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Abstract: In this paper, we implement a relatively recent analytical technique, called iterative reproducing kernel method (IRKM),
to obtain a computational solution for fuzzy two-point boundary value problem based on a generalized differentiability concept. The
technique methodology is based on construct a solution in the form of a rabidly convergent series with minimum size of calculations
using symbolic computation software. The proposed technique is fully compatible with the complexity of such problem, while the
obtained results are highly encouraging. Efficacious computational experiments are provided to guarantee the procedure and to illustrate
the theoretical statements of the present method in order toshow its potentiality, generality and superiority for solving such fuzzy
equation.
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1 Introduction

Fuzzy differential equations (FDEs) are extensively used
in modeling of complex phenomena arising in applied
mathematics, physics, and engineering including fuzzy
control theory, quantum optics, atmosphere, artificial
intelligence, image processing and dynamical systems [1,
2,3,4,5,6]. In general, the data collection and analysis for
physical phenomena is provided under uncertainty, which
may arise in the experiment part and measurement
process. Historically, the first approach was the use of
Hukuhara differentiability for fuzzy number valued
functions. After while, Bede [7] defined the generalized
differentiability of fuzzy number valued functions,
presented a counterexample that shows a fuzzy two-point
boundary value problem is not equivalent to a fuzzy
integral equation by using Green’s function under the
Hukuhara differentiability with fuzzy Aumann-type
integral in the integral equation as well as he proved that a
fuzzy two-point boundary value problem is usually very

complex and hard to be solved analytically under the
Hukuhara differentiability concept, in contrast with the
main results in [8,9]. However, there exists no method
that yields an explicit solution for FDEs due to the
complexities of uncertain parameters involving these
equations. Anyhow, in most cases, analytical solutions
cannot be found, where the solutions of such equations
are always in demand due to practical interests.
Therefore, an efficient reliable computer stimulation is
required. To deal with this in more realistic situations,
FDEs are commonly solved approximately using
numerical techniques [10,11,12,13,14].

The aim of this paper is to extend the application of
the iterative reproducing kernel method under the
assumption of strongly generalized differentiability to
provide a numerical approximate solution for fuzzy
two-point boundary value problem [15,16] in the
following form

y′′(t) + p(t)y′(t) + q(t)y(t) = g(t), 0 ≤ t ≤ 1, (1)
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with fuzzy boundary conditions

y(0) = γ0, y(1) = γ1, (2)

whereγ0, γ1 ∈ R̥ andp(t), q(t), g(t) : R̥ → R̥ are
continuous fuzzy-valued functions andy : [0, 1] → R̥ ∈
W 3

2 [0, 1] is unknown function to be determined, in which
R̥ denote the set of fuzzy numbers onR.

Reproducing kernel Hilbert space method is an
analytical as well as numerical method based on the
reproducing kernel theory, which has important
application in numerical analysis for handling different
kinds of differential equations [17,18], integral and
integro-differential equations [19,20,21,22,23],
probability and statistics and others [24,25]. The
proposed method is found to be an effective and smart
technique for finding a series solution for strongly linear
and nonlinear equations without linearization,
perturbation, or discretization. Here, it is possible to pick
any point in the interval of integration and as well the
approximate solutions and their derivatives will be
applicable, where the IRKM is not affected by
computation round off errors. On the other hand, many
applications for different problems by using other
numerical algorithms can be found in [26,27,28,29,30,
31].

This article is organized as follows. In the next
section, we revisit briefly some necessary definitions and
preliminary results of fuzzy calculus theory including the
strongly generalized differentiability. Formulation of the
solution for handling such problem is presented in
Section 3 under the concept of generalized
differentiability. In Section4, the IRK algorithm is built
and introduced to illustrate the capability of proposed
approach with a numerical experiment and simulation
results. The last section is devoted to a short conclusion.

2 Preliminaries

The material in this section is basic in certain sense. For
the reader’s convenience, we present some necessary
definitions and notations from fuzzy calculus theory
which be used throughout the paper. A fuzzy numberu is
a fuzzy subset of the real line with a normal, convex, and
upper semicontinuous membership function of bounded
support.

Let R̥ denote the space of fuzzy real number, i.e.,
the set normal, fuzzy convex, upper semicontinuous,
compactly supported fuzzy setsu : R → [0, 1]. For
0 < α ≤ 1 set [u]α = {s ∈ R | u(s) ≥ α} and
[u]0 = {s ∈ R | u(s) > 0} (the closure of
{s ∈ R | u(s) > 0}). Then theα-level set[u]α is a
non-empty compact interval for all0 ≤ α ≤ 1 and any
u ∈ R̥. The notation[u]α = [uα, uα] denotes explicitly
theα-level set ofu. We refer tou andu as the lower and
upper branches onu, respectively.

Remark 2.1 [32] The sufficient and necessary conditions
for [u, u] to define the parametric form of a fuzzy number
are as follows:
(i) u is a bounded monotonic increasing (nondecreasing)
left-continuous function∀α ∈ (0, 1] and right-continuous
for α = 0.
(ii) u is a bounded monotonic decreasing (nonincreasing)
left-continuous function∀α ∈ (0, 1] and right-continuous
for α = 0.
(iii) u ≤ u for 0 ≤ α ≤ 1.

For u, v ∈ R̥ andλ ∈ R, the sumu + v and the
productλu are defined by[u+v]α = [u]α+[v]α, [λu]α =
λ[u]α, ∀α ∈ [0, 1], where[u]α + [v]α means the usual
addition of two intervals (subsets) ofR andλ[u]α means
the usual product between a scalar and a subset ofR. The
metric structure is given by the Hausdorff distanceD :
R̥ ×R̥ → R+ ∪ {0} such that

D(u, v) = sup
α∈[0,1]

max{| u− v |, | u− v |}.

Definition 2.1 [32] Letu, v ∈ R̥. If there existsw ∈ R̥

such thatu = v + w, thenw is called theH-difference of
u, v and it is denotedu⊖ v.

Definition 2.2 [32] Let F : (a, b) → R̥ be a fuzzy
function. We sayF is differentiable att0 ∈ (a, b), if there
exists an elementF ′(t0) ∈ R̥ such that the limits

lim
h−→0+

F (t0 + h)⊖ F (t0)

h
and lim

h−→0+

F (t0)⊖ F (t0 − h)

h
,

exist and are equal toF ′(t0). Here the limits are taken in
the metric space(R̥, D).

By using the H-differentiability ”Hukuhara
differentiability concepts”many existence and uniqueness
results are obtained for the fuzzy Cauchy problem

y′(t) = f(t, y(t)), y(t0) = y0,

wheref : [t0,∞) × R̥ → R̥. These results are based
on the fact that the Hukuhara-type Cauchy problem is
equivalent to an Aumann-type integral equation similar to
the classical case. The authors in[9] had tried to extend
this correspondence to the case of fuzzy two-point
boundary value problem. For the purpose of this analysis,
we consider the following fuzzy two-point boundary
value problem

y′′(t) = f(t, y(t), y′(t)), (3)

y(0) = γ0, y(1) = γ1,

where γ0, γ1 ∈ R̥, f(t, y(t), y
′(t)) = −p(t)y′(t) −

q(t)y(t) + g(t) andf : [t0,∞) × R̥ × R̥ −→ R̥ is a
continuous fuzzy function.

Definition 2.3 [32] Let F : (a, b) → R̥ andt0 ∈ (a, b).
We sayF is (1)−differentiable att0, if there exists an
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elementF ′(t0) ∈ R̥ such that for allh > 0 sufficiently
near to0, existF (t0 + h) ⊖ F (t0), F (t0) ⊖ F (t0 − h)
and the limits (in the metricD)

lim
h→0+

F (t0 + h)⊖ F (t0)

h
=

lim
h→0+

F (t0)⊖ F (t0 − h)

h
= F ′(t0).

In this case, we denoteF ′(t0) by D1
1F (t0). Also, F is

(2)−differentiable if for allh > 0 sufficiently near to0,
existF (t0+h)⊖F (t0), F (t0)⊖F (t0−h) and the limits
(in the metricD)

lim
h→0−

F (t0 + h)⊖ F (t0)

h
=

lim
h→0−

F (t0)⊖ F (t0 − h)

h
= F ′(t0).

In this case, we denoteF ′(t0) byD1
2F (t0).

3 Formulation of fuzzy two-point BVPs

In this section, we study the fuzzy BVPs under the
concept of strongly generalized differentiability in which
the fuzzy differential equation is converted into equivalent
system of crisp system of BVPs for each type of
differentiability. These can be done if the boundary value
is fuzzy number, the solution is fuzzy function, and
consequently the derivative must be considered as fuzzy
derivative. Furthermore, a computational algorithm is
provided to guarantee the procedure and to confirm the
performance of the proposed technique. For more details,
we refer to[32,33,34] and references therein.

Theorem 3.1Let F : (a, b) → R̥ be a fuzzy function
such that[F (t)]α = [f(t), f(t)] for eachα ∈ [0, 1]. Thus,
we have that

(i) If F is (1)−differentiable, thenf and f are

differentiable functions with[D1
1F (t)]α = [f

′

(t), f
′
(t)].

(ii) If F is (2)−differentiable, thenf and f are

differentiable functions with[D1
2F (t)]α = [f

′
(t), f

′

(t)].

Definition 3.1 Let F : (a, b) → R̥ andn,m = 1, 2.
Then,F is (n,m)−differentiable att0 ∈ (a, b), if D1

nF
exist on a neighborhood oft0 as a fuzzy function and it is
(m)−differentiable att0. The second derivatives ofF is
denoted byD2

n,mF (t0) for n,m = 1, 2.

Theorem 3.2 Let D1
1F : (a, b) → R̥ and

D1
2F : (a, b) → R̥ be fuzzy functions such that

[F (t)]α = [f(t), f(t)], then

(i) If D1
1F is (1)−differentiable, thenf

′

(t) andf
′
(t)

are differentiable functions such that
[D2

1,1F (t)]α = [f
′′

(t), f
′′
(t)].

(ii) If D1
1F is (2)−differentiable, thenf

′

(t) andf
′
(t)

are differentiable functions such that
[D2

1,2F (t)]α = [f
′′
(t), f

′′

(t)].

(iii) If D1
2F is (1)−differentiable, thenf

′

(t) and

f
′
(t) are differentiable functions such that

[D2
2,1F (t)]α = [f

′′
(t), f

′′

(t)].

(iv) If D1
2F is (2)−differentiable, thenf

′

(t) andf
′
(t)

are differentiable functions such that
[D2

2,2F (t)]α = [f
′′

(t), f
′′
(t)].

Definition 3.2Lety : [0, 1] → R̥ be a fuzzy function and
n,m ∈ {1, 2}. Then, we say thaty is a (n,m)−solution
for problem(3) on [0, 1], if D1

ny andD2
n,my exist on[0, 1],

whereD2
n,my(t) = f(t, y(t), D1

ny(t)), y(0) = γ0, y(1) =
γ1 andγ0, γ1 ∈ R̥.

Definition 3.4Lety : [0, 1] → R̥ be a fuzzy function and
n,m ∈ {1, 2}. Then, we say thaty is a (n,m)−solution
for problem(3) on an intervalI ⊂ [0, 1], if D1

ny, D2
n,my

exist such thatD2
n,my(t) = f(t, y(t), D1

ny(t)) onI.

Definition 3.5 Let n,m, n8,m8 ∈ {1, 2}. Suppose
y : [0, 1] → R̥ andt0 ∈ (0, 1) such thaty(0) = γ0, if y
is a (n,m)−solution of (3) on (0, t0) as well asy is a
(n8,m8)−solution of(3) on (t0, 1) with y(1) = γ1. Then,
we say thaty is a generalized solution of the FBVP(3).

Let y = [y, y] be a(n,m)−solution for the FBVP(3)
with γ0 = [γ

0
, γ0] and γ1 = [γ

1
, γ1]. Hereafter,y is

called the corresponding(n,m)−system for the FBVP
(3). However,y has to be converted into crisp systems of
BVPs. That is, there are four possible crisp systems for
(3) that can be represented as follow:
(1, 1)−system

y′′(t) = f(t, y(t), D1
1y(t)),

y′′(t) = f(t, y(t), D1
1y(t)),

y(0) = γ
0
, y(0) = γ0,

y(1) = γ
1
, y(1) = γ1.

(1, 2)−system

y′′(t) = f(t, y(t), D1
1y(t)),

y′′(t) = f(t, y(t), D1
1y(t)),

y(0) = γ
0
, y(0) = γ0,

y(1) = γ
1
, y(1) = γ1.

(2, 1)−system

y′′(t) = f(t, y(t), D1
2y(t)),

y′′(t) = f(t, y(t), D1
2y(t)),

y(0) = γ
0
, y(0) = γ0,

y(1) = γ
1
, y(1) = γ1.
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(2, 2)−system

y′′(t) = f(t, y(t), D1
2y(t)),

y′′(t) = f(t, y(t), D1
2y(t)),

y(0) = γ
0
, y(0) = γ0,

y(1) = γ
1
, y(1) = γ1.

4 Application and numerical simulation

Numerical technique is widely used by scientists and
engineers to solve their problems. A major advantage for
numerical technique is that a numerical answer can be
obtained even when a problem has no analytical solution.
However, result from numerical analysis is an
approximation, in general, which can be made as accurate
as desired. The reliability of the numerical result will
depend on an error estimate and bound, therefore the
analysis of error and the sources of error in numerical
methods is also a critically important part of the study of
numerical technique. In this section, we derive an error
bounds for the present method in order to capture the
behavior of the solutions.

In order to solve the FBVP(3) in the reproducing
kernel space, we firstly need to convert the
nonhomogeneous boundary conditions into homogeneous
ones throughout the cases of previous(n,m)−systems.

Letting u(t) = y(t) − t(γ
1
− γ

0
) − γ

0
andu(t) =

y(t)−t(γ1−γ0)−γ0, then(1, 1)−system can be converted
into the following form

u′′(t) = f(t, u(t), D1
1u(t)),

u′′(t) = f(t, u(t), D1
1u(t)),

u(0) = 0, u(0) = 0,

u(1) = 0, u(1) = 0.

Similarly the (1, 2)−system, (2, 1)−system and
(2, 2)−system have to be converted.

Definition 4.1 [35] LetE be a nonempty abstract set andC

be the set of complex numbers. A functionK : E×E → C

is a reproducing kernel of the Hilbert spaceH if
(i) for eachx ∈ E,K (·, x) ∈ H ,
(ii) for eachx ∈ E andϕ ∈ H , 〈ϕ (·) ,K (·, x)〉 =

ϕ (x).

LetW 3
2 [0, 1] be a Hilbert space[35], which is defined

as follows

W 3
2 [0, 1] = {u(t) | u

′′

(t) is absolutely continuous,

u
′′′

(t) ∈ L2[0, 1], u(0) = u(1) = 0, t ∈ [0, 1]},

while the inner product and the norm ofW 3
2 [0, 1] are

defined, respectively, as follows: For any functionsu(t),
v(t) ∈W 3

2 [0, 1], we have

〈u, v〉 =

2
∑

i=0

u(i)(0)v(i)(0) +

∫ 1

0

u
′′′

(t)v
′′′

(t)dt,

‖u‖ =
√

〈u, u〉.

Remark 4.1 [35] The spaceW 3
2 [0, 1] is a reproducing

kernel space if and only if for anyt ∈ [0, 1], I : f → f(t)
is a bounded functional inW 3

2 [0, 1].

Theorem 4.1 The space W 3
2 [0, 1] is a complete

reproducing kernel space and the reproducing kernel
function can be written as

Rt(s) =























5
∑

i=0

pi(t)s
i, s ≤ t,

5
∑

i=0

qi(t)s
i, s > t.

Proof. The proof of the completeness and reproducing
property ofW 3

2 [0, 1] is similar to the proof in[35]. Now,
supposeRt(s) is the reproducing kernel function of the
spaceW 3

2 [0, 1], then for each fixedt ∈ [0, 1] and any
u(s) ∈ W 3

2 [0, 1], s ∈ [0, 1], we have that
〈u(s), Rt (s)〉 = u(t). Thus,

〈u(s), Rt (s)〉W 3
2
=

2
∑

i=0

u(i) (0)R
(i)
t (0)

+
∫ 1

0 u
′′′

(ζ)R
′′′

t (ζ) dζ.

(4)

By applying the integration by parts for the second
scheme of the right-hand of Equation(4), we obtain that

∫ 1

0

u
′′′

(ζ)R
′′′

t (ζ) dζ =
2

∑

i=0

(−1)i u(2−i) (ζ)R
(3+i)
t (ζ) |ζ=1

ζ=0

+

∫ 1

0

(−1)3 u (ζ)R
(6)
t (ζ) dζ.

Let j = 2 − i, the first term of the right-hand side of
the above formula can be rewritten as

2
∑

j=0

(−1)
2−j

u(j) (ζ)R
(5−j)
t (ζ) |

ζ=1
ζ=0 .

After some simplification, Equation(4) became’s

〈u(s),Rt (s)〉 =
2

∑

i=0

u
(i) (0)

(

R
(i)
t (0)− (−1)2−i

R
(5−i)
t (0)

)

+
2

∑

i=0

(−1)2−i
u
(i) (1)R

(5−i)
t (1)

+

∫ 1

0

(−1)3 u (ζ)R
(6)
t (ζ) dζ.

SinceRt (s) , u(s) ∈W 3
2 [0, 1] , it follows that

R
(i)
t (0)− (−1)

2−i
R

(5−i)
t (0) = 0,

R
(5−i)
t (1) = 0, i = 0, 1, 2.
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So,

〈u(s), Rt (s)〉W 3
2
[0,1] =

∫ 1

0

u (ζ)
(

(−1)
3
R

(6)
t (ζ)

)

dζ

Now, for each t ∈ [0, 1] , if Rt (s) satisfies

(−1)
3
R

(6)
t (s) = δ (t− s) , where δ is dirac-delta

function, then

〈u(s), Rt (s)〉W 3
2
[0,1] =

∫ 1

0

u (s) δ (t− s) dy

= u(t).

Obviously,Rt (s) is the reproducing kernel of the space
W 3

2 [0, 1]. Therefore,Rt (s) is the solution of the following
generalized differential equations:


















(−1)
3
R

(6)
t (s) = δ (t− s) ,

R
(i)
t (0)− (−1)2−i

R
(5−i)
t (0) = 0, i = 0, 1, 2,

R
(5−i)
t (1) = 0, i = 0, 1, 2.

(5)

While t 6= s

(−1)3R
(6)
t (s) = 0. (6)

with the boundary conditions (BC’s)

R
(i)
t (0)− (−1)

2−i
R

(5−i)
t (0) = 0,

R
(5−i)
t (1) = 0, i = 0, 1, 2.

(7)

The characteristic equation of Equation(6) is λ6 = 0,
and their characteristic values areλ = 0 with 6 multiple
roots. So, the general solution of Equation(6) is as follows

Rt (s) =























5
∑

i=0

pi(t)s
i, s ≤ t;

5
∑

i=0

qi(t)s
i, s > t.

(8)

On the other hand, since(−1)
3
R

(3)
t (s) = δ (t− s), we

have

R
(i)
t (t+ 0) = R

(i)
t (t− 0) , i = 0, 1, 2, 3, 4. (9)

Integrating(−1)
3
R

(6)
t (s) = δ (t− s) from t− ε to t+ ε

with respect tos and letε → 0, we have the jump degree
of R(5)

t (s) at t = s given by
(

R
(5)
t (t+ 0)−R

(5)
t (t− 0)

)

= −1. (10)

So, the representation of the reproducing kernel function
Rt(s) in W 3

2 [0, 1], using Mathematica software package,
is provided by

Rt(s) =



















1 +
s5

120
+

1

12
t2s2(3 + s) + ts(1−

s4

24
), s ≤ t,

1 +
t5

120
+

1

12
t2s2(3 + t) + ts(1 −

t4

24
), s > t.

Remark 4.2 If a Hilbert spaceH of functions on a setE
admits a reproducing kernel, then the reproducing kernel
Rt(s) is uniquely determined by the Hilbert spaceH .

Let us assume that we have the system of second-order
differential equations in the form

u′′(t) = f(t, u(t), u′(t), u(t), u′(t)), 0 < t < 1,

u′′(t) = g(t, u(t), u′(t), u(t), u′(t)), 0 < t < 1,

u(0) = 0, u(1) = 0, u(0) = 0, u(1) = 0.

(1)

and letLu = u′′, L : W 3
2 [0, 1] → W 1

2 [0, 1], then, system
(1) can be converted into the following form

Lu(t) = f(t, u(t), u′(t), u(t), u′(t)), 0 < t < 1,

Lu(t) = g(t, u(t), u′(t), u(t), u′(t)), 0 < t < 1,
(12)

whereu(t), u(t) ∈ W 3
2 [0, 1] andf , g ∈ W 1

2 [0, 1]. Clear
thatL is a bounded linear operator.

Now, we construct an orthogonal system of the space
W 3

2 [0, 1]. LetΦi(t) = Rti(t) andψi(t) = L∗Φi(t), where
L∗ is the conjugate operator ofL. In terms of the properties
of reproducing kernelRt(s), one obtains that

〈u(t), ψi(t)〉W 3
2
= 〈u(t), L∗Φi(t)〉W 3

2

= 〈Lu(t), Φi(t)〉W 1
2
= Lu(ti),

i = 1, 2, ....

Lemma 4.1 If {ti}∞i=1 is dense on[0, 1], then{ψi(t)}
∞
i=1

is a complete system ofW 3
2 [0, 1] if L−1 in (12) existent

andψi(t) = LsRt(s)|s=ti
, then

ψi(t) =
d2Rt(s)

dt2
|s=ti . (13)

Proof. For each fixed u (t) ∈ W 3
2 [0, 1]. lf

〈u (t) , ψi (t)〉W 3
2
= 0, i = 1, 2, ..., then

〈u (t) , ψi (t)〉W 3
2
= 〈u (t) , L∗Φi (t)〉W 3

2

= 〈Lu (t) , Φi (t)〉W 1
2
= Lu (ti) = 0.

Note that{ti}
∞
i=1 is dense on[0, 1], therefore,Lu (t) = 0.

It follows thatu (t) = 0 from the existence ofL−1 and the
continuity ofu (t).

Moreover, the orthonormal system of{ψi(t)}
∞
i=1 in

W 3
2 [0, 1] can be derived by using Gram-Schmidt

orthogonalization process of{ψi(t)}
∞
i=1 as follows

ψi(t) =

i
∑

k=1

βikψk(t), (14)
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whereβik are orthogonalization coefficients,βii > 0, i =
1, 2, ..., n, and

β11 =
1

‖ψ1‖
,

βij =

−
i−1
∑

k=j

cikβkj

√

‖ψi‖
2
−

i−1
∑

k=1

(cik)2

(j < i),

βii =
1

√

‖ψi‖
2
−

i−1
∑

k=1

(cik)2

(i > 1).

in which cik = 〈ψi, ψk〉W 3
2
[0,1] and {ψi (t)}

∞
i=1 is the

orthonormal system in the spaceW 3
2 [0, 1].

Lemma 4.2 [36] If u(t) ∈ W 3
2 [0, 1], then there exists

M > 0, such that‖u‖C2[0,1] ≤ ‖u‖W 3
2
[0,1], where

‖u‖C2[0,1] = max
t∈[0,1]

|u(t)|+ max
t∈[0,1]

|u′(t)|+ max
t∈[0,1]

|u′′(t)| .

Lemma 4.3 [36] If ‖un − u‖
W3

2

→ 0, ‖un − u‖
W3

2

→ 0,

tn → t, (n → ∞) and f(t, u(t), u′(t), u(t), u′(t)),
g(t, u(t), u′(t), u(t), u′(t)) for t ∈ [0, 1] are continuous
with respect tot, then

f(tn, un−1(tn), u
′

n−1(tn), ūn−1(tn), ū
′

n−1(tn)) →

f(t, u(t), u′(t), u(t), u′(t)) asn→ ∞,

g(tn, un−1(tn), u
′

n−1(tn), ūn−1(tn), ū
′

n−1(tn)) →

g(t, u(t), u′(t), u(t), u′(t)) asn→ ∞.

In the next theorem, we will give the presentation of
the exact solutions of system(12) in the IRKM.

Theorem 4.2.If {ti}∞i=1 is dense on[0, 1] andu(t), u(t) ∈
W 3

2 [0, 1] are the solutions of(12), thenu(t), u(t) satisfy
the following form, respectively

u(t) =

∞
∑

i=1

i
∑

k=1

βikf(t, u(t), u
′(t), u(t), u′(t)) |t=tk ψi(t),

(15)

u(t) =

∞
∑

i=1

i
∑

k=1

βikg(t, u(t), u
′(t), u(t), u′(t)) |t=tk ψi(t),

(16)
while the approximate solutions can be obtained by

un(t) =

n
∑

i=1

i
∑

k=1

βikf(tk, uk−1(tk), ..., u
′
k−1(tk))ψi(t),

(17)

un(t) =

n
∑

i=1

i
∑

k=1

βikg(tk, uk−1(tk), ..., u
′
k−1(tk))ψi(t),

(18)
whereu0(t), u0(t) (fixed)∈W 3

2 [0, 1].

Proof. Clear that{ψi(t)}
∞
i=1 is the complete orthonormal

basis inW 3
2 [0, 1]. Sinceu(t) ∈ W 3

2 [0, 1], then it can be
expanded in the form of Fourier series about{ψi(t)}

∞
i=1

such that

u(t) =

∞
∑

i=1

〈

u(t), ψi (t)
〉

W 3
2

ψi (t)

=

∞
∑

i=1

i
∑

k=1

βik 〈u(t), ψk (t)〉W 3
2
ψi (t)

=

∞
∑

i=1

i
∑

k=1

βik 〈u(t), L
∗Φk (t)〉W 3

2
ψi (t)

=
∞
∑

i=1

i
∑

k=1

βik 〈Lu(t), Φk (t)〉W 1
2
ψi (t)

=
∞
∑

i=1

i
∑

k=1

βik 〈f(t, u(t), ..., u
′(t)), Φk (t)〉W 1

2
ψi (t)

=
∞
∑

i=1

i
∑

k=1

βikf(tk, u(tk), u
′(tk), u(tk), u

′(tk))ψi (t) .

In the same way, we can get that

u(t) =
∞
∑

i=1

i
∑

k=1

βikg(tk, u(tk), u
′(tk), u(tk), u

′(tk))ψi(t).

The approximate solutions can be also obtained by the
n-term intercept of the exact solutionsu(t) andu(t) such
that

un(t) =

n
∑

i=1

i
∑

k=1

βikf(tk, uk−1(tk), ..., u
′
k−1(tk))ψi(t),

un(t) =

n
∑

i=1

i
∑

k=1

βikg(tk, uk−1(tk), ..., u
′
k−1(tk))ψi(t),

where u0(t) = 0, u0(t) = 0 such thatu0(t), u0(t)
(Fixed) ∈ W 3

2 [0, 1].
Next, we show thatun(t) and un(t) in iterative

formulas(17) and (18) are convergent uniformly to the
exact solutionsu(t) andu(t) of system(12), respectively.

Theorem 4.3 Suppose the following conditions are
satisfied:

(i) ‖un‖W 3
2
, ‖un‖W 3

2
are bounded.

(ii) {ti}∞i=1 is dense on[0, 1].
(iii) f(t, a1, a2, a3, a4), g(t, a1, a2, a3, a4) ∈W 1

2 [0, 1]
for anya1 = u(t), a2 = u′(t), a3 = u(t), a4 = u′(t) ∈
W 3

2 [0, 1].
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Thenun(t), un(t) in iterative formulas(17) and(18) are
convergent to the exact solutionsu(t), u(t) of system(12)
in W 3

2 [0, 1] and

u(t) =

∞
∑

i=1

Aiψi, u(t) =

∞
∑

i=1

Biψi,

where

Ai =

i
∑

k=1

βikf(t, uk−1(t), ..., u
′
k−1(t)) |t=tk ,

Bi =
i

∑

k=1

βikg(t, uk−1(t), ..., u
′
k−1(t)) |t=tk .

Proof. First of all, we will prove the convergence ofun(t),
un(t). From Equations(17) and(18), we have that

un+1(t) = un(t) +An+1ψn+1 (t) ,

un+1(t) = un(t) +Bn+1ψn+1 (t) .

By the orthogonality of
{

ψi (t)
}∞

i=1
, it follows that

∣

∣

∣

∣un+1

∣

∣

∣

∣

2

W 3
2

= ||un||
2
W 3

2
+ (An+1)

2

=
∣

∣

∣

∣un−1

∣

∣

∣

∣

2

W 3
2

+ (An)
2 + (An+1)

2

...

= ||u0||
2
W 3

2
+

n+1
∑

i=1

(Ai)
2,

||un+1||
2
W 3

2
= ||un||

2
W 3

2
+ (Bn+1)

2

= ||un−1||
2
W 3

2
+ (Bn)

2 + (Bn+1)
2

...

= ||u0||
2
W 3

2
+

n+1
∑

i=1

(Bi)
2.

From the boundedness of||un||W 3
2

and ||un||W 3
2
, we

have
∞
∑

i=1

(Ai)
2 < ∞,

∞
∑

i=1

(Bi)
2 < ∞, that is,{Ai}

∞
i=1,

{Bi}
∞
i=1 ∈ l2 (i = 1, 2, ...).

Let m > n, for (um − um−1) ⊥ (um−1 − um−2)

⊥...⊥ (un+1 − un), (um − um−1) ⊥ (um−1 − um−2)

⊥...⊥ (un+1 − un), it follows that

||um(t)− un(t)||
2
W 3

2
= ‖ um(t)− um−1(t) + um−1(t)

−...+ un+1(t)− un(t) ‖
2
W 3

2

=
∣

∣

∣

∣um(t)− um−1(t)
∣

∣

∣

∣

2

W 3
2

+ ...

+
∣

∣

∣

∣un+1(t)− un(t)
∣

∣

∣

∣

2

W 3
2

=

m
∑

i=n+1

(Ai)
2 −→ 0, (n→ ∞),

||um(t)− un(t)||
2
W 3

2
= ‖ um(t)− um−1(t) + um−1(t)

−...+ un+1(t)− un(t) ‖
2
W 3

2

= ||um(t)− um−1(t)||
2
W 3

2
+ ...

+ ||un+1(t)− un(t)||
2
W 3

2

=

m
∑

i=n+1

(Bi)
2 −→ 0, (n→ ∞).

Considering the completeness ofW 3
2 [0, 1], there exists

u (t), u(t) ∈ W 3
2 [0, 1] such thatun(t) → u(t) asn → ∞

in sense of the norm ofW 3
2 [0, 1] andun(t) → u(t) as

n→ ∞ in sense of the norm ofW 3
2 [0, 1].

Next, we will prove thatu (t) andu(t) are the solutions
of system(12). Since{ti}

∞
i=1 is dense on[0, 1], we know

thatun(t) andun(t) converge uniformly tou (t) andu(t),
respectively. By taking limits of Equations(17) and(18),
it follows that

u (t) =

∞
∑

i=1

Aiψi, u(t) =

∞
∑

i=1

Biψi.

Since

(Lu) (tj) =

∞
∑

i=1

Ai

〈

Lψi(t), Φj (t)
〉

W 1
2

=

∞
∑

i=1

Ai

〈

ψi(t), L
∗Φj (t)

〉

W 3
2

=
∞
∑

i=1

Ai

〈

ψi(t), ψj (t)
〉

W 3
2

,

and

(Lu) (tj) =

∞
∑

i=1

Bi

〈

Lψi(t), Φj (t)
〉

W 1
2

=

∞
∑

i=1

Bi

〈

ψi(t), L
∗Φj (t)

〉

W 3
2

=

∞
∑

i=1

Bi

〈

ψi(t), ψj (t)
〉

W 3
2

.

It follows that
n
∑

j=1

βnj(Lu) (tj) =

∞
∑

i=1

Ai

〈

ψi(t),

n
∑

j=1

βnjψj (t)

〉

W 3
2

=

∞
∑

i=1

Ai

〈

ψi(t), ψn (t)
〉

W 3
2

= An,

and
n
∑

j=1

βnj(Lu) (tj) =

∞
∑

i=1

Bi

〈

ψi(t),

n
∑

j=1

βnjψj (t)

〉

W 3
2

=

∞
∑

i=1

Bi

〈

ψi(t), ψn (t)
〉

W 3
2

= Bn.
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If n = 1, then

(Lu) (t1) = f(t1, u0(t1), u
′
0(t1), u0(t1), u

′
0(t1)),

(Lu) (t1) = g(t1, u0(t1), u
′
0(t1), u0(t1), u

′
0(t1)).

If n = 2, then

(Lu) (t2) = f(t2, u1(t2), u
′
1(t2), u1(t2), u

′
1(t2)),

(Lu) (t2) = g(t2, u1(t2), u
′
1(t2), u1(t2), u

′
1(t2)).

Furthermore, by induction, it is easy to see that

(Lu) (tj) = f(tj , uj−1(tj), ..., u
′
j−1(tj)),

(Lu) (tj) = g(tj , uj−1(tj), ..., u
′
j−1(tj)).

Since{ti}
∞
i=1 is dense on[0, 1], for any y ∈ [0, 1],

there exists subsequence{tnj
} such thattnj

→ y, as
j → ∞. Hence, letj → ∞ in the last equations, thus by
the convergence ofun(t), un(t) and Lemma(4.3), we get
that

(Lu) (y) = f(y, u(y), u′(y), u(y), u′(y)),

(Lu) (y) = g(y, u(y), u′(y), u(y), u′(y)).

That is,u(t) andu(t) are the solutions of system(12) with

u(t) =

∞
∑

i=1

Aiψi, u(t) =

∞
∑

i=1

Biψi.

Example 4.1 Let us consider the following fuzzy
two-point boundary value problem

y′′(t) = 2γ, y(0) =
1

8
γ, y(1) =

3

8
γ, t ∈ [0, 1], (19)

whereγ is the triangular fuzzy number havingα−level
sets[α− 1, 1− α], α ∈ [0, 1].

In order to illustrate the performance of the IRKM for
solving FBVP(19), we present the following four cases:

If y is a(1, 1)−solution for Equation(19), then

y′′(t) = 2(α− 1),

y(0) =
α− 1

8
, y(1) =

3(α− 1)

8
,

y′′(t) = 2(1− α),

y(0) =
1− α

8
, y(1) =

3(1− α)

8
.

(20)

where the exact solutions are

y(t) =
α− 1

8
(8t2 − 6t+ 1),

y(t) =
1− α

8
(8t2 − 6t+ 1).

(21)

Using the RKHS method by takingti = i−1
n−1 , i =

1, 2, ..., n, andn = 101, the numerical results of system
(20) are given in Table1, Table2 and Figure1.

If y is a(1, 2)−solution for the Equation(19), then

y′′(t) = 2(1− α),

y(0) =
α− 1

8
, y(1) =

3(α− 1)

8
,

y′′(t) = 2(α− 1),

y(0) =
1− α

8
, y(1) =

3(1− α)

8
.

(22)

where the exact solutions are

y(t) =
−(α− 1)

8
(8t2 − 10t− 1),

y(t) =
−(1− α)

8
(8t2 − 10t− 1).

(23)

The numerical results of system(22) are given in Table3,
Table4 and Figure2.

If y is a(2, 2)−solution for Equation(19), then

y′′(t) = 2(α− 1),

y(0) =
α− 1

8
, y(1) =

3(α− 1)

8
,

y′′(t) = 2(1− α),

y(0) =
1− α

8
, y(1) =

3(1− α)

8
.

(24)

where the exact solutions are

y(t) =
α− 1

8
(8t2 − 6t+ 1),

y(t) =
1− α

8
(8t2 − 6t+ 1).

(25)

The numerical results of system(24) are given in Table5,
Table6 and Figure3.

Fig. 1 The (1, 1)-solution: exact (red) and numerical (black)
solutions.
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Table 1 Numerical resultsy for system(20) at t = 0.8.

α Exact Solutiony Numerical Solution Absolute Error Relative Error

0.0 −0.1650 −0.164999733 2.66665 × 10−7 1.61615 × 10−6

0.1 −0.1485 −0.148499760 2.39999 × 10−7 1.61615 × 10−6

0.2 −0.1320 −0.131999786 2.13332 × 10−7 1.61615 × 10−6

0.3 −0.1155 −0.115499813 1.86666 × 10−7 1.61615 × 10−6

0.4 −0.0990 −0.098999840 1.59999 × 10−7 1.61615 × 10−6

0.5 −0.0825 −0.082499999 1.33332 × 10−7 1.61615 × 10−6

0.6 −0.0660 −0.065999893 1.06666 × 10−7 1.61615 × 10−6

0.7 −0.0495 −0.049499920 7.99998 × 10−8 1.61615 × 10−6

0.8 −0.0330 −0.032999946 5.33331 × 10−8 1.61615 × 10−6

0.9 −0.0165 −0.016499973 2.66666 × 10−8 1.61615 × 10−6

Table 2 Numerical resultsy for system(20) at t = 0.8.

α Exact Solutiony Numerical Solution Absolute Error Relative Error

0.0 0.1650 0.164999733 2.66665 × 10−7 1.61615 × 10−6

0.1 0.1485 0.148499760 2.39999 × 10−7 1.61615 × 10−6

0.2 0.1320 0.131999786 2.13332 × 10−7 1.61615 × 10−6

0.3 0.1155 0.115499813 1.86666 × 10−7 1.61615 × 10−6

0.4 0.0990 0.098999840 1.59999 × 10−7 1.61615 × 10−6

0.5 0.0825 0.082499999 1.33332 × 10−7 1.61615 × 10−6

0.6 0.0660 0.065999893 1.06666 × 10−7 1.61615 × 10−6

0.7 0.0495 0.049499920 7.99998 × 10−8 1.61615 × 10−6

0.8 0.0330 0.032999946 5.33331 × 10−8 1.61615 × 10−6

0.9 0.0165 0.016499973 2.66666 × 10−8 1.61615 × 10−6

Table 3 Numerical resultsy for system(22) at t = 0.1.

α Exact Solutiony Numerical Solution Absolute Error Relative Error

0.0 −0.240 −0.239999762 2.37499 × 10−7 9.89580 × 10−7

0.1 −0.216 −0.215999786 2.13749 × 10−7 9.89580 × 10−7

0.2 −0.192 −0.191999810 1.89999 × 10−7 9.89580 × 10−7

0.3 −0.168 −0.167999833 1.66249 × 10−7 9.89580 × 10−7

0.4 −0.144 −0.143999857 1.42499 × 10−7 9.89580 × 10−7

0.5 −0.120 −0.119999881 1.18749 × 10−7 9.89580 × 10−7

0.6 −0.096 −0.095999905 9.49997 × 10−8 9.89580 × 10−7

0.7 −0.072 −0.071999928 7.12498 × 10−8 9.89580 × 10−7

0.8 −0.048 −0.047999952 4.74998 × 10−8 9.89580 × 10−7

0.9 −0.024 −0.023999976 2.37499 × 10−8 9.89580 × 10−7

If y is a(2, 1)−solution for Equation(19), then

y′′(t) = 2(1− α),

y(0) =
α− 1

8
, y(1) =

3(α− 1)

8
,

y′′(t) = 2(α− 1),

y(0) =
1− α

8
, y(1) =

3(1− α)

8
.

(26)

where the exact solutions are

y(t) =
−(α− 1)

8
(8t2 − 10t− 1),

y(t) =
−(1− α)

8
(8t2 − 10t− 1).

(27)

The numerical results of system(26) are given in Table7,
Table8 and Figure4.

c© 2016 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


2126 R. Saadeh et al.: Numerical investigation for solving two-point...

Table 4 Numerical resultsy for system(22) at t = 0.1.

α Exact Solutiony Numerical Solution Absolute Error Relative Error

0.0 0.240 0.239999762 2.37499 × 10−7 9.89580 × 10−7

0.1 0.216 0.215999786 2.13749 × 10−7 9.89580 × 10−7

0.2 0.192 0.191999810 1.89999 × 10−7 9.89580 × 10−7

0.3 0.168 0.167999833 1.66249 × 10−7 9.89580 × 10−7

0.4 0.144 0.143999857 1.42499 × 10−7 9.89580 × 10−7

0.5 0.120 0.119999881 1.18749 × 10−7 9.89580 × 10−7

0.6 0.096 0.095999905 9.49997 × 10−8 9.89580 × 10−7

0.7 0.072 0.071999928 7.12498 × 10−8 9.89580 × 10−7

0.8 0.048 0.047999952 4.74998 × 10−8 9.89580 × 10−7

0.9 0.024 0.023999976 2.37499 × 10−8 9.89580 × 10−7

Table 5 Numerical resultsy for system(24) at t = 0.2.

α Exact Solutiony Numerical Solution Absolute Error Relative Error

0.0 −0.0150 −0.014999600 3.99998 × 10−7 2.66665 × 10−5

0.1 −0.0135 −0.013499640 3.59999 × 10−7 2.66665 × 10−5

0.2 −0.0120 −0.011999680 3.19999 × 10−7 2.66665 × 10−5

0.3 −0.0105 −0.010499720 2.79999 × 10−7 2.66665 × 10−5

0.4 −0.0090 −0.008999760 2.39999 × 10−7 2.66665 × 10−5

0.5 −0.0075 −0.007499800 1.99999 × 10−7 2.66665 × 10−5

0.6 −0.0060 −0.005999840 1.59999 × 10−7 2.66665 × 10−5

0.7 −0.0045 −0.004499880 1.19999 × 10−7 2.66665 × 10−5

0.8 −0.0030 −0.002999920 7.99997 × 10−8 2.66665 × 10−5

0.9 −0.0015 −0.001499960 3.99998 × 10−8 2.66665 × 10−5

Table 6 Numerical resultsy for system(24) at t = 0.2.

α Exact Solutiony Numerical Solution Absolute Error Relative Error

0.0 0.0150 0.014999600 3.99998 × 10−7 2.66665 × 10−5

0.1 0.0135 0.013499640 3.59999 × 10−7 2.66665 × 10−5

0.2 0.0120 0.011999680 3.19999 × 10−7 2.66665 × 10−5

0.3 0.0105 0.010499720 2.79999 × 10−7 2.66665 × 10−5

0.4 0.0090 0.008999760 2.39999 × 10−7 2.66665 × 10−5

0.5 0.0075 0.007499800 1.99999 × 10−7 2.66665 × 10−5

0.6 0.0060 0.005999840 1.59999 × 10−7 2.66665 × 10−5

0.7 0.0045 0.004499880 1.19999 × 10−7 2.66665 × 10−5

0.8 0.0030 0.002999920 7.99997 × 10−8 2.66665 × 10−5

0.9 0.0015 0.001499960 3.99998 × 10−8 2.66665 × 10−5

5 Concluding remarks

In this paper, we introduce an algorithm for solving fuzzy
two-point boundary value problem based on the use of the
IRKM method in which a new constructed of the fuzzy
two-point boundary conditions involved. The main
characteristic feature of the IRKM method is that the
global approximation can be established on the whole
solution domain, in contrast with other numerical
methods like onestep and multistep methods, and the
convergence is uniform. Indeed, the present method is
accurate, need less effort to achieve the results, and

especially developed for nonlinear case. On the other
hand, the derivatives of the approximate solutions are also
uniformly convergent. Results obtained show that the
numerical scheme is very effective and convenient for
solving such problems. Additionally, we note that not
only a computational method is presented but also the
error of the approximate solutions are monotone
decreasing in the sense of the norm ofW 3

2 [0, 1].
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Table 7 Numerical resultsy for system(26) at t = 0.9.

α Exact Solutiony Numerical Solution Absolute Error Relative Error

0.0 −0.440 −0.439999862 1.37499 × 10−7 3.12499 × 10−7

0.1 −0.396 −0.395999876 1.23749 × 10−7 3.12499 × 10−7

0.2 −0.352 −0.351999890 1.09999 × 10−7 3.12499 × 10−7

0.3 −0.308 −0.307999903 9.62497 × 10−8 3.12499 × 10−7

0.4 −0.264 −0.263999917 8.24997 × 10−8 3.12499 × 10−7

0.5 −0.220 −0.219999931 6.87498 × 10−8 3.12499 × 10−7

0.6 −0.176 −0.175999945 5.49998 × 10−8 3.12499 × 10−7

0.7 −0.132 −0.131999958 4.12498 × 10−8 3.12499 × 10−7

0.8 −0.088 −0.087999972 2.74999 × 10−8 3.12499 × 10−7

0.9 −0.044 −0.043999986 1.37499 × 10−8 3.12499 × 10−7

Table 8 Numerical resultsy for system(26) at t = 0.9.

α Exact Solutiony Numerical Solution Absolute Error Relative Error

0.0 0.440 0.439999862 1.37499 × 10−7 3.12499 × 10−7

0.1 0.396 0.395999876 1.23749 × 10−7 3.12499 × 10−7

0.2 0.352 0.351999890 1.09999 × 10−7 3.12499 × 10−7

0.3 0.308 0.307999903 9.62497 × 10−8 3.12499 × 10−7

0.4 0.264 0.263999917 8.24997 × 10−8 3.12499 × 10−7

0.5 0.220 0.219999931 6.87498 × 10−8 3.12499 × 10−7

0.6 0.176 0.175999945 5.49998 × 10−8 3.12499 × 10−7

0.7 0.132 0.131999958 4.12498 × 10−8 3.12499 × 10−7

0.8 0.088 0.087999972 2.74999 × 10−8 3.12499 × 10−7

0.9 0.044 0.043999986 1.37499 × 10−8 3.12499 × 10−7

Fig. 2 The (1, 2)-solution: exact (red) and numerical (black)
solutions.
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Fig. 4 The (2, 1)-solution: exact (red) and numerical (black)
solutions.
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