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Abstract: We obtain sufficient conditions for the existence of a noillasary solution of higher order nonlinear neutral diféetial
equations with distributed deviating arguments. For thigppse, we use the Banach contraction principle.
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1 Introduction g € C([to,) x [a,bi],[0,)), i=1,2, f € C([tp,»),R)
andg € C(R,R), i = 1,2. We assume thay;, i = 1,2,

In recent years, the existence of nonoscillatory solution o satisfy local Lipschitz condition ang (x)x > 0, i = 1,2,
the first, second and higher order neutral differentialfor x # 0.
equations have been studied. We refer the reader to the
papers 1-12] and the references cited therein.

Inthe presentarticle, we consider the following higher-
order nonlinear neutral differential equations

[r®) x(t) + ptyxct — 7))

The aim this paper is to extend the results@}ftp the
case of distributed deviating argument and give sufficient
conditions for the existence of a bounded nonoscillatory
solution of @) and @).

b .
+(=1)" { ! o (t, &E)gr(X(t — &))déE Letm= max{ by, b, T}. By a solution of {) we mean
a a functionx € C([t; — m,»),R), for somet; > to, such
b, that x(t) + p(t)x(t — 1) is n—1 times continuously
= J,, &g x(t=¢))ds — f(t)} =0 (@ differentiable and r(t)(xt) + p)xt — 7)™ s
continuously differentiable oft;, ) and such thatl) is
and satisfied fort > t;. Similarly, Letmy = max{by,by,bs}.
by (n-1)7" By a solution of ) we mean a function
r(t) {x(t)—k ﬁ(t,E)x(t—E)dE] ] X € C([t1 — my,o),R), for somet; > to, such that
& X(t) + f:j B(t,&)x(t — &€)d& is n— 1 times continuously
b . . ~ _
+(_1)n{ " (6, E)g (x(t — £))dE differentiable andt (t)(x(t) + 25 p(t, &)x(t — £)dg)n-Y
a is continuously differentiable oft;,») and such that2)
by is satisfied fot > t;.
- [Catme- - 10 <0 @ :
2
where n > 2 is a positve integer, T > 0, As it is customary, a solution oflf (or (2)) is said to
bb > a > 0i = 1,23 p € C([to,»),R be oscillatory if it has arbitrarily large zeros. Otherwise

), Ao, ;
p e C(lto,®) x [as,bs],R), r & C([to,®),(0,0)), the solution is called nonoscillatory.
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2 Main Results

In Whag[ follows, we usgz the notation
Qu(s) = [t au(s.§)dE andQy(s) = 2 da(s, &)dE.
Theorem 1. Assume thad < p(t) < p< 1and
" € Qwdud i
/to /to@Ql(u) uds< oo, =12
and 3)
0 SSFPZ
——|f(u)|duds< .
/to / gl f(Wlduds< o

Then () has a bounded nonoscillatory solution.

Proof. Let A be the set of all continuous and bounded

functions ontg, «) with the sup norm. Set
A={XxeA: My <X(t) <My, t=to},

whereM; andM, are positive constants such that
pM2 4+ M1 < M.

Let a € (pM2 + M1,My), Lj, i = 1,2, denote Lipschitz
constants of functionsgi, i = 1,2, on the setA,
respectively and- = max{L1,L2}, B = maxea{Gi(X)},

i =1,2, respectively. From3), we can choosef > to,

t1 >to+ max{bl, by, T} 4)

sufficiently large such that

© (a__t\N—2 rs
(n—12)!/t (Sr(ts)) /tl[Ql(U)Bl+|f(u)|]duds

<M2_aa t>tl7 (5)

00 _ n-2 S
- )!/t Sl s [Q2(u)B2+ | f(u)|]duds

(n—2 r(s)
<a—Mi1—pMy, t>14 (6)
and

L [ (s—t)"2 s
P+ (n_z)!/t r(s) /ﬁ (Q1(u) +Q2(u))duds
< 61 <1 t>ty, (7)

where6; is a constant. Define a mappifig: A— A as
follows

(TX)(t)

a—pOxt—1)+ (n_—lz),

x fo U e { 211 (u, €)ga(x(u—&))dE
— 22 0p(u, &) ga(x(u— &))dE — f(u) [duds

t>t
(TX)(ta),

o <t <Lty

Obviously, Tx is continuous. Fot > t; andx € A, using
(5) and @), respectively, we obtain

1 ® (s—t)"2
(Tx)(t)<a+(n_2)!/t o

S by
< [ ™ 0w E)a(xtu-— £))0€ - f<u>] duds

1

1 = (s—t)"2 fs
a+(n_2)!/t I‘(S) /tl[Ql(u)Bl+|f(U)|]dudS

/tm (s—t)"2 /‘S|:/a‘l:z Qo (U, E)ga(x(u— &))dE + f(u)} duds

r(s) t

>0 —pMy—

® (a_t\N—2 s
(n—12)!/t (Sr(ti) /tl[QZ(U)BZHf(U)Hduds

> M.

Thus, we proved thaT A C A. We observe thaf is a
bounded, closed, convex subset/af We now show that
T is a contraction mapping ot Forxy,x; € Aandt > t;,

(Txa)(t) = (Txe) (1) < P(E) e (t — T) = Xe(t — T)| + iy X

o et Ji( 5103 (u, )l ga0a (U €)) — Gae(u—&))|dE

T 122 (1, €) [goxa (U ) —gz(Xz(U—f))|dE>dudS

or using )
[(Txa)(t) = (Tx) (V)] < [Ix2 =2

s (p+ (n—Lz)! /too e /S<Q1(u) +Q2(u))duds)

r(s) t1
< B1[x1 — X2

This implies with the sup norm that
ITx = Txo|| < 61f[x1 —Xel|,

where in view of {), 61 < 1, which shows thaf is a
contraction mapping oA. As a resultT has a fixed point
X € A, andx is a positive solution ofX). This completes
the proof.

Theorem 2. Assume that < p < p(t) < po < « and )
holds. ThenZ) has a bounded nonoscillatory solution.

Proof. LetA be the same set as in the proof of Theodem
Set

A={XeNA :Mzg<X([t) <My, t>to},
whereMs andMy are positive constants such that
poMs + My < pMy.

Let a € (poMs+ Mg, pMy), Li, i = 1,2, denote Lipschitz
constants of functionsg;, i = 1,2, on the setA,
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respectively and. = max{L1,L}, B = maxeca{gi(xX)},
i = 1,2, respectively. In view of3), we can choose a
1y > to,

t1+ 17 > to+ max{by, by} (8)
sufficiently large such that
1 ® (s—t)"=2 s
(n—2)!/t o /H[Ql(u)ﬁl+|f(u)|]duds
<pMg—a, t=t, 9)
1 = (s—t)"2 s
(n—2)!/t o /H[Qz(u)ﬁz+|f(u)|]duds
<a—Mg—poMs, t=>tg (10)
and
1 L e (s—t)"2 s
(s [ S @+ Qalw) duas)
<B<l t>t, (11)

where6, is a constant. Define a mappifig: A — A as
follows

(TX)(1)
ﬁ{a—x(wr)jL oy fir (
% o | R au(u,€)gn(x(u— €))dE

— J22 Ga(u, ) ga(x(u— §))déE — f(u)} duds},

t>t
(TX)(t1), to<t<ts.

Obviously, Tx is continuous. Fot > t; andx € A, using
(9) and (L0), respectively, we have

1 1 . (S_t_.[)n—Z
(TX)(t) < p(t+ '[) |:a+ (n— 2)' /I+T r(S)

< [ aflql(u,f)gl(x(u—f))df— f(u)}dud%

s—t—7)"2

r(s)

1
<=la
p
1 © (s—t)"2 s
+(n_2)!/t I’(S) /tl[Ql(u)Bl‘F”(U)Hdud%
<My
and
(Tx)(t)
1 ® (s—t—1)"?
g p(t+1) oa-xt+n)- (n—2)! /t+r r(s)
s by
X/w o QZ(Uaf)gz(X(U—E))dE+f(u)}dud%
= % a—My
3 __$\n-2 s
o S [ ) duds
> Ms.

Thus, we showed thaft A C A. We observe thaf is a
bounded, closed, convex subset/of We now show that
T is a contraction mapping ok Forxy, X, € Aandt > ty,
from (11)

[(Tx) (1) = (Tx)(V)]

X1 —X2
< Il

X <1+ (nl_z)! /tw (s—t)"2 /S(Ql(u)Jer(u))duds)

r(s) ty
< By [x1 — x| [.
This implies with the sup norm that
[Tx1 = Tx|| < 62f[x1 — Xz,

where in view of (1), 6, < 1, which proves thal is a
contraction mapping o\. ConsequentlyT has a fixed
point x € A, and x is a positive solution of X). This
completes the proof of Theoren

Theorem 3. Assume that-1 < p < p(t) < 0 and )
holds. Thenl) has a bounded nonoscillatory solution.

Proof. LetA be the same set as in the proof of Theofem
Set

A={xeA :Ms<X(t) < Mg, t=>to},
whereMs andMg are positive constants such that
Ms < (1-|— p)Me.

Let a € (Ms, (14 p)Ms), Lj, i = 1,2, denote Lipschitz
constants of functionsgi, i = 1,2, on the setA,
respectively and- = max{L1,L2}, B = maxea{gi(X)},
i = 1,2, respectively. By making use of3); we can
choose d; > tg sufficiently large satisfyingd) such that

0o _ n-2 S
_:Lz)!/t (Sr(ts)) /tl[Ql(U)ﬁl—FIf(u)Hduds

(n
<(1+pMs—a,

t>1,

(o] _ n-2 S
: )!/t L) /tl[Qz(U)ﬁz—FIf(u)Hduds

(n—2 r(s)
Sa-Ms, t=>t
and
L ® (s—t)"=2 s
P (n_z)!/t r(s) /tl (Qu(u) +Q2(u))duds
<6<l t>ty,

where0s is a constant. Consider the operaiorA — A
defined by

()
a—ptxt—rt
| S e D £)ae

— 22 a(u, €)ga(x(u— £))d€ - f(u)}duds >t
(TY(h), t<t<t

Clearly, Tx is continuous. Since the rest of the proof is
similar to that of Theoren, it is omitted.
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Theorem 4. Assume that-o < pg < p(t) < p< —1and
(3) holds. ThenX) has a bounded nonoscillatory solution.

Proof. LetA be the same set as in the proof of Theofem
Set

A={xeA:M;<x(t)<Msg, t=>to},

whereM; andMg are positive constants such that
—poM7 < (—p— 1)M8.

Let a € (—poM7,(—p — 1)Ms), Li, i = 1,2, denote
Lipschitz constants of functiorg, i = 1,2, on the seh,
respectively and. = max{L1,Lz}, B = maxea{gi(X)},

i = 1,2, respectively. By using3j, one can choose a

ty > to sufficiently large satisfying8) such that
®© (o t\N=2 /s
(n—12)! /t e r(ts)) /tl [Q2(u)B2+ | f(u)|]duds
<(=p-D)Mg—a, t=t
© (a__+t\N—2 rs
(n—12)! A s r(ts)) /tl [Qu(u)B1+[f(u)|]duds
Sa+ pO)M77 t>1;
and
- n—-2
Fl (1+ (nl_Z)! /t = r(ts)) / (Qu(u )+Q2(U))duds)
<O<l, t>ty,

where#f, is a constant. Define a mappifig: A— A as
follows

(TX)()

(s—t—1)"2

r(s)

t+r H{—0—=X(t+71)+ (n}2)! e
<5 [Jal (U, E)ga(x(u— £))dé
%2 00(u,€)ga(x(u— £))d — f(u) | duds,

t>t
(TX)(t2),

Clearly Tx is continuous. Since the rest of the proof is
similar to that of Theorer, it is omitted.

p(t, &)d¢ <

fo <t <ty

Theorem 5. Assume tha < f p<1land

(3) holds. ThenZ) has a bounded nonoscillatory solution. .

Proof. LetA be the same set as in the proof of Theofem
Set

A={xe AN <x(t) <Ny, t>to},
whereN; andN; are positive constants such that
PN> + Np < No.

Let a € (pNo + Ng,Np), Li, i
constants of functionsg;, i

2, denote Lipschitz
,2, on the setA,

L
1

respectively and. = max{Ly,Lz}, B = maxea{gi(X)},
i = 1,2, respectively. From3), one can chooseta > t,
t1 > to+ max{by, by, bs} (12)

sufficiently large such that

© (a__t\N—2 s
(n—12)! /t = r(ts)) /tl [Qu(u)BL+|f(u)[]duds
<N2—a, t>ty,

d n-2 /s
(n 12) / (Sr s)) /tl [Q2(u)B2+ | f(u)|]duds
<a—Ni— pNZ t>t

and
© (a__+\N—2 rs

P+ (nl_z)!/t & r(tg) /tl(Ql(u)+Q2(U))dudS
<6<l t>t,

wherefs is a constant. Consider the operaforA — A
defined by

(TX)(t)
as Pt E)x(t—&)dE+
= Z.Jt r@; thl[ a0 (U, €)ga(x(u— &))dE

_ a22 O2(u,&)g2(x(u—&))dé — f(u)]dudst >t
(Tx)(t2), to<t<t

Clearly T xis continuous. Since the remaining part of the
proof is similar to that of Theorer it is omitted.

Theorem 6. Assume that-1 < p < f p(t,&)dé <0and
(3) holds. ThenZ) has a bounded nonoscnlatory solution.

Proof. LetA be the same set as in the proof of Theodem
Set

A={xe ANz <X(t) <Ng, t>to},

whereN3 andN, are positive constants such that

N3 < (14 p)Ns.

Let a € (N3, (14 p)Ng), Li, i = 1,2, denote Lipschitz
constants of functionsg;, i = 1,2, on the setA,
respectively and. = max{Ly, L2}, B = maxeca{gi(X)},

i = 1,2, respectively. From3), we can choose & >t
sufficiently large satisfyingl(2) such that

© (a_ t\N—2
1)/t(st)

(n r(s)
<(A+p)Ng—a,

/ " [Qu(wBy + | F(u)[)duds

t>1,
[T i+ ) auds
=20k 1y h T
<a—Ns3, t>ty
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and

] n-2
291 o t /(Ql( ) + Qz(u)) duds

> 1,

96<1

wheregg is a constant. Consider the operaiorA — A
defined by

(TX) (t)

)
t

o o
- e ftl[ D1, (u,£)ga(x(u— £))d

P2 (U, E)ga(x(u— £))dE f(u)} duds t > 1,
(TX)('[]_), o <t <ty

Clearly Tx is continuous. Since the rest of the proof is
similar to that of Theoren, it is omitted.

Example 1.Consider the equation

ot Ak
[é {x(t)—k(e ejz)x(t—s)] 1

[ [ xe-0e - [xe-epae

+e (e —2¢%+e) — 18e‘2t} =0,

(13)

and note thah = 3, r(t) = &, p(t) = %*—2 qut, &) =
Q(t,&) =1,091(X) = g2(x) = xand f(t) = e (e’ — 26 +
e) — 182, The conditions of Theorerhare satisfied. In
factx(t) = exp—t) is a nonoscillatory solution ofl@).

3 Conclusion

We considered the existence of bounded nonoscillatory

solutions of the higher order nonlinear neutral

nonhomogeneous equations with distributed deviating

arguments. We presented four theorems figrgnd two
theorems for 2) depending on the ranges @it) and
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