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Abstract: In this paper, we implement a relatively recent analytieghhique, called iterative reproducing kernel method VRK
to obtain a computational solution for fuzzy two-point bdary value problem based on a generalized differentighibincept. The
technique methodology is based on construct a solutiondridim of a rabidly convergent series with minimum size otukdtions
using symbolic computation software. The proposed tectmig fully compatible with the complexity of such problemhiie the
obtained results are highly encouraging. Efficacious cdatjfmnal experiments are provided to guarantee the proeethd to illustrate
the theoretical statements of the present method in ordehdw its potentiality, generality and superiority for soty such fuzzy
equation.
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1 Introduction complex and hard to be solved analytically under the
Hukuhara differentiability concept, in contrast with the
Fuzzy differential equations (FDES) are extensively usedMain results in 8,9). However, there exists no method
in modeling of complex phenomena arising in appliedthat yields an explicit solution for FDEs due to the
mathematics, physics, and engineering including fuzzycomplexities of uncertain parameters involving these
control theory, quantum optics, atmosphere, artificialequations. Anyhow, in most cases, analytical solutions
intelligence, image processing and dynamical systeims [ cannot be fou'nd, where the solutions of ;uch equations
2,3,4,5,6]. In general, the data collection and analysis for @€ always in demand due to practical interests.
physical phenomena is provided under uncertainty, whichlherefore, an efficient reliable computer stimulation is
may arise in the experiment part and measurementequired. To deal with this in more real|§t|c situations,
process. Historically, the first approach was the use offDEs are commonly solved approximately using
Hukuhara differentiability for fuzzy number valued numericaltechniquedp,11,1213,14].
functions. After while, Bede7] defined the generalized The aim of this paper is to extend the application of
differentiability of fuzzy number valued functions, the iterative reproducing kernel method under the
presented a counterexample that shows a fuzzy two-poirdssumption of strongly generalized differentiability to
boundary value problem is not equivalent to a fuzzyprovide a numerical approximate solution for fuzzy
integral equation by using Green’s function under thetwo-point boundary value problem1$16] in the
Hukuhara differentiability with fuzzy Aumann-type following form
integral in the integral equation as well as he proved that a
fuzzy two-point boundary value problem is usually very 3" (t) + p(t)y'(t) + q(t)y(t) = g(t),0 <t <1, (1)
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with fuzzy boundary conditions Remark 2.1 [32] The sufficient and necessary conditions
for [u, @] to define the parametric form of a fuzzy number
y(0) = 0,y(1) = 1, (2)  areas follows:

() » is a bounded monotonic increasing (nondecreasing)
whereyo,v1 € Ry andp(t),q(t),g(t) : R — Ry are left-continuous functiowa € (0, 1] and right-continuous
continuous fuzzy-valued functions apd [0,1] — Ry € for o = 0.

W3[0, 1] is unknown function to be determined, in which (ii) @ is a bounded monotonic decreasing (nonincreasing)
Ry denote the set of fuzzy numbers Bn left-continuous functioWa € (0, 1] and right-continuous

Reproducing kernel Hilbert space method is anfora =0.
analytical as well as numerical method based on theii) v <wfor0 < o < 1.
reproducing kernel theory, which has important
application in numerical analysis for handling different
kinds of differential equations 1[7,18], integral and
integro-differential equations  1P,20,21,22,23],
probability and statistics and others24[25. The
proposed method is found to be an effective and smar . N ; .
technique for finding a series solution for strongly linear getrlcfzstruct%rf 1S %lven ?]ytrt]hf Hausdorff distanie:
and nonlinear equations without linearization, **f <Y U {0} such tha
perturb_atio_n, or d!scretization. Here,_ it is possible tokpi D(u,v) = sup max{|u—v|,|7—7]|}.
any point in the interval of integration and as well the ag0,1]
approximate solutions and their derivatives will be
applicable, where the IRKM is not affected by Definition 2.1 [32] Letu, v € Ry . If there existaw € Ry
computation round off errors. On the other hand, manysuch that: = v + w, thenw is called theH -difference of
applications for different problems by using other u, v anditis denoted © v.
numerical algorithms can be found i26,27,28,29,30,
31]. Definition 2.2 [32] Let F' : (a,b) — Ry be a fuzzy

This article is organized as follows. In the next function. We sayF' is differentiable aty € (a, b), if there
section, we revisit briefly some necessary definitions ancexists an elemerft’ (¢y) € R, such that the limits
preliminary results of fuzzy calculus theory including the
strongly generalized differentiability. Formulation dfet . F(to+h) o F(to) . F(to) © F(to — h)

; . . . lim and lim ,

solution for handling such problem is presented inj,——o+ h 0+ h
Section 3 under the concept of generalized
differentiability. In Sectiont, the IRK algorithm is built ~ €Xist and are equal t6”(Zo). Here the limits are taken in
and introduced to illustrate the capability of proposedthe metric SpaC(era D).
approach with a numerical experiment and simulation By using the H-differentiability “Hukuhara

results. The last section is devoted to a short conclusion. differentiability conceptsany existence and uniqueness
results are obtained for the fuzzy Cauchy problem

y'(t) = f(t,y(1)), y(to) = yo,

wheref : [ty,00) x Rf — Rp. These results are based
The material in this section is basic in certain sense. Fopn the fact that the Hukuhara-type Cauchy problem is
the reader's convenience, we present some necessagguivalentto an Aumann-type integral equation similar to
definitions and notations from fuzzy calculus theory the classical case. The authors[8) had tried to extend
which be used throughout the paper. A fuzzy number  this correspondence to the case of fuzzy two-point
a fuzzy subset of the real line with a normal, convex, andboundary value problem. For the purpose of this analysis,
upper semicontinuous membership function of boundedve consider the following fuzzy two-point boundary

Foru, v € R and\ € R, the sumu + v and the
product\u are defined byu+v], = [u]o + [vV]a, [Au]o =
Aula, Ya € [0,1], where[u], + [v]o means the usual
addition of two intervals (subsets) & and A\[u], means
{he usual product between a scalar and a subskt dhe

2 Preliminaries

support. value problem

Let Ry denote the space of fuzzy real number, i.e., 9
the set normal, fuzzy convex, upper semicontinuous, y'(t) = f(ty(®),y' (1)), ®3)
compactly supported fuzzy sets : R — [0, 1]. For
0 < a < 1lsetfulp = {s € R | u(s) > a} and y(0) =10, y(1) =,
o = {seR|u(s)>0} (the closure of whereyo,v1 € Ry, f(t,y(t),y' (1)) = —pt)y'(t) —
{s € R | u(s) > 0}). Then thea-level set[u], is a  q(t)y(t) + g(t) andf : [to, o) X R x Rr — R isa

non-empty compact interval for all < o < 1 and any  continuous fuzzy function.

u € Rp. The notationul], = [u,, %] denotes explicitly

the a-level set ofu. We refer tou andw as the lower and Definition 2.3 [32] Let F' : (a,b) — Ry andty € (a,b).
upper branches om, respectively. We sayF is (1)—differentiable atty, if there exists an
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elementF’(ty) € Ry such that for allh > 0 sufficiently
near to0, exist F'(to + h) © F(to), F(to) © F(to — h)
and the limits (in the metri®)

F(to—l—h)@F(fo) _

h—0+ h

. F(to) © F(to — h) ,

1 = F"(tp).
i, 7 (to)

In this case, we denot&”(tq) by DiF(ty). Also, F is

(2)—differentiable if for allh > 0 sufficiently near ta,

existF'(to + h) © F(to), F'(to) © F'(to — h) and the limits
(in the metricD)

F(to+ h) © F(to)

li =
He0- h

F F(ty —
h—0— h

In this case, we denotl’ (t,) by D3 F(to).

3 Formulation of fuzzy two-point BVPs

i
In this section, we study the fuzzy BVPs under the

concept of strongly generalized differentiability in whic
the fuzzy differential equation is converted into equivdle
system of crisp system of BVPs for each type of

differentiability. These can be done if the boundary value

is fuzzy number, the solution is fuzzy function, and

(iiiy If DIF is (1)—differentiable, thenf(t) and
F(t) are differentiable functions such that
D3 F (0o = [F"(0). £ (1))

(iv) If DLF is (2)—differentiable, thery (¢) andf’ (¢)
are differentiable ~ functions such that

(D3, F(D)]a = £ (#),F (1)):

Definition 3.2Lety : [0,1] — Ry be afuzzy function and
n,m € {1,2}. Then, we say thag is a (n, m)—solution
for problem(3) on[0, 1], if D}y andD? , y exist on[0, 1],
whereD? . y(t) = f(t,y(t), Dpy(t)), y(0) = 0, y(1)
71 andyo,v1 € Rr.

Definition 3.4 Lety : [0,1] — Ry be afuzzy function and
n,m € {1,2}. Then, we say thaj is a (n, m)—solution
for problem(3) on an intervall  [0,1], if Dyy, D3 .y
exist such thatD}, , y(t) = f(t,y(t), Dyy(t)) onl.

Definition 3.5 Let n,m,n',m' € {1,2}. Suppose
y : [0,1] — Ry andty € (0, 1) such thaty(0) = o, if y

is a (n, m)—solution of (3) on (0,t) as well asy is a
(n', m")—solution of(3) on (¢g, 1) with y(1) = 1. Then,
we say thay is a generalized solution of the FBB).

Lety = [y, 7] be a(n, m)—solution for the FBVRA3)

with vo = [7,,50] andv = [y,,7]. Hereaftery is
alled the correspondingn, m)—system for the FBVP

consequently the derivative must be considered as fuzz h b di )
derivative. Furthermore, a computational algorithm is (3)- However,y has to be converted into crisp systems of

provided to guarantee the procedure and to confirm th&VPs: That is, there are four possible crisp systems for

performance of the proposed technique. For more details(,

we refer t0[32,33,34] and references therein.
Theorem 3.1Let F' : (a,b) — Ry be a fuzzy function

3) that can be represented as follow:
(1,1)—system

" _ 1
such thaf{F'(t)], = [f(t), f(t)] for eacha € [0, 1]. Thus, y )= é(t’y(t)’Dly(t))’
we have that - B 7' (t) = f(t,y(t), Diy(t)),

| () If. Fis (1)-—diﬁe_rentiallble, theni,andj are y(0) = 7,,5(0) = 7o,

d|ffe.r.ent|able .functlons. W|th[plF(t)]a =[f (1), f_(t)]. y(1) =7,,7(1) =7,

(i) If F is (2)—differentiable, thenf and f are
differentiable functions with D3 F(t)] = [ (t), f (t)].  (1,2)—system
Definition 3.1 Let ' : (a,b) — Ry andn,m = 1,2. . L
Then, F is (n, m)—differentiable atty € (a,b), if DL F y'(t) = f(t,y(t), D1y(1)),
exist on a neighborhood o as a fuzzy function and it is y"(t) = F(t,y(t), Diy(t)),
(m)—differentiable atty. The second derivatives df is _ _
denoted byD2 , F(t) for n,m = 1,2. y(0) =7,,5(0) = 7o,
Theorem 3.2 Let DiF (a,b) — Ry and y() =2,,5(1) =7
DIF : (a,b) — Ry be fuzzy functions such that
[F(t)]o = [£(t),7(®)), then (2,1)~system

(i) If DIF is (1)—differentiable, thery (t) andF (¢) _ )
are differentjable ~ functions  such that 7't = é(t’y(t)’DW(t))’
(DI F®)]a =[f (1), (#)). / B y"(t) = F(t.y(1). Day(2)),

(i) If D}F is (2)—differentiable, thery' (¢) andf (?) y(0) = 7,,5(0) = 7y,
are differentiable ~ functions such that T
(Do F(®)]a = (7). £ (1) y(1) =, 51) ="
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(2,2)—system

y'(t) = f(t,y(t), D3y(t)), Remark 4.1 [35] The spaceiV3[0,1] is a reproducing
iy F 1 kernel space if and only if for anye [0,1], I : f — f(¥)
g = f(t’_y(t)’ ny(t))’ is a bounded functional i#;[0, 1].
y(0) =7,,,%(0) =7, ,
(1) = ., 51) =7 Theorem 4.1 The space W3[0,1] is a complete
) =0p Y =" reproducing kernel space and the reproducing kernel

function can be written as

4 Application and numerical simulation 5 ,
pi(t)s', s < t,

Numerical technique is widely used by scientists and i=0

engineers to solve their problems. A major advantage for

numerical technique is that a numerical answer can be

obtained even when a problem has no analytical solution. =

However, result from numerical analysis is an

approximation, in general, which can be made as accurate )
as desired. The reliability of the numerical result will Proof. The proof of the completeness and reproducing

depend on an error estimate and bound, therefore thBroperty of i [0, 1] is similar to the proof irf35]. Now,
analysis of error and the sources of error in numericalSUPPOSER:(s) is the reproducing kernel function of the

methods is also a critically important part of the study of spacelV3' [0, 1]*3 then for each fixed < [0,1] and any
numerical technique. In this section, we derive an erroré(s) € W3 [0,1], s € [0,1], we have that

bounds for the present method in order to capture th u(s), Ry (s)) = u(t). Thus,

behavior of the solutions.
In order to solve the FBVR3) in the reproducing
kernel space, we firstly need to convert

ones throughout the cases of previgusm)—systems.
Letting u(t) = y(t) — t(y, —7,) — 7, andau(t) =

the
nonhomogeneous boundary conditions into homogeneous

(u(s), B () = 32w OV R (0

QR Qe

By applying the integration by parts for the second

(4)

7(t)—t(7,—70)—7,, then(1, 1) —system can be converted scheme of the right-hand of Equatiof), we obtain that

into the following form

u”(t) = f(t,u(t), Dyu(t)),
@’ (t) = f(t,u(t), Diu(t)),
u(0) =0, u(0) = 0,
u(l) =0, u(l) =0
Similarly  the (1,2)—system, (2,1)—system and

(2,2)—system have to be converted.

Definition 4.1 [35] Let £ be a nonempty abstract set aid
be the set of complex numbers. A functiah: ExFE — C
is a reproducing kernel of the Hilbert spabeif

(i) foreachz € E, K (-,x) € H,

(i) foreachz € Eandy € H, (¢ (-),K (-,z)) =
o (z).

Let W3[0, 1] be a Hilbert spacg35], which is defined
as follows
W3[0,1] = {u(t) | " (t) is absolutely continuous,

u(t) € Ly0,1], w(0) = u(1) =0, t € [0,1]},

while the inner product and the norm oF3[0,1] are
defined, respectively, as follows: For any functians),
v(t) € W3[0,1], we have

- 22 ( ( '

U, v) = u@(0)0@ (0) + u ()

(u,v) — (0)v*(0) /0 (t)
lu]l = v/ (u, u).

"

(t) dta

1 " " 2 . . P -1
/0 dQOR Qe =3 (—1) a0 (¢ RET (¢) 62

1) RO
+/O( 1) (¢) R (¢) dC.

Let ; = 2 — ¢, the first term of the right-hand side of
the above formula can be rewritten as

2
S (12 ) () R (0) [S).

J=0

After some simplification, Equatiof#) became’s

2

(u(s). Be () = > u (0) (R (0) = (~1)* " B (0)

SinceR; (s),u(s) € W3 [0, 1], it follows that

B (0) = (-1 RV (0) =0,
R (1)=0,i=0,1,2.
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So,

1
(w(s). B (Do = [ Q) (-1 B

Now, for eacht € [0,1], if R,(s) satisfies
(—1)*R®(s) = 6(t—s), where § is dirac-delta
function, then

(w(s). B (Dugpony = [ ()8 (=) dy

= u(t).

Obviously, R, (s) is the reproducing kernel of the space
W3 [0, 1]. ThereforeR; (s) is the solution of the following
generalized differential equations:

(—1)° RV (s) =4 (t—s),

R (0) = (-1)* "RV (0)=0,i=0,1,2, (5)
R (1)=0,i=0,1,2.
While ¢ # s
(—1)*R® (s) = 0. (6)
with the boundary conditions (BC’s)
(i) 2—i (5—1i)
RY(0)— (-1)* "R 0) =0,
¢ (0) = (=1) ¢ (0) @)

R (1)=0,i=0,1,2.

The characteristic equation of Equati@) is \* = 0,
and their characteristic values axe= 0 with 6 multiple
roots. So, the general solution of Equat{@nis as follows

5 .
o pi(t)s', s <t;
=0
8

~

On the other hand, sinde-1)° R (s) = 6 (t — 5), we
have

RY(t+0)=R"Y(t-0),i=01,2,34 (9

Integrating(—1)* R\® (s) = 6 (t — s) fromt — c tot + &
with respect tos and lete — 0, we have the jump degree
of R\ (s) att = s given by

(R,@ (t+0)— R (t— 0)) - 1. (10)

So, the representation of the reproducing kernel functio
Ry(s) in W3[0, 1], using Mathematica software package,
is provided by

1+ 2 e s - Sy s <t
— —1"S S S - ), S
120 12 2477 =7
Rt(s): s 1 4
t t
14+ — + —t2s2(3+ )+ ts(l — — t.
+120+12 s*(3+1t) +ts( 24),s>

n

Remark 4.2 If a Hilbert spaceH of functions on a set/
admits a reproducing kernel, then the reproducing kernel
R (s) is uniquely determined by the Hilbert spakle

Let us assume that we have the system of second-order
differential equations in the form

u(t) = f(t,u(t),u (), a(t), @ (t), 0<t <1,
a’(t) = g(t,u(t), ' (t),u(t), @' (t), 0<t <1, (1)
w(0) =0, u(1) =0,7(0) =0, (1) =0

and letLu = u”, L : W3[0,1] — W3[0, 1], then, system
(1) can be converted into the following form

Q(t)aﬂ/(t)vﬂ(t)va/(t))v 0<t<l,

(12)
o (t),u(t),u'(t), 0 <t <1,
whereu(t), u(t) € W3[0,1] and f, g € W,[0,1]. Clear
that L is a bounded linear operator.

Now, we construct an orthogonal system of the space

W3[0,1]. Let®;(t) = Ry, (t) andy;(t) = L*®;(t), where
L* is the conjugate operator &f In terms of the properties
of reproducing kerneR;(s), one obtains that

(u(t), i(t))ws

(u(t), L*®i (1)) wg

(Lu(t), ®i(t))wy = Lu(t:),
1,2,....

i

Lemma 4.11f {¢;}5°, is dense on0, 1], then{;(¢)}$2,
is a complete system d¥3[0, 1] if L' in (12) existent
andy;(t) = Lth(8)|S:ti, then

dth(S)
¥i(t) = 72 |s=t; - (13)
Proof. For each fixed u(t) € W3[0,1]. If

(w(t),9i (s = 0,i=1,2,..., then

(u (8) s (D) g = (u(0), L (D)
(L (8) @ (1) = Lu (t) = 0.

Note that{¢;}.-, is dense on0, 1], therefore Lu () = 0.
It follows thatw (t) = 0 from the existence of ~! and the
continuity ofu ().

Moreover, the orthonormal system éf,(¢)}22, in
W3[0,1] can be derived by using Gram-Schmidt
orthogonalization process §f);(¢)}°, as follows

i) = Bt (t), (14)
k=1
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wheref;;, are orthogonalization coefficients;; > 0,1 =

1,2,...,n,and ol _
) Un(t) = D > Birg (s gy (1), ooy Wy (8005 (1),
ﬁll = T i=1 k=1
b ]|’ . (18)
whereu (t), uo(t) (fixed) e W30, 1].
- Z P’Lkﬁkj — i
(G <) Proof. Clear that{v,(¢)}52, is the complete orthonormal
J ’ basis inW3[0, 1]. Sinceu(t) € W3[0, 1], then it can be
\/||¢z| - Cm) expanded in the form of Fourier series abéut (¢)}>°,
such that
(1>1). as —_ —_
u(t) = Z <ﬂ(t)v ¥; (t)>W3 ¥; (1)
||¢1H - Clk) i=1 ’
k=1 co 1
in which ¢, = (1;,¥y) w3, and {¥; (1)}, is the =D B (ut), b (D) ¥; (1)
orthonormal system in the spaté; [0, 1]. =lk=t
Lemma 4.2 B6] If u(t) € W2 [0, 1], then there exists = Z Bk (u(t), L™ Py, (t)>w23 b, (t)
M >0, such thatju|| 2 4 < HU’HW"[O 1j» Where i=1 k=1
lullcago,y = max [u(®)] + max [u'(0)] + max [u" ()] = g 2 Bik (Lu(t), Pi () wy s (1)
Lemma 4.3 B8 If |lu, —ul , =0, |7~ , =0, = DD B {f(tult), T (1)), Pr (£)yyy ¥ (1)
w i=1 k=1
ty =, (n = oo) and f(tu(t),u/ (). 7). 7 (1)), s i
g(t,u(t), v (t),u(t), @ (t)) for t € [0,1] are continuous — ¢ ). T (). T (E VD (1)
with respect ta, then ;k: Bue b, lti), 1 (i), W), W (E0))9 )
Fltnytty 1 (tn) sty () Tt (tn) iy 1 (tn)) — In the same way, we can get that
ftult), ' (t),a(t), @ (t) asn — oo, u(t) = Z Z Bikg(t, ult), u' (t), T(t), @ (t)) 5 (2)-
Gty 1 (tn)s iy (tn), tin—1 (tn), iy 1 () — The approxmate solutions can be also obtained by the
, n-term intercept of the exact solution$t) andu(t) such
g(t, u(t), w'(t), u(t), ' (t)) asn — oo that

In the next theorem, we will give the presentation of i .
the exact solutions of systeft?2) in the IRKM. u, (t) = Z Z Biref (s g1 (tk)s ooy Wpo_q (tx))20; (1),

Theorem 4.2.If {¢;}2°, is dense oif0, 1] andu(t), u(t) € s
W3[0,1] are the solutions of12), thenu(t),u(t) satisfy i
the following form, respectively Un(t) = Y Y Bing(te g (t), o Wy (8)) 04 (1),
. i=1 k=1
=D Binf (tult), w (£), (), @ (1)) li=r, ¥i(t),  whereuy(t) = 0, To(t) = 0 such thatug(t), To(t)
i=1 k=1 (Fixed) € W3 [0, 1].
(15) Next, we show thatu,(t) and @, (t) in iterative

formulas(17) and (18) are convergent uniformly to the
exact solutiong(¢) andwu(t) of system(12), respectively.

u(t) = > > Bikg(t,ut), u' (t),0(t), @ (t)) 1=t ¥;(t),
i=1 k=1 Theorem 4.3 Suppose the following conditions are

. : . . (16)  satisfied:
while the approximate solutions can be obtained by (i) 1|, |s [Tnlloe are bounded
n W2-! n I/V2 .
noi (i) {ti}s2, is dense onfo, 1].
t) = Bite f (tres Wy (b ) s vy Wy (t1)) 05 (8), (iii) f(t, a1, a2, a3,a4), g(t, a1, a2, a3, as) € W5[0,1]
;; o o for anya; = w(t), as = ' (t), az = u(t), as = W(t) €
a7 w3o,1].
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Thenuw,, (t),
convergent to the exact solution§& ),
in W3[0,1] and

u t) = io:Alal, u
=1

u(t) of system(12)

i=1

where

Ai = Zﬁikf(taﬂk—l(t)a EEES)

k=1

Bi = Z Bikg(tagk—l(t% "'75;4—1

Ty 1 (1) =t

() le=t,, -

Proof. First of all, we will prove the convergence@f (),
u,,(t). From Equation$17) and(18), we have that

Uy 1 (1) = 1, () + Apgr 4y (1),
ﬂn+1(t) =TUp (t) + Bn+1an+1 (t) .

By the orthogonality of ¥; (t)} .- ., itfollows that

etmil [ = lallfvs + (Ansa)?

- H Uy — 1HW3+ A )2+(A7’L+1)2

n+1
2
= [fugl s + > (A:)?
i=1

||U’”+1||W23 = ||Un||W23 + (Bn+1)2

= ||En71||%/[/3 + (Bn)2 + (Bn+1)2

n+1

www+2
From the boundedness thHWg and ||ﬂn||W23, we
haveZ( )? < oo, Z(
{B; }l LEP(i= 1,2,...).
Let m > n, for (u,,
Lol (U4q

)% < oo, that is, {4;}5°,,

- ﬂm—l) 1 (ﬂm—l - ﬂm—Q)

- ﬂn): (ﬂm - am—l) 1 (ﬂm—l - ﬂm—2)
L.l (Wpy1 — @), it follows that
2
||ﬂm(t) - Qn(t)HWQ'5 = || ﬂm(t) -

—. Tt gn—!—l(t)

= |lum(@

Upp—1 (t) + U —1 (t)
2
—u, (1) [

) =t a0y +

1t (8) = 2 (8)] g

= Z (4;))> — 0, (n — o0),

i=n+1

u,(t) in iterative formulag17) and(18) are

u (t), u(t) € W3 [0,1] such thatu,, ()

| mm (t) — Up

Olivs = | T () = T (B) + T (1)
o Ty (t) — Tn(t) |\§V23
= |[@m(t) — am_l(t)”ivg, + ...

[T 41 () = T (D]
= > (Bi)> —0, (n— o).

i=n+1

Considering the completenessidf [0, 1], there exists
— u(t) asn — oo
in sense of the norm o3 [0, 1] andw,(t) — u(t) as
n — oo in sense of the norm a3 [0, 1].

Next, we will prove thak (¢) andu(t) are the solutions
of system(12). Since{t;};-, is dense o0, 1], we know
thatuw,, (t) andw,, (t) converge uniformly ta (t) andw(t),
respectively. By taking limits of Equatior{47) and(18),
it follows that

= ZAiEiv u(t) = Z B,
i—1 i—1

Since
(Lu) (t;) = Y Ai (LY, (t), D, (t)>W21
= ZA@‘ (i), L*®; (t))
=1
=3 A (W), %5 () s
i=1
and

= Z B; <Lal(t)v q)j (t)>W21

= Z B (¥;(t), L

=3B (Bt
i=1

It follows that

Z Bn;j (L) (

qu (t) > W;

Dws

-3 450,300 0)

W

I
NER
=
P
<]
=
=
3
~
=
3
-

-
Il
-

and

Z B (LT) (

p”qg

B; <Ez (1), Z Bnjth; (t)>
=1

N
Il
-

w3

‘P”18

N
Il
-
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If n =1, then If yis a(l,2)—solution for the Equatio(19), then
(Lu) (t1) = f(t1,u0(tr), ug(t1), To(t1), o (1)), y"'(t) = 2(1 — o),
(L) (t1) = g(t1, u(t1), uo(t1), Wo(t1), T (t1))- -1 3(a—1)
If n = 2, then y(0) == gy = 70‘8 : o2
(Lu) (t2) = f(t2,u; (t2), uy(t2), i (t2), W (t2)), 7' (t) = 2(a — 1),
(L) (t2) = g(t2, uy (t2), uy (t2), W (t2), W) (¢2))- 7(0) = 2 ;a 7(1) = 3(1 8— @)
Furthermore, by induction, it is easy to see that where the exact solutions are
(Lu) (t5) = F(tysm1 (85), Ty (), )
(L) (1) = 9(t5,151(85). T (1)), e T
—(1—
Since {t;}.-, is dense on0, 1], for anyy € [0,1], y(t) = %(Sﬁ — 106 —1).

there exists subsequenge,; } such thatt,, — y, as

j — oo. Hence, letj — oo in the last equations, thus by The numerical results of systef2) are given in Table,
the convergence af,, (t), U, (t) and Lemmg4.3), we get  Table4 and Figure2.

that If y is a(2,2)—solution for Equatior{19), then

(Lw) (y) = f(y,u(y), o (v),0(y). 7 (1)), )
_ t)=2(a—1),
(L) () = (v u(v). 2 (), W), W (5)). g =2l
Thatis,u(t) andu(t) are the solutions of syste(@?2) with y(0) = @ g 1, y(1) = w7
oo o - - (24)
— — 7'(t) =2(1 — ),
= Ay, u(t) = > By ) : (1-a) 31— o)
i= i= _ - _ —
1 1 5(0) =~ (1) = =g
Example 4.1 Let us consider the following fuzzy
two-point boundary value problem where the exact solutions are
1 3 _
y'(8) =27, y(0) = g, y(1) = g7, te [0 1), (19) y(t) =& : L8 —6t+1),
: : : - (25)
where~ is the triangular fuzzy number having—level o l—a 4
setsja — 1,1 — o, a € [0,1]. y(t) = S (8% — 6t +1).

In order to illustrate the performance of the IRKM for
solving FBVP(19), we present the following four cases:  The numerical results of systef@4) are given in Tablé,

If yisa(l,1)—solution for Equatior{19), then Table6 and Figure3.
y'(t) =2(a—1),
a—1 3(a—1 o ®
Q(O) = 8 s g(l) = %7 s .. =
(20) i} o
y”(t) = 2(1 - OZ), L-.._--. .
_ l—a _ 3(1—a) "
= 1) = —. o0l E
y(O) 8 ’ y( ) 8 NE'__ c-=: -;L.' u=1 -:-=4 -:-=% -;ic -==1 -;=4 -:'- ',!=
where the exact solutions are " L. :
y(t) = = (812 — 6t + 1) et L
(2) o
1 Sl ]

7(t) = %(sﬁ —6t+1).

Fig. 1 The (1, 1)-solution: exact (red) and numerical (black)
Usmg the RKHS method by taking = ‘=L i =  solutions.

1,2,...,n, andn = 101, the numerical results of system
(2 0) are given in Tabld, Table2 and Figurel.
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Table 1 Numerical resultg for system(20) att = 0.8.
o Exact Solutiory Numerical Solution Absolute Error Relative Error
0.0 —0.1650 —0.164999733 2.66665 x 10~ " 1.61615 x 10~°
0.1 —0.1485 —0.148499760 2.39999 x 10~ 1.61615 x 107°
0.2 —0.1320 —0.131999786 2.13332 x 1077 1.61615 x 107°
0.3 —0.1155 —0.115499813 1.86666 x 107 1.61615 x 10~°
0.4 —0.0990 —0.098999840 1.59999 x 107 1.61615 x 107
0.5 —0.0825 —0.082499999 1.33332 x 1077 1.61615 x 107°
0.6 —0.0660 —0.065999893 1.06666 x 10~7 1.61615 x 107°
0.7 —0.0495 —0.049499920 7.99998 x 1078 1.61615 x 107
0.8 —0.0330 —0.032999946 5.33331 x 1078 1.61615 x 10~°
0.9 —0.0165 —0.016499973 2.66666 x 1078 1.61615 x 107°
Table 2 Numerical resultg for system(20) att = 0.8.
o Exact Solutiory Numerical Solution Absolute Error Relative Error
0.0 0.1650 0.164999733 2.66665 x 107 1.61615 x 10°°
0.1 0.1485 0.148499760 2.39999 x 10~7 1.61615 x 107°
0.2 0.1320 0.131999786 2.13332 x 1077 1.61615 x 10~°
0.3 0.1155 0.115499813 1.86666 x 107 1.61615 x 10~°
0.4 0.0990 0.098999840 1.59999 x 10~7 1.61615 x 107°
0.5 0.0825 0.082499999 1.33332 x 1077 1.61615 x 107°
0.6 0.0660 0.065999893 1.06666 x 10~7 1.61615 x 1076
0.7 0.0495 0.049499920 7.99998 x 1078 1.61615 x 107
0.8 0.0330 0.032999946 5.33331 x 1078 1.61615 x 107°
0.9 0.0165 0.016499973 2.66666 x 108 1.61615 x 107°
Table 3 Numerical resultg for system(22) att = 0.1.
o Exact Solutiory Numerical Solution Absolute Error Relative Error
0.0 —0.240 —0.239999762 2.37499 x 10~ 9.89580 x 10~ "
0.1 —0.216 —0.215999786 2.13749 x 1077 9.89580 x 10~
0.2 —0.192 —0.191999810 1.89999 x 10~7 9.89580 x 10~
0.3 —0.168 —0.167999833 1.66249 x 1077 9.89580 x 1077
0.4 —0.144 —0.143999857 1.42499 x 107 9.89580 x 107
0.5 —0.120 —0.119999881 1.18749 x 1077 9.89580 x 10~
0.6 —0.096 —0.095999905 9.49997 x 1078 9.89580 x 10~
0.7 —0.072 —0.071999928 7.12498 x 1078 9.89580 x 1077
0.8 —0.048 —0.047999952 4.74998 x 1078 9.89580 x 1077
0.9 —0.024 —0.023999976 2.37499 x 1078 9.89580 x 10~
If yis a(2,1)—solution for Equatior{19), then where the exact solutions are
—(a—1
y(t) = %(Stz — 10t — 1),
y'(t) =2(1 - o), (1-a) (27)
-l -«
a—1 3(a—1) y(t) = ——2(8t2 — 10t — 1).
y(0) = 5 y(1) = g 8
_,, (26)
y'(t) =2(a— 1),
a l—a _ 3(1 - «) The numerical results of systef{f6) are given in Tabl&,
7(0) = —— 7(1) = = Table8 and Figuret.
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Table 4 Numerical resultg for system(22) att = 0.1.

« Exact Solutiory Numerical Solution Absolute Error Relative Error
0.0 0.240 0.239999762 2.37499 x 107 9.89580 x 10"
0.1 0.216 0.215999786 2.13749 x 1077 9.89580 x 10~
0.2 0.192 0.191999810 1.89999 x 107 9.89580 x 10~7
0.3 0.168 0.167999833 1.66249 x 1077 9.89580 x 10~
0.4 0.144 0.143999857 1.42499 x 1077 9.89580 x 10~
0.5 0.120 0.119999881 1.18749 x 1077 9.89580 x 10~
0.6 0.096 0.095999905 9.49997 x 1078 9.89580 x 10~7
0.7 0.072 0.071999928 7.12498 x 1078 9.89580 x 10~7
0.8 0.048 0.047999952 4.74998 x 1078 9.89580 x 10~
0.9 0.024 0.023999976 2.37499 x 1078 9.89580 x 10~

Table 5 Numerical resultg for system(24) at¢ = 0.2.

« Exact Solutiory Numerical Solution Absolute Error Relative Error
0.0 —0.0150 —0.014999600 3.99998 x 10" 2.66665 x 10°°
0.1 —0.0135 —0.013499640 3.59999 x 10~ 2.66665 x 107°
0.2 —0.0120 —0.011999680 3.19999 x 10~7 2.66665 x 107°
0.3 —0.0105 —0.010499720 2.79999 x 10~7 2.66665 x 107°
0.4 —0.0090 —0.008999760 2.39999 x 10~ 2.66665 x 107°
0.5 —0.0075 —0.007499800 1.99999 x 10~7 2.66665 x 107°
0.6 —0.0060 —0.005999840 1.59999 x 1077 2.66665 x 107°
0.7 —0.0045 —0.004499880 1.19999 x 1077 2.66665 x 107°
0.8 —0.0030 —0.002999920 7.99997 x 1078 2.66665 x 107°
0.9 —0.0015 —0.001499960 3.99998 x 1078 2.66665 x 107°

Table 6 Numerical resultg for system(24) att = 0.2.

« Exact Solutiory Numerical Solution Absolute Error Relative Error
0.0 0.0150 0.014999600 3.99998 x 10" 2.66665 x 10°°
0.1 0.0135 0.013499640 3.59999 x 10~7 2.66665 x 107°
0.2 0.0120 0.011999680 3.19999 x 10~7 2.66665 x 107°
0.3 0.0105 0.010499720 2.79999 x 10”7 2.66665 x 107°
0.4 0.0090 0.008999760 2.39999 x 10~ 2.66665 x 107°
0.5 0.0075 0.007499800 1.99999 x 1077 2.66665 x 107°
0.6 0.0060 0.005999840 1.59999 x 1077 2.66665 x 107°
0.7 0.0045 0.004499880 1.19999 x 1077 2.66665 x 107°
0.8 0.0030 0.002999920 7.99997 x 1078 2.66665 x 107°
0.9 0.0015 0.001499960 3.99998 x 108 2.66665 x 1072

5 Concluding remarks especially developed for nonlinear case. On the other
hand, the derivatives of the approximate solutions are also
In this paper, we introduce an algorithm for solving fuzzy uniformly convergent. Results obtained show that the
two-point boundary value problem based on the use of théumerical scheme is very effective and convenient for
IRKM method in which a new constructed of the fuzzy solving such problems. Additionally, we note that not

two-point boundary conditions involved. The main only a computational method is presented but also the
characteristic feature of the IRKM method is that the error of the approximate solutions are monotone
global approximation can be established on the wholedecreasing in the sense of the nornif [0, 1].

solution domain, in contrast with other numerical

methods like onestep and multistep methods, and the

convergence is uniform. Indeed, the present method is

accurate, need less effort to achieve the results, and
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Table 7 Numerical resultg for system(26) att = 0.9.

o Exact Solutiorg Numerical Solution Absolute Error Relative Error
0.0 —0.440 —0.439999862 1.37499 x 10~ 7 3.12499 x 1077
0.1 —0.396 —0.395999876 1.23749 x 1077 3.12499 x 1077
0.2 —0.352 —0.351999890 1.09999 x 1077 3.12499 x 1077
0.3 —0.308 —0.307999903 9.62497 x 1078 3.12499 x 1077
0.4 —0.264 —0.263999917 8.24997 x 1078 3.12499 x 1077
0.5 —0.220 —0.219999931 6.87498 x 1078 3.12499 x 1077
0.6 —0.176 —0.175999945 5.49998 x 1078 3.12499 x 1077
0.7 —0.132 —0.131999958 4.12498 x 1078 3.12499 x 1077
0.8 —0.088 —0.087999972 2.74999 x 1078 3.12499 x 1077
0.9 —0.044 —0.043999986 1.37499 x 1078 3.12499 x 1077

Table 8 Numerical resultg for system(26) att = 0.9.

Numerical Solution

Absolute Error

Relative Error

Q@ Exact Solutiory

0.0 0.440 0.439999862
0.1 0.396 0.395999876
0.2 0.352 0.351999890
0.3 0.308 0.307999903
0.4 0.264 0.263999917
0.5 0.220 0.219999931
0.6 0.176 0.175999945
0.7 0.132 0.131999958
0.8 0.088 0.087999972
0.9 0.044 0.043999986

1.37499 x 10~ 7
1.23749 x 1077
1.09999 x 107
9.62497 x 1078
8.24997 x 1078
6.87498 x 1078
5.49998 x 1078
4.12498 x 1078
2.74999 x 1078
1.37499 x 1078

3.12499 x 10~ 7
3.12499 x 1077
3.12499 x 1077
3.12499 x 1077
3.12499 x 1077
3.12499 x 1077
3.12499 x 1077
3.12499 x 1077
3.12499 x 10~ 7
3.12499 x 1077

Fig. 2 The (1, 2)-solution: exact (red) and numerical (black) Fig. 3 The (2,2)-solution: exact (red) and numerical (black)

solutions.

solutions.
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