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Abstract: In this paper, we obtain some results concerning annuldomegontaining all the zeros of a given polynomial. These
annular regions have radii in terms of the Bell numbers, Retibers, Stirling numbers, Fibonacci numbers, Motzkin ners, Catalan
numbers, and/or the Schroder numbers. Also, we show, bysnefeexamples, that for some polynomials our results shespme of
the known results in this direction.
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1 Introduction convergence and increase computational efficiency of
these methods (for example, s@4,R9]). These methods
which are of course very useful, because they give
approximations to the zeros of a polynomial can possibly
become more efficient when combined with the results
dealing with the region containing all the zeros of a
polynomial, because an accurate estimate of the annulus
gontaining all the zeros of a polynomial can considerably
reduce the amount of work needed to find exact zeros,
and so there is always a need for better estimates for the
region containing all the zeros of a polynomial. Several
being of theoretical interest, find applications in many monographs have been written on this subject and related

areas of applied mathematics such as coding theorySUPiect of approximation theory (for example, S8,

cryptography, combinatorics, number theory, 25,26,32).
mathematical biology and engineering,,21,25,28, To see how the study of the location of zeros of a
30]. In particular, problems dealing with location of zeros polynomial can be useful in control theory, let us consider
of the polynomial play an important role, for example, in a transfer functiorH(s) in a dynamical system. If we
solving digital audio signal processing problen8][  have an input function, sa(s), and an output function
control engineering problems 5]f and eigenvalue v (g e defineH(s) = Y. In discrete time systems,
problems in mathematical physic4. X(s) y

Since Abel and Ruffini proved that there is no generalthe function can also be written a$(z) = % and is
algebraic solution to polynomial equations of degree fiveoften referred to as the pulse transfer function. The zeros
or higher, the problem of finding a region containing all z of the system satisfyf(z) = O, and polesz; of the
the zeros of a polynomial became much more interestingsystem satisfyX(z;) = 0. Poles and zeros of a transfer
and over a period a large number of results have beeffunction are the frequencies for which the value of the
provided in this direction. It may be remarked that theretransfer function becomes infinity or zero, respectively.
are methods, for example Ehrlich-Aberth’s type (sée [ The values of the poles and the zeros determine whether
17,27)) for the simultaneous determination of the zeros of the system is stable, and how well the system performs.
algebraic polynomials, and there are studies to accelerat€ontrol systems, in the simplest sense, can be designed

Let p(z) = ag + a1z + apZ + &> + --- + a2’ be a
polynomial of degre®. By the Fundamental Theorem of
Algebra (historically, the first important result concermi
the roots of an algebraic equatiorg(z) has exactlyn
zeros in the complex plane, counting multiplicity. But this
theorem does not say anything regarding the location o
zeros of the polynomial, that is, the region which contains
some or all of the zeros of a polynomial. Problems
involving location of the zeros of a polynomial, besides
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by assigning simple values to the poles and zeros of th& heorem 3. All the zeros of the polynomial(p = ap+
system. Physically reliable control systems must have ayz+-+anz", a, #0, lie in the annulust < |z| <r,, where
number of poles greater than or equal to the number of is the unique positive root of the equation

zeros. Systems that satisfy this relationship are called

proper. So, the problem of finding the roots of either |an|2" + [an-1|2" "t + - + |au|z— |ag| = O,

Y(z) =0 o0rX(z) =0, and the location of these roots are

very important from a stability point of view. As a matter and r2 is the unique positive root of the equation

of fact, the closer the zeros are to the imaginary axis, the 1

greater the stabilizing effect. This, for example, somewha 30| + [aa|2+ - +[an-1|2" " —[an[Z' = O.
illustrates how the problem of finding the location of

) Although the above result gives an annulus containing all
zeros can be of great importance.

the zeros of a polynomial, it is implicit, in the sense, that
in order to find the annulus containing all the zeros of a
polynomial, one needs to compute the zeros of two other
! polynomials.
In a bid to get an explicit bound, Datt and Govil(]
(see also DewarllR]) proved

The paper is organized as follows. In Sectne give
a brief overview of the subject, as of when it started til
date. Our results are formulated and proved in Secion
and thereafter, some examples in SecBon

Theorem 4. Let p(z) = 2"+ a, 12" +... +a;z+ap, be a
P i | ial of A i fi i
2 Preiminaries polynomial of degree n and 0<rjn<a}1>§l|aj|, as defined in

Theorem2. Then p(z) has all its zeros in the ring shaped
We start by presenting the earliest known result in thisregion

subject. 2|
< |zl < 1+ oA, 2
Theorem 1(Gauss). Let p(z) = ag + a;z+ apz> + agZ + 2(1+ A" 1 (An+1) <lds< 0 @
.-+ anZ" be a real polynomial. Then(p) has no zeros
outside the circlézl = R, where R=_max (n2%/2|a; ). where Ag is the unique positive root of the equation
1<j<n x=1-1/(1+AX" in the interval (0,1). The upper

H i ¢ arbit | bound 1+ AgA in the above given regiofi2) is best
G oweve, Ts 496 Cﬁse °d ?hr 'Rrary reba ?rkcomp’ﬁfh possible and is attained for the polynomial
auss 18 in showed thaR may be taken as the ) =A@t fz+1).

positive root of the equation:
In case one does not wish to solve the equaxien
2“—21/2(|a1|z”*1+---+ lan|) = 0. 1-1/(1+Ax)", then in order to apply the above result
of Datt and Govil L0}, one can apply the following result
Around 1829, Cauchy7] (also, see the book of alsodue to Dattand GovilD], whichin every case clearly
Marden PR3, Theorem 27.1, p. 122]) derived more exact gives an improvement over Theoréhof Cauchy [].
bounds for the moduli of the zeros of a polynomial than

those given by Gauss, by proving the following Theorem 5. Let p(2) = 2"+ an-12" ' +... + &1z+ao, be a
polynomial of degree n and

0<j<n-1

n-1 .
Theorem 2(Cauchy). Let p(z) = 2" + zoasz, be a A=_max |aj|.

gpmplex polynomial. Then all the zeros dfplie in the  Then p(z) has all its zeros in the ring shaped region
isc
{z:|4<n}c{z:|7 <1+A}, |ao| <1+ <1_ 1 )
1 > = P Eree
where A= ,max 1|aj |, and n is the unique positive root 2(1+A)" " (An+1) (1+A)"
j<n—

of the real coefficient equation

Since, alwayq 1— % < 1, the above Theorerd
—Jan- 12"t~ fan_ 22 2~ — faglz—[ao] =0 (1) o\ AFA
in every situation sharpens Theor@due to Cauchy.
The result is best possible and the bound is attained when
p(2) is the polynomial on the left hand side(dj. Although, since the beglnnmg binomial coefficients
defined byC(n,k) = -7 n =l 0! =1 (in the sequel, we

If one applies the above Theoredrof Cauchy to the  will interchange betweent(n j) and Cn as it deems
polynomialP(z) = Z"p(1/z) and combine it with Theorem convenient) have appeared in the derlvatlon or as a part of
2, one easily gets closed expressions of bounds, the Fibonacci's numbers
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defined byFo =0,F; =1, andF; = Fj_1 +Fj_>for j >2  zeros of §fz) lie in the annulus C= {z:r1 < |7] <r3},
have not appeared either in implicit bounds or explicit where

bounds for the moduli of the zeros. Diaz-Barref[ K Kk 1/k
proved the following result, which gives circular domains f— min C(n,k)AB](bB;-1)" ™ &g
containing all the zeros of a polynomial where binomial 1<k<n Ajn a
coefficients and Fibonacci's numbers appeatr. and

n - . 1/k
Theorem 6. Let p(z) = Jzaasz (@j#0, 0<j<n)bea 2= { S A - }

= - K(bR. )0k :
complex monic polynomial. Then all its zeros lie in the disk 1sksn | C(n, k)AkB (bBj—)" an

Ci={zeC:|zZ<ri}orCy={ze C:|Z <ry}, where
Here, B, = ; r*"~1-K and A, = cr" + d<", where c, d
on— 1Cn+l

r, = max{ (

are real constants and r,s are the roots of the equation
1<ken kZCQ |an k| s q

x> —ax—b=0Iin WhICh a,b are strictly positive real
numbers. For > 2, ZC (n,k)(bBj_1)" *BXA = Ajy.

r = max< & —— Ian_kl},
1§k§”{ Ce2F Furthermore, @n,K) is the binomial coefficient.

where Fj are the Fibonacci’'s numbers, ai@] the

binomial coefficients. Theorem 10. Let p(z) = %akzk a#0,1<k<n)bea

) . non-constant polynomial with complex coefficients. Then,
Diaz-Barrero [L5] also proved the following result all its zeros lie in the ring shaped region

C={z:r1<|7 <ry}, where

(el

n

Theorem 7. Let p(z) = Z)ajzj (aj#0, 0<j<n)bea

= . . o ry= min
nonconstant complex polynomial. Then all its zeros lie in 1<k<n
the annulus C= {ze€ C:r1 < |7 <rz}, where and
3 2"FC 1/ an—k 1k
_ i j : r, = max {7‘ ‘} .
1= 21<J<n{ Fan ‘ } 1<k<n | 2¢RC(n, k
2 Fan anfj 1/j Here R is the K" Pell number, namely,?= 0, P, = 1 and
2 = §1<'<)f1{2“F-C'-‘ “an } . for k > 2, B = 2B_1 + B_,. Furthermore,
== I™i C(n,k) = ﬁlw are the binomial coefficients.
Here F being the Fibonacci's numbers, andi@he  Recently, Dalal and Govilg] unified the above results by
binomial coefficients. proving the following

The following result of Kim p2] also provides an annulus Theorem 11. Let Ak >0 for 1<k<n, and be such that
containing all the zeros of a polynomial. z Ac= 1 If p(z %akzk a#£0,1<k<n)isa

Theorem 8. Let p(z) = Z a (a£0, 0<k<n)be non -constant polynomial with complex coefficients, then
all the zeros of f2) Ilie in the annulus

a nonconstant polynom|al with complex coefficients. TherC = {z:r; < |z <r>}, where
all the zeros of (z) lie in the annulus A= {z:r1 < |7 <

1/k

r2}, where ri=_min {Aklg }

<K<n
1/k n_ 1/k
ry= min = , T, = max 2 —1lan«k . and 1/k
1<k<n |20 —1 1<k<n | Cf an 1 |ank /
rp= max<{ — | =2— )
2 1<k<n | A | an

Here again, as usual, Cdenote the binomial coefficients. _ _
The above theorem, by appropriate choice of the numbers

The following two results by Diaz-Barrero and Ay > 0 for 1 < k < n, includes as special case Theorems
Egozcue 16], also provide annuli containing all the zeros 6, 7, 8, 9 and10, and this has been shown in the Table 1 in
of a polynomial. the paper of Dalal and Govi[ p. 9612]. Recently, Govil

and Kumar 19 used Theoremll to obtain annular
Theorem 9. Let p(z) = A (a£0,1<k<n) be a regions involving the Motzkin, Catalan and Narayana
; numbers. Motivated by their paperd][and [33], we
non-constant complex polynomial. Then for R, all the  obtain more results in this direction.
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3 Main Results

Our first result connects thé&"—Bell number,B,, which

counts the partitions of a set with elements and the

Stirling number (of the second kind) with parametars

andk, denoted byS(n, k), that enumerates the number of

partitions of a set witin elements consisting disjoint,

nonempty sets. HereB, is defined recursively as:
n

By = 1, Bhi1 = ;C(n,k)Bk, for n > 0 and

k

a2,

Theorem 12. Let p(z) =

S(n,k) = 1)ic(k, j)(k—j)".

%akzk be a non-constant

complex polynomial of degree with ax #0, 1<k <n.
Then all the zeros of (@) lie in the annulus
C={z:r1 < |7 <rz}, where

1/k
ri= min {S(n k) ‘ao‘}
1<k<n
and "
B _
r, = max n_|8nk .
1<k<n | S(N,K) | an

Theorem 13. Let p(z) = %akzk be a non-constant

complex polynomial of degree with ax 20, 1 <k<n.
Then all the zeros of (@) lie in the annulus
C={z:r1 < |7 <rz}, where

_ 1/k
fy= min {C(Zn K, K)Cn—_«k @’}
1<k<n S—GCq ak
and
_ 1/k
fy— max SH-GCy an—k ’
1<ksn | C(2n =K, K)Chk | @n
where G = M is the A"—Catalan number and,S
the rd"—Schbder number given recursively by

n-1

S=1 S=S-1+ zosjsnflfj,fornz 1
J:

n
Theorem 14. Let p(z) = Zakzk be a non-constant

K=0
complex polynomial of degree with ax 20, 1 <k<n.
Then all the zeros of (g lie in the annulus
C={z:r1 < |7 <rz}, where
1/k
2

ry= min
1<k<n

{ (2(r1 k)hﬂk
Chp1—

and "
B Cni1—1 [@nk
f2= 1T|§a<)§1{C(n, KMk | an } ’

where G is the same as in Theoref8 and M is the
Kih—Motzkin number defined recursively as
2k+3 3k
k+3 k+3

MO:M]_:M_]_:].; Mk+l: Mk—|— Mk l,k>1.

n
Theorem 15. Let p(z) = Zakzk be a non-constant

K=0
complex polynomial of degree with ax 20, 1 <k<n.
Then all the zeros of (@) lie in the annulus
C={z:r1 < |7 <rz}, where
1/k
1l

}1/k

%akzk be a non-constant

r{ = min Ci
17 ken C(2n,n)

and
C(2n n)—1|an_x
C(n

o = max
1<k<n

Theorem 16. Let p(z) =

complex polynomial of degree with ax 20, 1 <k<n.

Then all the zeros of (@) lie in the annulus
C={z:r1 < |7 <ry}, where
1/k
ry= min { R @‘}
1<k<n | Fnpo — 1| ak
and "
Frio—1|an«
rp= maxq ——— |—
2 1<k<)§1{ F an } ’

where  denotes theA—Fibonacci number.

n
Theorem 17. Let p(z) = Zakzk be a non-constant

K=0
complex polynomial of degree with ax 20, 1 <k<n.
Then all the zeros of (g lie in the annulus
C={z:r1 < |7 <rz}, where

k C(n,k) | ag 1k
n=min {000 |2}
and i
n—1
f2=m n2 an )
1<k<n kan

For the proof of our results, we will need the following
emmas.

Lemma 1(see [20] for proof). In combinatorics,it is
known that for any re N, B, and Sn,k) are connected
as follows:

S(n k) =

||M3

(@© 2016 NSP
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Lemma 2. If M, is the ni"— Motzkin number and Cthe
nh—Catalan number, then for i 0,

n
Co=1; 3 C(nKMy=Coys.
k=0

For the proof of Lemm& see B, p. 99] and 12].

Lemma 3. If S, is the A"—Schider number, then for &
0,

n
C(2n—k K)Ch k=S
2 ‘

See [L1, p. 2782] for the proof Lemma.

Lemma4. Forn> 0,

n
z C(n—k,k) = Fny1,
K=0
where F is the A"—Fibonacci number.
Proof of Lemmad4: For n =0 andn = 1, we have that

Fp =1 andF, = 1+ 0= 1, respectively. Now , fon > 2,
assume that

n—1 n-2
C(n—1-kk)=F,, and C(n—2—-kk) =Fy_1.
2, 2

So by the Pascal recursion,

C(n—k k) =C(n—k—1,k—1)+C(n—k—1,k),

we have therefore (by the induction hypothesis, Fibonacci

recursion, an€(n,k) = 0, when eithek > nork < 0.)

n n

Cln—kk = 3 Cn—k_Lk_1 C(n—k—1,k
kgo (n ) kgo (n )+k; (n )

n-1 n-1
= Z Cin—k—1,k—1)+ Z)C(n—k— 1,k)
k=1 k=
n-2 n—-1
= Z C(n—k—2,k)+ Z)C(n—k—Lk)
=0 K=
=F1+Fn
=Fnt1

Lemma5. Let nk € N, with n > k Then

kC(n,k)=nC(n—1,k-1).
Proof of Lemméb:
n!

(n—Kk)!k!
n(n—1)!
k(= K)I(k—1)!
(n—1)!
(n—Kk)!(k—1)!
=nC(n—1,k-1).

k C(n,k) =k

=n

Lemma6. Forn> 0,
n
Y kC(nk) =n2"*.
K=1
Proof of Lemmeb: From Lemméab we obtain that

n n
C(n,k) = z nCn—1k—1)
k=1 k=1

Lemma 7. Let nm and r be nonnegative integers. Then
r
%C(m, k) C(n,r —k) =C(n+m,r).
k=

Proof of Lemma7: In general, the product of two
polynomials with degreems andn, respectively, is given

by

(Be) () E (B )<

where we use the convention tlzat= O for all integers >
mandb; = 0O for all integersj > n. Note by the binomial
theorem,

m+n
(L+x)™" = % C(m+n,r)x.
r=

Using the binomial theorem also for the exponents
and n, and then the above formula for the product of
polynomials, we obtain

mH-n
Z)C(er nr)X = (14x)™"
r=

=(1+x)"(1+x)"

- (Z}C(m,i)x‘) ( JZOC(n, j)xJ>
m+n

= Zo < ioC(m, K)C(n,r — k)) X,
k=

where the above convention for the coefficients of the
polynomials agrees with the definition of the binomial
coefficients, because both give zero for etk m and

j > n, respectively.

By comparing coefficients of , the identity follows
for all integers with 0< r < m+ n. For larger integer,
both sides of the identity are zeros due to the definition of
the binomial coefficients.
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Lemma8.Letn> 0. Then Proof of Theorem 16: From Lemmed, we have that
n 2 n Fk
C(n,k)* =C(2n,n). =1
3 cink?=cznn k; F,-1
The proof of LemmaB follows easily by settingn=r =n
in LemmaZ?. If we take Ay = %, thenA, > 0 and z Ac=1, and
Lemmao. Let n> 1. Then hence by applymg Theoreﬂnlfor this set of values ofy
- we get the desired annulus given be the radii in Theorem
n 16.
klek =Fn2—1. Proof of Theorem 17 From Lemm&b, we have that
- Dk C(n,k)
The proof of the above lemma follows by mathematical Z L/
induction. £, n2n-1
If we take A, = XS thenA, > 0 and 1, and
4 Proofs of Theorems Ac= g A Z A=

hence by applying Theorefri for this set of values ofy,
Proof of Theorem 12: From Lemmal, we have that we get the desired annulus given be the radii in Theorem

S(n 0 17.
Z

5 Computational Analysis

S(n,k)
If we take A, = Bn , then/c> 0 and z Ax=1 and We now give examples of polynomials for which our

hence by applying Theorefri for this set of values of\ results can compare favorably with the already known
we get our desired result. theorems as stated above.

Proof of Theorem 13: From Lemma3, we have that Example 1 Consider the polynomiah(z) = AL 012+

N C(2n—k,K)Ch_x . 0.1z+0.7.
& S G
If we takeA, — 2n K k)Cn € thenA, > 0 and z Ac—1. Table 1. Computational Analysis |
Theorems r ro Area of the annulus
and hence by applylng Theorehi for this set of values 7 0.6402 | 1.2312 3.4730
of Ay we get the required annulus and thus the proof of 8 0.4641 | 1.6984 8.382
Theoreml3is complete. 12 0.519249| 1.51829 6.39502
Proof of Theorem 14: From Lemma2, we have that 14 0.59943 | 1.31521 4.305399
16 0.7047 1.1187 2.37155
Z (n,k) Mk 1 17 0.55934 | 1.4095 5.25812

Cn+1 -

As one can observe from Table our Theorenil6 is
giving a significantly better bound than obtainable from

hence by applymg TheoremLforth|s set of values ofy the known Theorem§ and 8. In fact, the area of the

we get the desired annulus, and thus the proof of Theorer@?nulus containing all the zeros of the polynomér)
14|g complete. P obtained by Theorerh6 is about 2.37155, which is about

Proof of Theorem 15: From Lemma8. we have that  ©8-29% of the area of the annulus obtained by Thedfem
' and about 28.29% of the area of the annulus obtained by
k)? Theorens.

i C(n, 1
& C2nn)-1

If we take Ay = ” k Mk , thenA, > 0 and z Ac=1, and

Example 2Consider the polynomial(z) = 22 + 0.06Z2* +

0.292% +0.292>+ 0.29z-+ 0.001
If we takeAy = 530 n)) -, thenA, >0 andz A.=1, and It is clear from Table2 that our Theoreni7 gives a
better lower and upper bound for the polynomirk),
hence by applying Theoref for this set of values of\y, hence, a smaller area of the annulus containing all the
we get the desired annulus given in TheorEsn zeros of the polynomialp(z). Comparing the area
(@© 2016 NSP
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Table2: Computational Analysis I [16] J. L. Diaz-Barrero and J.J. Egozcue, Bounds for the riodu

Theorems ry ro Area of the annulug of ZerOS,Applied Math. Letter,sl?:993-996, 2004.
7 0.00012233] 1.6912 3.086 [17] L. W. Ehrlich, A modified Newton method for polynomials,
8 0.00055617| 1.158 42125 Comm. ACM10:107-108, 1967.
12 051925 | 1.51829 6.3950 [18] K. F. Gauss, Beitrage zur Theorie der algebraischen
12 0000132 | 1.5720 7 76345 GleichungenAbh. Ges. Wiss. Gottingeh Ges. Werke3:73-
15 0.000343 | 1.3063 5.36063 102, 1850. ,
17 0.0010776 | 1.07703 3.6442 [19] Narendra Kumar Govil, Prasanna Kumar, On the Annular

Regions Containing all the Zeros of a Polynomiapplied
Mathematics E-Note45:317-326, 2015.

[20] M. Griffiths and |I. Mezd, A Generalization of Stirling
Numbers of the second Kind via a Special Multisét,of
Integer Sequence&3:Article 10.2.5, 2010.

[21]W. Heitzinger, W. I. Troch and G. Valentin,
Praxisnichtlinearer Gleichungen Carl Hanser Varlag,
Miinchen-Wien, 1985.

[22] Seon-Hong Kim, On the moduli of the zeros of a

Acknowledgement polynomial,American Math. Monthly112:924-925, 2005.

[23] M. Marden, Geometry of polynomials, Amer. Math. Soc.,

The author is grateful to the anonymous referee for a  math. Surveys3, Amer. Math. Soc., Providence, RI. 1966.

careful checking of the details and for helpful comments[24] G. V. Milovanovic and M.S. Petkovic, On computatibna

that improved this paper. efficieny of the iterative methods for the simultaneous
approximation of polynomial zerosACM Trans. Math.
Software 12:295-306, 1986.
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