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Abstract: We obtain sufficient conditions for the existence of a nonoscillatory solution of higher order nonlinear neutral differential
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1 Introduction

In recent years, the existence of nonoscillatory solution of
the first, second and higher order neutral differential
equations have been studied. We refer the reader to the
papers [1–12] and the references cited therein.

In the present article, we consider the following higher-
order nonlinear neutral differential equations
[

r(t) [x(t)+ p(t)x(t − τ)](n−1)
]′

+(−1)n
[

∫ b1

a1

q1(t,ξ )g1(x(t − ξ ))dξ

−
∫ b2

a2

q2(t,ξ )g2(x(t − ξ ))dξ − f (t)

]

= 0 (1)

and
[

r(t)

[

x(t)+
∫ b3

a3

p̃(t,ξ )x(t − ξ )dξ
](n−1)

]′

+(−1)n
[

∫ b1

a1

q1(t,ξ )g1(x(t − ξ ))dξ

−

∫ b2

a2

q2(t,ξ )g2(x(t − ξ ))dξ − f (t)

]

= 0, (2)

where n > 2 is a positive integer, τ > 0,
bi > ai > 0, i = 1,2,3, p ∈ C([t0,∞),R),
p̃ ∈ C([t0,∞) × [a3,b3],R), r ∈ C([t0,∞),(0,∞)),

qi ∈ C([t0,∞) × [ai,bi ], [0,∞)), i=1,2, f ∈ C([t0,∞),R)
and gi ∈ C(R,R), i = 1,2. We assume thatgi , i = 1,2,
satisfy local Lipschitz condition andgi(x)x > 0, i = 1,2,
for x 6= 0.

The aim this paper is to extend the results of [6] to the
case of distributed deviating argument and give sufficient
conditions for the existence of a bounded nonoscillatory
solution of (1) and (2).

Let m= max{b1,b2,τ}. By a solution of (1) we mean
a functionx ∈ C([t1 − m,∞),R), for somet1 > t0, such
that x(t) + p(t)x(t − τ) is n − 1 times continuously
differentiable and r(t)(x(t) + p(t)x(t − τ))(n−1) is
continuously differentiable on[t1,∞) and such that (1) is
satisfied fort > t1. Similarly, Let m1 = max{b1,b2,b3}.
By a solution of (2) we mean a function
x ∈ C([t1 − m1,∞),R), for some t1 > t0, such that
x(t) +

∫ b3
a3

p̃(t,ξ )x(t − ξ )dξ is n− 1 times continuously

differentiable andr(t)(x(t) +
∫ b3

a3
p̃(t,ξ )x(t − ξ )dξ )(n−1)

is continuously differentiable on[t1,∞) and such that (2)
is satisfied fort > t1.

As it is customary, a solution of (1) (or (2)) is said to
be oscillatory if it has arbitrarily large zeros. Otherwise,
the solution is called nonoscillatory.
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2 Main Results

In what follows, we use the notation
Q1(s) =

∫ b1
a1

q1(s,ξ )dξ andQ2(s) =
∫ b2

a2
q2(s,ξ )dξ .

Theorem 1. Assume that06 p(t)6 p< 1 and

∫ ∞

t0

∫ s

t0

sn−2

r(s)
Qi(u)duds< ∞, i = 1,2

and (3)
∫ ∞

t0

∫ s

t0

sn−2

r(s)
| f (u)|duds< ∞.

Then (1) has a bounded nonoscillatory solution.

Proof. Let Λ be the set of all continuous and bounded
functions on[t0,∞) with the sup norm. Set

A= {x∈ Λ : M1 6 x(t)6 M2, t > t0},

whereM1 andM2 are positive constants such that

pM2+M1 < M2.

Let α ∈ (pM2 + M1,M2), Li , i = 1,2, denote Lipschitz
constants of functionsgi , i = 1,2, on the set A,
respectively andL = max{L1,L2}, βi = maxx∈A{gi(x)},
i = 1,2, respectively. From (3), we can choose at1 > t0,

t1 > t0+max{b1,b2,τ} (4)

sufficiently large such that

1
(n−2)!

∫ ∞

t

(s− t)n−2

r(s)

∫ s

t1
[Q1(u)β1+ | f (u)|]duds

6 M2−α, t > t1, (5)

1
(n−2)!

∫ ∞

t

(s− t)n−2

r(s)

∫ s

t1
[Q2(u)β2+ | f (u)|]duds

6 α −M1− pM2, t > t1 (6)

and

p+
L

(n−2)!

∫ ∞

t

(s− t)n−2

r(s)

∫ s

t1
(Q1(u)+Q2(u))duds

6 θ1 < 1, t > t1, (7)

whereθ1 is a constant. Define a mappingT : A−→ Λ as
follows

(Tx)(t)

=







































α − p(t)x(t− τ)+ 1
(n−2)!

×
∫ ∞
t

(s−t)n−2

r(s)

∫ s
t1

[

∫ b1
a1

q1(u,ξ )g1(x(u− ξ ))dξ

−
∫ b2

a2
q2(u,ξ )g2(x(u− ξ ))dξ − f (u)

]

duds,

t > t1
(Tx)(t1), t0 6 t 6 t1.

Obviously,Tx is continuous. Fort > t1 andx ∈ A, using
(5) and (6), respectively, we obtain

(Tx)(t)6 α +
1

(n−2)!

∫ ∞

t

(s− t)n−2

r(s)

×

∫ s

t1

[

∫ b1

a1

q1(u,ξ )g1(x(u− ξ ))dξ − f (u)

]

duds

6 α +
1

(n−2)!

∫ ∞

t

(s− t)n−2

r(s)

∫ s

t1
[Q1(u)β1+ | f (u)|]duds

6 M2

and

(Tx)(t)> α − p(t)x(t − τ)−
1

(n−2)!
×

∫ ∞

t

(s− t)n−2

r(s)

∫ s

t1

[

∫ b2

a2

q2(u,ξ )g2(x(u−ξ ))dξ + f (u)

]

duds

> α − pM2−
1

(n−2)!

∫ ∞

t

(s− t)n−2

r(s)

∫ s

t1
[Q2(u)β2+ | f (u)|]duds

> M1.

Thus, we proved thatTA ⊂ A. We observe thatA is a
bounded, closed, convex subset ofΛ . We now show that
T is a contraction mapping onA. Forx1,x2 ∈ A andt > t1,

(Tx1)(t)− (Tx2)(t)|6 p(t)|x1(t − τ)− x2(t − τ)|+ 1
(n−2)! ×

∫ ∞
t

(s−t)n−2

r(s)

∫ s
t1

(

∫ b1
a1

q1(u,ξ )|g1(x1(u− ξ ))−g1(x2(u− ξ ))|dξ

+
∫ b2

a2
q2(u,ξ )|g2(x1(u− ξ ))−g2(x2(u− ξ ))|dξ

)

duds

or using (7)

|(Tx1)(t)− (Tx2)(t)|6 ||x1− x2||

×

(

p+
L

(n−2)!

∫ ∞

t

(s− t)n−2

r(s)

∫ s

t1
(Q1(u)+Q2(u))duds

)

6 θ1||x1− x2||.

This implies with the sup norm that

||Tx1−Tx2||6 θ1||x1− x2||,

where in view of (7), θ1 < 1, which shows thatT is a
contraction mapping onA. As a result,T has a fixed point
x ∈ A, andx is a positive solution of (1). This completes
the proof.

Theorem 2. Assume that1< p6 p(t)6 p0 < ∞ and (3)
holds. Then (1) has a bounded nonoscillatory solution.

Proof. Let Λ be the same set as in the proof of Theorem1.
Set

A= {x∈ Λ : M3 6 x(t)6 M4, t > t0},

whereM3 andM4 are positive constants such that

p0M3+M4 < pM4.

Let α ∈ (p0M3+M4, pM4), Li , i = 1,2, denote Lipschitz
constants of functionsgi , i = 1,2, on the set A,
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respectively andL = max{L1,L2}, βi = maxx∈A{gi(x)},
i = 1,2, respectively. In view of (3), we can choose a
t1 > t0,

t1+ τ ≥ t0+max{b1,b2} (8)

sufficiently large such that

1
(n−2)!

∫ ∞

t

(s− t)n−2

r(s)

∫ s

t1
[Q1(u)β1+ | f (u)|]duds

6 pM4−α, t > t1, (9)

1
(n−2)!

∫ ∞

t

(s− t)n−2

r(s)

∫ s

t1
[Q2(u)β2+ | f (u)|]duds

6 α −M4− p0M3, t > t1 (10)

and
1
p

(

1+
L

(n−2)!

∫ ∞

t

(s− t)n−2

r(s)

∫ s

t1
(Q1(u)+Q2(u))duds

)

6 θ2 < 1, t > t1, (11)

whereθ2 is a constant. Define a mappingT : A −→ Λ as
follows

(Tx)(t)

=











































1
p(t+τ)

{

α − x(t + τ)+ 1
(n−2)!

∫ ∞
t+τ

(s−t−τ)n−2

r(s)

×
∫ s
t1+τ

[

∫ b1
a1

q1(u,ξ )g1(x(u− ξ ))dξ

−
∫ b2

a2
q2(u,ξ )g2(x(u− ξ ))dξ − f (u)

]

duds

}

,

t > t1
(Tx)(t1), t0 6 t 6 t1.

Obviously,Tx is continuous. Fort > t1 andx ∈ A, using
(9) and (10), respectively, we have

(Tx)(t)6
1

p(t + τ)

[

α +
1

(n−2)!

∫ ∞

t+τ

(s− t− τ)n−2

r(s)

×

∫ s

t1+τ

[

∫ b1

a1

q1(u,ξ )g1(x(u− ξ ))dξ − f (u)

]

duds

]

6
1
p

[

α

+
1

(n−2)!

∫ ∞

t

(s− t)n−2

r(s)

∫ s

t1
[Q1(u)β1+ | f (u)|]duds

]

6 M4

and

(Tx)(t)

>
1

p(t + τ)

[

α − x(t + τ)−
1

(n−2)!

∫ ∞

t+τ

(s− t− τ)n−2

r(s)

×

∫ s

t1+τ

[

∫ b2

a2

q2(u,ξ )g2(x(u− ξ ))dξ + f (u)

]

duds

]

>
1
p0

[

α −M4

−
1

(n−2)!

∫ ∞

t

(s− t)n−2

r(s)

∫ s

t1
[Q2(u)β2+ | f (u)|]duds

]

> M3.

Thus, we showed thatTA⊂ A. We observe thatA is a
bounded, closed, convex subset ofΛ . We now show that
T is a contraction mapping onA. Forx1,x2 ∈ A andt > t1,
from (11)

|(Tx1)(t)− (Tx2)(t)|

6
||x1− x2||

p

×

(

1+
L

(n−2)!

∫ ∞

t

(s− t)n−2

r(s)

∫ s

t1
(Q1(u)+Q2(u))duds

)

6 θ2||x1− x2||.

This implies with the sup norm that

||Tx1−Tx2||6 θ2||x1− x2||,

where in view of (11), θ2 < 1, which proves thatT is a
contraction mapping onA. Consequently,T has a fixed
point x ∈ A, and x is a positive solution of (1). This
completes the proof of Theorem2.

Theorem 3. Assume that−1 < p 6 p(t) 6 0 and (3)
holds. Then (1) has a bounded nonoscillatory solution.

Proof. Let Λ be the same set as in the proof of Theorem1.
Set

A= {x∈ Λ : M5 6 x(t)6 M6, t > t0},

whereM5 andM6 are positive constants such that

M5 < (1+ p)M6.

Let α ∈ (M5,(1+ p)M6), Li , i = 1,2, denote Lipschitz
constants of functionsgi , i = 1,2, on the set A,
respectively andL = max{L1,L2}, βi = maxx∈A{gi(x)},
i = 1,2, respectively. By making use of (3), we can
choose at1 > t0 sufficiently large satisfying (4) such that

1
(n−2)!

∫ ∞

t

(s− t)n−2

r(s)

∫ s

t1
[Q1(u)β1+ | f (u)|]duds

6 (1+ p)M6−α, t > t1,

1
(n−2)!

∫ ∞

t

(s− t)n−2

r(s)

∫ s

t1
[Q2(u)β2+ | f (u)|]duds

6 α −M5, t > t1
and

−p+
L

(n−2)!

∫ ∞

t

(s− t)n−2

r(s)

∫ s

t1
(Q1(u)+Q2(u))duds

6 θ3 < 1, t > t1,

whereθ3 is a constant. Consider the operatorT : A−→ Λ
defined by

(Tx)(t)

=



























α − p(t)x(t − τ)

+ 1
(n−2)!

∫ ∞
t

(s−t)n−2

r(s)

∫ s
t1

[

∫ b1
a1

q1(u,ξ )g1(x(u− ξ ))dξ

−
∫ b2

a2
q2(u,ξ )g2(x(u− ξ ))dξ − f (u)

]

duds, t > t1

(Tx)(t1), t0 6 t 6 t1.

Clearly, Tx is continuous. Since the rest of the proof is
similar to that of Theorem1, it is omitted.
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Theorem 4. Assume that−∞ < p0 6 p(t)6 p<−1 and
(3) holds. Then (1) has a bounded nonoscillatory solution.

Proof. LetΛ be the same set as in the proof of Theorem1.
Set

A= {x∈ Λ : M7 6 x(t)6 M8, t > t0},

whereM7 andM8 are positive constants such that

−p0M7 < (−p−1)M8.

Let α ∈ (−p0M7,(−p − 1)M8), Li , i = 1,2, denote
Lipschitz constants of functionsgi , i = 1,2, on the setA,
respectively andL = max{L1,L2}, βi = maxx∈A{gi(x)},
i = 1,2, respectively. By using (3), one can choose a
t1 > t0 sufficiently large satisfying (8) such that

1
(n−2)!

∫ ∞

t

(s− t)n−2

r(s)

∫ s

t1
[Q2(u)β2+ | f (u)|]duds

6 (−p−1)M8−α, t > t1

1
(n−2)!

∫ ∞

t

(s− t)n−2

r(s)

∫ s

t1
[Q1(u)β1+ | f (u)|]duds

6 α + p0)M7, t > t1

and

−1
p

(

1+
L

(n−2)!

∫ ∞

t

(s− t)n−2

r(s)

∫ s

t1
(Q1(u)+Q2(u))duds

)

6 θ4 < 1, t > t1,

whereθ4 is a constant. Define a mappingT : A−→ Λ as
follows

(Tx)(t)

=







































1
p(t+τ){−α − x(t + τ)+ 1

(n−2)!

∫ ∞
t+τ

(s−t−τ)n−2

r(s)

×
∫ s
t1+τ

[

∫ b1
a1

q1(u,ξ )g1(x(u− ξ ))dξ

−
∫ b2

a2
q2(u,ξ )g2(x(u− ξ ))dξ − f (u))

]

duds},

t > t1
(Tx)(t1), t0 6 t 6 t1.

Clearly Tx is continuous. Since the rest of the proof is
similar to that of Theorem2, it is omitted.

Theorem 5. Assume that06
∫ b3

a3
p̃(t,ξ )dξ 6 p< 1 and

(3) holds. Then (2) has a bounded nonoscillatory solution.

Proof. LetΛ be the same set as in the proof of Theorem1.
Set

A= {x∈ Λ : N1 6 x(t)6 N2, t > t0},

whereN1 andN2 are positive constants such that

pN2+N1 < N2.

Let α ∈ (pN2 + N1,N2), Li , i = 1,2, denote Lipschitz
constants of functionsgi , i = 1,2, on the set A,

respectively andL = max{L1,L2}, βi = maxx∈A{gi(x)},
i = 1,2, respectively. From (3), one can choose at1 > t0,

t1 > t0+max{b1,b2,b3} (12)

sufficiently large such that

1
(n−2)!

∫ ∞

t

(s− t)n−2

r(s)

∫ s

t1
[Q1(u)β1+ | f (u)|]duds

6 N2−α, t > t1,

1
(n−2)!

∫ ∞

t

(s− t)n−2

r(s)

∫ s

t1
[Q2(u)β2+ | f (u)|]duds

6 α −N1− pN2, t > t1

and

p+
L

(n−2)!

∫ ∞

t

(s− t)n−2

r(s)

∫ s

t1
(Q1(u)+Q2(u))duds

6 θ5 < 1, t > t1,

whereθ5 is a constant. Consider the operatorT : A−→ Λ
defined by

(Tx)(t)

=































α −
∫ b3

a3
p̃(t,ξ )x(t − ξ )dξ+

1
(n−2)!

∫ ∞
t

(s−t)n−2

r(s)

∫ s
t1

[

∫ b1
a1

q1(u,ξ )g1(x(u− ξ ))dξ

−
∫ b2

a2
q2(u,ξ )g2(x(u− ξ ))dξ − f (u)

]

duds, t > t1

(Tx)(t1), t0 6 t 6 t1.

ClearlyTx is continuous. Since the remaining part of the
proof is similar to that of Theorem1, it is omitted.

Theorem 6. Assume that−1< p6
∫ b3

a3
p̃(t,ξ )dξ 6 0 and

(3) holds. Then (2) has a bounded nonoscillatory solution.

Proof. Let Λ be the same set as in the proof of Theorem1.
Set

A= {x∈ Λ : N3 6 x(t)6 N4, t > t0},

whereN3 andN4 are positive constants such that

N3 < (1+ p)N4.

Let α ∈ (N3,(1+ p)N4), Li , i = 1,2, denote Lipschitz
constants of functionsgi , i = 1,2, on the set A,
respectively andL = max{L1,L2}, βi = maxx∈A{gi(x)},
i = 1,2, respectively. From (3), we can choose at1 > t0
sufficiently large satisfying (12) such that

1
(n−2)!

∫ ∞

t

(s− t)n−2

r(s)

∫ s

t1
[Q1(u)β1+ | f (u)|]duds

6 (1+ p)N4−α, t > t1,

1
(n−2)!

∫ ∞

t

(s− t)n−2

r(s)

∫ s

t1
[Q2(u)β2+ | f (u)|]duds

6 α −N3, t > t1

c© 2016 NSP
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and

−p+
L

(n−2)!

∫ ∞

t

(s− t)n−2

r(s)

∫ s

t1
(Q1(u)+Q2(u))duds

6 θ6 < 1, t > t1,

whereθ6 is a constant. Consider the operatorT : A−→ Λ
defined by

(Tx)(t)

=































α −
∫ b3
a3

p̃(t,ξ )x(t − ξ )dξ+
1

(n−2)!

∫ ∞
t

(s−t)n−2

r(s)

∫ s
t1

[

∫ b1
a1

q1(u,ξ )g1(x(u− ξ ))dξ

−
∫ b2

a2
q2(u,ξ )g2(x(u− ξ ))dξ − f (u)

]

duds, t > t1

(Tx)(t1), t0 6 t 6 t1.

Clearly Tx is continuous. Since the rest of the proof is
similar to that of Theorem1, it is omitted.

Example 1.Consider the equation
[

et
[

x(t)+ (
e−2t +2

e3 )x(t −3)

]′′
]′

−

[

∫ 2

1
x(t − ξ )dξ −

∫ 3

2
x(t − ξ )dξ

+e−t(e3−2e2+e)−18e−2t
]

= 0, (13)

and note thatn = 3, r(t) = et , p(t) = e−2t+2
e3 , q1(t,ξ ) =

q2(t,ξ ) = 1, g1(x) = g2(x) = x and f (t) = e−t(e3−2e2+
e)−18e−2t . The conditions of Theorem1 are satisfied. In
factx(t) = exp(−t) is a nonoscillatory solution of (13).

3 Conclusion

We considered the existence of bounded nonoscillatory
solutions of the higher order nonlinear neutral
nonhomogeneous equations with distributed deviating
arguments. We presented four theorems for (1) and two
theorems for (2) depending on the ranges ofp(t) and
p̃(t,ξ ), and gave an example to support usability of our
results.
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