrary radius, and apply wavelet and shearlet image
inpainting to recover circular masked data including two
medical images with 22% of the test data masked. The
provided results show the excellent performance of
shearlet inpainting, if the radius is less than 17. Obviously
this depends heavily on the structure of the missing
elements. When the radius is more than 17, we observed
that both methods are not able to inpaint properly.
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