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Abstract: In this study, by constructing different equivalent fornigtee continuous algebraic Riccati matrix equation (CAREJ) a
using some linear algebraic techniques, we present the apgieix bounds which depend on any positive definite matmttie unique
positive semidefinite solution of the CARE. Based on thesetls, we develope iterative algorithms to obtain more sragplution
bounds. Furthermore, we give numerical examples to demadaghat the new bounds are tighter than previous resutisrire cases.
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1 Introduction [2,15], filter design R5], stability analysis 1,27] in
control theory 6,13,22,23] including optimization

The algebraic Riccati and Lyapunov matrix equations arestability theory. For example, consider the following

widely used and they play an important role in various of linear system:

engineering such as control system design and analysis

[12,1319,23], and signal processing 3§. The X(t) = AX(t) + Bu(t), )

continuous algebraic Riccati and Lyapunov matrix x(0)=0

equations that we generally encounter in the literature are

defined as below: For the continuous-time linear quadratic regulator (LQR)
The continuous algebraic Riccati matrix equation Problem, suppose the pdi, B) is stabilizable and the pair
(CARE) is (A,QY2) is detectable, then there exists a unique optimal

controlug (t) which minimizes ]
PA+ATP-PBB'P=-Q (1)

where A ¢ R™" and B € R™™ are constant matrices, y; T -

Q € R™" is a given positive semidefinite matrix, and the Je (X) = / (X" (1) Qx(t) +u’ (t)u(t)]dt.
matrix P € R™" is the unique positive semidefinite 0

solution of the CARE ). WhenB = 0 andA is stable .

matrix, the CARE {) becomes the continuous algebraic 1he Vectoo (t) is given by

Lyapunov matrix equation (CALE) Uo (t) = —Kx(t)

T — —
AP+PA=-Q whereK = BTP andP is the unique positive semidefinite
It is well known that the unique positive semidefinite solution of the CAkREI)' : hat in th
solution P to the CARE () exists if the pair(A B) is Moreover, as known byl it can be seen that in the
controllable (stabilizable) and the pai(A Q1/2) is optimal regulator problem, the optimal cost can be written
’ as

observable (detectable). J—xIp
The characteristics and structures of these equations =%

have considerable role in many areas of modernwherexg € R" is the initial state of the considered system

engineering such as optimal contr@|13], robust control  (2) and P is positive definite solution of the CAREL)
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Then as it is denoted by2]] an interpretation ofr (P) is The following Lemmas are used to prove the main
thattr (P) / nis the average value of the cost giveniyas  results of this study.

Xo varies over the surface of a unit sphere. Lemma 1.1. B] If X € R™" is a symmetric matrix, then

Also, we should denote that many of numerical the following inequality holds:
algorithms for obtaining the solutions of these equations <X <
have been reported in the literatug§, 7,8,9,10,24,32]. AN < X < A (X1
The computing of these equations’s analytic solutions arq emma 1.2. p§ For any matrixA € R™™ and positive
rather complicated in applications when the dimensionssemidefinite  matrices X,Y € R™" such that
of system matrices are high. The exact solutions of thesg > vy > (>)0, it holds thatATXA > ATYA with strict

equations require a lot of heavy computational burdenspequality if X andY are positive definite and is of full
and have time consuming. Therefore, in order to save timggnk.

and decrease the burden of computation, instead of tthemma 1.3. P9 Let XY € R™" be two symmetric
exact solution, only the bounds as an approximation o matrices a{nd there exisf an intedesuch that 1< k < n
the exact solution are sometimes needed. For example, f hen for any index sequencesliy < iy < --- <i, < n.
some applications such as stability analy@®[without " © =L =12 =0 = Te= T
the burden of hard calculations, bounds are needed only

for solution matrices. Furthermore, the solution bounds of K k k
the CARE () can be used to treat many control problems. Zi/\it (X) An-t+1(Y) < Zi/\it (XY) < Zi/\it (X) A (Y).
t= t= t=

Therefore, during the past decades, numerous
researchers have been devoted to obtain the bounds fdeemma 1.4. P9 Let X,Y € R™" be two symmetric
the solution of the continuous algebraic Riccati matrix matrices and there exist an integesuch that 1< k <n.
equations and a number of results have been reported ifthen for any index sequencesli; <ip <--- <ig <n,
the literature. These results include matrix bounds for thewe have
solution matrix {,8,16,17,20,21,26,30,32] and some k k k
characteristics of the solution matrix, specially Z\)\it (X)+ Zl)\nftJrl (Y) < ZAit (X+Y)
eigenvalues1,14,18,22], trace [L4,22] and determinant t= t= t=
[14,22] bounds are derived. However, matrix bounds are k k
more general and usefull since they can be used to derive < 21)\& (X)+ Zi)\t (Y).
the other quantities. = =

This work is organized as following: Firstly, by Leémma 1.5. P§ Let A€ R™" be a positive definite
generating the equivalent forms of the continuousMatrixand IeIBbemanxmmatnx. Then for any positive
algebraic  Riccati matrix equation, using matrix SemidefiniteX e RT,
inequalities, matrix identities, and some linear algebrai A B
techniques, we propose new upper matrix bounds for the <BT X
solution of the CARE 1). Also, we improve the

algorithms which similar to previous studies to obtain Lemma 1.6. P9 Let A,B, andX be n— square matrices
tighter solution bounds. Lastly, we give illustrative (A B) >0.Th
> 0. Then,

) >0< X >BTAIB.

examples to show that our results are more effective anguch that 5. v
less restrictive having compared with the some previous
results in some cases. +(B+B") <A+X.

In the following, letR™" andR"™ denote the sets of
nx n and n x m real matrices. LetX € R™" be an
arbitrary symmetric matrix, then the eigenvalues<adire
arranged so that1 (X) > A2(X) > --- > Ap(X). For any
X € R™" the singular values oX are arranged so that A (P < A (DTD A1 [(Q+KTK)DD]
s1(X) = %(X) = -+ = Spinmn} (X). If X € R™, let 1P =M (BD) =5 ey =1 ©
XT, X1 tr(X), and detX) denote the transpose, the _ _ o ,
inverse, the trace, and the determinanXofrespectively. ~Where K is any matrix stabilizing A + BK (i.e.,
Write X > (>)0, if X is a positive semidefinite (positive ReAi (A+BK)) <0 for alli) and the nonsingular matrix
definite) matrix. ForX andY are symmetric matrices of D and positive definite matrii are chosen to yield the
the same size, iX —Y > 0, then we writeX > Y. If  LMI(linear matrix inequality)

X >Y, then we have\ (X) > Ai(Y), i=1,2,...,n. This THT T

expression is called Weyl's monotonicity principle. If (A+BK)'D'D+D'D(A+BK) < -M.
X > 0, thenX?/2 denotes the unique positive semidefinite This eigenvalue upper bound is always computed if there
square root oK. The identity matrix inR™" is shown by  exists a unique positive semidefinite solution of the CARE

. (2.

Lemma 1.7. [L1] The positive semidefinite solutio? of
the CARE () has the following upper bound on its
maximal eigenvalue:
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2 Main Results

In this section, we propose the upper solution matrix
bounds to the CAREL) and the algorithms for obtained
bounds.

Theorem 2.1.Let P be the positive semidefinite solution
of the CARE (1) and the positive semidefinite matiit;
is defined by

M; = BBT — AXiAT + An (X1) AAT (4)
where the positive constant matdx is chosen as
BB — AX,AT > 0. (5)
ThenP has the following upper bound
T [Q+X A (X)X 2 12
P< v T a1
An(M1) [ +An(X2) p1 (I + X "ATAX )
=Pn (6)
where the nonnegative constant p; for
p = An (X1) [1+ 2 (AX )] is defined by
p = ;
L= 20 (My)

12 + 4Xn (My) 1/2
X{“1+[xl)\l(Q+Xlll—)\n(X1)X12)] - 0

Proof. By multiplying (-1) the CARE ) and adding
X[+ PAXATP to both sides of the CAREL], we have
P[BB" —AXAT]P=Q+X*

— (PA=X; D Xy (PA= X )T

whereX; is a positive constant matrix. Using Lemma 1.1
and the definition4) of the matrixM;, from the above
equation, we write the following inequality:

PMP < Q+ Xy 4+ An (X1) (PAX, T+ X TATP — X 2)(8)

ForP > 0, from Lemma 1.5, we get the following positive
semidefinite block matrix

<P1/2 0) (Pl/Z pl/2

PY20)\0 ©
By pre-and post- multiplying the first row bj({lAT and
the first column b)AXl‘l, from the matrix (9), we obtain

PP

9 ELINO

—1aT —1 y—1aT
X[ TATPAXCEXIATRY g (10)
PAX; P
and then applying Lemma 1.6 td@) shows that
X IATP+ PAX L < XIATPAXL P (12)

Therefore, combining the inequalitie®) @nd (1) yields
PMiP < Q+ X1 —An (%) X2

+ An (%) (XIATPAX L 4P, (12)

and from Lemma 1.1 and Lemma 1.22 becomes
An(M1)P? < Q-+ X1 A (Xg) X 2
+ An (%) (X TATPAX T4 P) . (13)

Furthermore, applying Lemma 1.1 and Lemma 1.2 to the
right side of (L3) gives

An(M1) P? < Q4+ Xyt = An (%) X 2
+ A (%) As (P) (X TATAXC+1). - (14)
Utilizing Weyl's monotonicity principle for {4) implies

Q+ Xt An(X1) x%*2
+An (X0) A1 (P) (X IATAX L 41)

and by Lemma 1.4, we obtain
An(M1)AF (P) < A [Q+X = An (X1) X1 7]

+ An (X)) A1 (P) AL (X TATAX T 4-1) (15)
By solving (15) with respect to\; (P), we get

An(M1)AZ(P) < Ay

1
MP) < 5
2+ 4An (M) v
’ {“” [xhl(mxfl—m(xl)xlz)]
. (16)

Substituting 16) into (14) and then solving the obtained
inequality according t® gives the upper bound).

Now, we can develop the following iterative algorithm
to obtain sharper solution estimates depending on the
upper boundP,; for the CARE ():

Algorithm 2.1.
Step 1.SetSy, = Ry, whereR, is defined by §).
Step 2.Calculate
1/2
)

. { [ (17)

fori=1,2,.... ThenSy’s are also upper bounds for the
solution of the CARE ).
1/2

)
Applying Lemma 1.1 to18) gives
the definition ) of p;, we obtain

1/2
)}

Proof. Settingi = 1 in (17), we have
(18)
1
< (]
5., < {/\ 1 [Q+xll—/\n(x1)x12
(20)

1

An(My1)

QX 1= An (X)X 2
+An (X1) (X:I.ilATSliflelil Sy,

Q+ X 1= An (X)X 2
+An(X2) (X TATSIAX Sy,

1
S = {/\n(Ml) [
QX 1= An (X0) X 2 ]}1/2
n(M1) [ +2n(X0) A1 (Si) (X PATAX 1) |
(19)
SinceSy, = Ry, by using Lemma 1.1 and Lemma 1.2, and
n(M1) [ +An(X2) p1 (X, TATAX 41
= 810'

(@© 2016 NSP
Natural Sciences Publishing Cor.


www.naturalspublishing.com/Journals.asp

1478

N SS ¥

Z. Ulukdk, R. Turkmen: On the Upper Solution Bounds of tren@nuous ARE

Assume that,, , <S;, ,. Then by Lemma 1.2, we write

1 [QEXTE - An(Xa) X2
Sl _ (My) +)\n(xl)(
o [QEX =X X P
- (M1) | +An (X2) (
=Sy
By the mathematical induction method,
concludedthaf, < S, , <--- <5, <Sy,.
Corollary 2.1. Let the positive semidefinite matrif
satisfy (1). Then

1
P< {_
s (B)
where the positive constant is chosen such th&B' >
aAAT and the positive constant

1 1/2
Q+Ep{(a2|+ATA)” =P, (22)

a2+ S(A)+/ (a2 + £ (A)* + 402 (B) A1 (Q)
20 (B)

pi =

such as, (B) # 0.

Theorem 2.2. The positive semidefinite matridl, is
defined by

My = BB — Xo+ An(X2) | (23)
where the positive constai} is selected by
BB" — X, > 0. (24)

Then the positive semidefinite soluti®to the CARE ()
has the upper bound

< { 1 [Q+AT (X21_)\n(X2)X22)A} }1/2

An (M) )p2 (I + X5 TATAX, )
=Pp (25)
where the nonnegative constant p» for
Ho = An (X2) [1+ 2 (A%, 1)] is defined by
1
= 26
P2 =55 2) (26)

o Ly [Ho+ 420 (M2) 1/2
2T XA [QHAT (X[ = An (Xa) X 2) Al '
Proof. By multiplying (-1) the CARE 1) and adding
PXoP +ATX, *Ato both sides of the CAREL], we have
P(BB" —X) P = Q+ATX; A
—(P=ATX; ) X (P—ATX, )T

1/2
X ATS, AT+ ) } }

1/2
X IATS, LA Sy ) ] }
(21)

it can be shows that

whereMj is given by @3). From the matrix 9), by pre-
and post- multiplying the first row b)9\TX2‘ 1 and the first

column byX, *A gives

—1py-1 —1
ATX, fl><2 A ATX; P -0
PX, 1A P

and by application of Lemma 1.6 to the above block matrix

ADGIP P IA< AT PG IALP (28)

Therefore from the inequalitie27) and 8), it is obtained
PMP = Q+AT (x2—1 —An(X2) X5 ) A

+An (X2) (ATX, 1PX; TA+P) .
Consequently, following the above procedures, along the

lines of Theorem 2.1's proof, it can be obtained the upper
boundP,, for the CARE ().

Algorithm 2.2.
Step 1.SetS,, = Ry, wherePR,; is defined by 25).
Step 2.Compute

&—{_1 [Q+AT(><2‘1—An<xz>x2‘2)A ””2
T A0 (Mg) [ A0 (X2) (Asz‘lszi,lxz‘lA+Szifl)(29)

fori=1,2,.... ThenS,'s are also upper bounds for the
solution of the CAREY).

Corollary 2.2. Let the positive semidefinite matriR
satisfy (1). Then

P< {% [Q+%p§ (B2 +ATA)] }1/25 Rz (30)

where the positive constafitis chosen such th@&B" >
Bl and the positive constant

B A+ (B2 S(A) 14822 (B) A (Q)
P2 = 2<% (B)
(31)
for sh (B) # 0.
Theorem 2.3. Define the matricess andU
M3 = BB" 4 AXAT (32)
and
U=<(A)n/2l+AX*! (33)

whereXs is a positive definite matrix. Then the positive

When the above inequality is rearranged by using Lemmas°lutionP to the CARE () satisfies

1.1, itis written
PMoP = Q+AT (X5 1 — An(X2) X5 %) A

+ An(X) (PX5 'A+ATX, 1P) (27)

1 ! 1/2
= {An(Mg) [+A1(>3<e> (X5 2+ pa(l +UTU))H
=Pg3 (34)
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where the nonnegative  constant p3 for
ps = [1+2(U)] A1 (Xs) is defined by
p = ;

27 220 (Mg)

2 1/2
u3 +4)\n (Mg) :|
X + Z _ 35
{“3 [xAl(Q_x31+A1(x3)x32) (35)
so that the positive constantis given by ).
Proof. By addingX; !+ PAXATP to both sides of the
CARE (1) , we get
PMsP = Q—X; 2+ (PA+ X3 1) X3 (PA+ X5 1) (36)
whereX3 > 0 and by use of Lemma 1.1, fron3§), we
write
PMgP<Q-X5?!

+ A (Xs) (PAATP + PAXg 1+ X5 TATP+X5%) . (37)

Furthermore, for the terAAT P of (37), using Lemma 1,
it can be written
PAATP < &2 (A) P? (38)
and
P2< P (P)IPY? = A (P)P<nP  (39)

respectively. Thus from the inequalitie38f and @9), it
can be seen that

PAATP < 2 (A)nP. (40)

Substituting 40) into (37) and organizing to the matriyd

(from (33) leads to

PMaP < Q— X3 1+ A1 (Xs) X352
P(S(AN/2+A%™) ]

+(SAn/2+A5Y"P

= Q- Xz 1+ A (%) (X2 +PUHUTP).  (41)

Now by pre-and post- multiplying the first row of the
matrix (9) by UT and the first column of the matri®) by
U, and by Lemma 1.6, we can write

uTPuUTP
PU P

+ A1(X3)

) >0=PU+U'P<UTPU+P (42)

Therefore, from the inequalitied ) and @2), we have

PMgP < Q— X314+ A1 (Xs) (X3 2+UTPU+P)  (43)

As Lemma 1.1 and Lemma 1.2 are considered, frd8),(
we can write

An (M) P? < Q= X3 +A1(Xs) (X5 2+ UTPU +P)
< QX'+ A (X) A1 (P) (X5 2+UTU +1), (44)

Solving @5) in according toA1 (P) shows that

2 1/2
M3 +4An (MB) ]
+ = _
8 {“3 [xAl(Q_x3 LA (Xe) X5 2)
= P3.
Substitutingps into (44) and then solving the obtained
inequality regarding t® gives the upper boun@,s.
Algorithm 2.3.
Step 1.SetS3, = Rz, whereR3 is defined by 84).
Step 2.Work out

1 [Q-Xg A (Xe) X512 12
= {An (Mz) [+A1<>3<s> (U8 U+ ) ] } (46)

fori=1,2,.... ThenSy's are also upper bounds for the
solution of the CAREY).
Theorem 2.4. Define the matriceM, andV
Mz = BB" + X, (47)
v=xA 48)
=3 "

where the positive definite matriXs. Then the positive
solutionP to the CARE () holds

P< {% {Q—AT (X4_1+)\1(X4)X4_2)A] }1/2

(Ma) | +A1(Xa) pa (1 +VTV)
=Py (49)
where the nonnegative  constant py for
pa = [1+2 (V)] A1 (Xa) is defined by
1
= 50
P4 = S3 ) (50)

Yz + 4An(Mg) "
X {H4+ [le)\l [Q_ATA(X[1+)\1(X4)X4_2)A]} }

such that the positive constamts given by @).

Proof. By adding PX4P+ATX4‘1A to both sides of the
CARE (1) for X4 > 0, by definition 47) of My, we get

PMsP = Q—ATX, 1A (51)
+ (P+ATX4 DX (P+ATX D)

Applying Lemma 1.1 to%1) and using the inequalitydd),
from the definition 48) of V, we can easily write

PMsP < Q+AT (X, 1+ A1 (Xa) X, 2) A

and utilizing Weyl's monotonicity principle and Lemma '7 1 n BN
1.4imply that + M%) [P (1 +X; A (2|+x4 A) P
An(M3)AZ (P) < A1 [Q—Xg 14 A1 (Xs) X5 ] = Q+AT (x4 +A1(Xa) Xy %) A
+A1(X3) AL (P) (1 + S (U)). (45) + A1 (Xq) (PV+VTP). (52)
(@© 2016 NSP
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Therefore, continuing from the previous theorem'’s proof

/’;'L E;Sr it:']embzofl”@”“' h = <1.5087 00303) 5= < 1.3338 00403)
4. W=\ 0030320209/ "= | 0.0403 20122
Step 1.Set&,, = R, wherePy is defined by 49).
Step 2.Check out with X4 =3I, n =2.01917.

12 Also, some studies in recent years have resulted in the
S = { 1 {Q-FAT (X4_1+)\1(X4)X4_2)A]} following:

An(Mg) | +21(Xa) (VTS4HV +S4,) The upper bound given by Corollary 2.1 i [gives

) _
fori=1,2,.... ThenSy's are also upper bounds for the Py4= <3622263§8 2052263128
solution of the CAREY). ’

in matrix theory is the continuity argumen2g]. If a

matrix Y is singular, consideY + l. Choosed > 0such _ (2.4579 00387) tr (P) < 5.1188 det(P) < 6.5387
thatY + el is invertible for alle, 0 < € < 8. Then, we can us = { 0.0887 26600 1" (P) = 51188 det(P) < 65387
say that it is obtainable a matrix = ¢l, € > 0 such that
BB" + X is nonsingular. Replace singulaBB™ by o
nonsingular BB" + €l. Then upper bound given by < 27067 _0.0445>

) ,tr (P) <5.551Q det(P) < 7.4302

The upper matrix bound developed in Theorem 228 [

Theorem 2.4 is always computable for the positive Rizo = _0.0445 20238

constante is chosen so thaBB' + &l > 0. So far, all of

the presented upper matrix bounds of the solution for thewith Ry = Xgl and we can also denote that this bound can
CARE (1) have the restriction tha (B) # 0. Therefore,  not be computed foR, = x4*1_

we say that Theorem 2.4 is to improve this restriction.  The proposed upper bound 1] leads to

Remark 2.2. As Chen and Lee i4] and Zhang and Liu (6.8384 00002

in [3Q] pointed out, to give a general comparison betweenR,y = 0.0002 68385

any parallel upper bounds for the same measure is either

difficult or actually impossible. Since many upper boundsfor € = 0.014.
in literature include different parameters depend on Inview of the above numerical experiments, it appears
various assumptions, the mentioned comparisons also cahat our bounds give more precise solution estimates than
find that it is hard to compare the sharpness of our uppethe previously reported results.

bounds to the similar results. For this reason, we can givgxample 3.2. [7] Consider the CARE1L) with

the following numerical examples to show the

) tr (P) < 13677,det(P) < 46.7647,

effectiveness of our results. A 05 0 B_ 20 Q- 10

~\1-25)>7"\(00/)>\03
3 Numerical Examples Then, the unique positive definite solutiBrto the CARE

(Dis
Example 3.1. RQ] Consider the CARE1) with _ (06689 01228
ple 3.1. B4 x Pexact= (0.1228 05879 °

~-305 - 40 3 02 In this examplesy(B) = 0 and this means th@B' is
A= (0.1 0'2) ;BB = (O 1> Q= (0'2 3 ) : singular, so the upper matrix bouR}; and P, cannot

work for this case. However, the upper boudsandPy4
Then, the unique positive definite solutiBrto the CARE  according to the arbitrary selections of matridgsandX,
Qis and the algorithms (5 iterations) corresponding to these

0.3967 00936 bounds are as following:
Pexact= ( ' ) ,tr (P) = 2.357Q det(P) = 0.7689

0.0936 19603 <3.3988 00717) <3.1916 00267)
IDu3 = 53 =

. .0717 12974 )~ .0267
Our upper bound$?,, and P4, and the algorithms (2 0.0 9 0.0267 09988

iterations) corresponding to these bounds are as thgith X3 =1,
following:

3.0956 —0.4006 2.5762 —0.1640
PU3: 7%_

—0.4006 17915 ~\ —0.1640 13689
P2_< 2.5997 —0.0114) Sz—< 2.5910 —0.0260)
uz2 — ) -

—0.0114 20346 —0.0260 19681 With Xz = 0.5/,
with ¥, — ( 32 0 Pu_ ( 43299 ~13930) o _ ( 28038 ~12757
2=\ 0 02) W=\ _1.3930 62479 )™~ | —1.2757 56711
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