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Abstract: In this paper, a new notion nameait-algebra is introduced as a du@talgebra. Then the relation betwe&t-algebra
with number of abstract algebras including dB&K-algebra, implication algebr8E-algebra and-algebra is investigated and some
properties ofG"-algebra are studied. Moreover, a binary relatiorGoralgebra is defined and proved that it forms a partially arder
relation. Finally, considerin@G™-algebra, filters and upper sets are studied and relateéiepare discussed providing an equivalent
condition of a filter and finding the relation between filtensl aipper sets.
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1 Introduction 2011, filters of Cl-algebra are considered and an
equivalent condition of filters using the notion of upper
The notion of duaBCK-algebra was considered in 2006 sets is providedd]. In this paper we continue to study
by R. Borzooei and S. Shoar. They showed that thefilter theory. In particular, for a new notion, named
implication algebra is equivalent to the dual implicative G*-algebra obtained fror-algebra (we refer the reader
BCK-algebra []. Based on this notion, K. Kim and Y. to [9] for more information onG-algebra). Such algebra
Yon in 2007 studied the properties of dBCK-algebra is a generalization ofCI/BE-algebra in the sense that
and proved thaMV-algebra is equivalent to the bounded everyCl/BE-algebra is aG*-algebra but not vice versa.
commutative dualBBCK-algebra P]. Later in 2008, A. In [10Q], it is proved that anyCl-algebra is equivalent to
Walendziak investigated the relation betwd#ralgebra, dual Q-algebra. Thus,G"-algebra is considered as a
implicative algebra and-algebra and stated that they are generalization of dua-algebra as well. The paper is
equivalent to the commutative duBCK-algebra 8]. In organized as follows. We start in Section 2 by giving
2012, Y. Yon and K. Kim showed that a commutative preliminary definitions. In Section 3, we show that any
Heyting algebra is equivalent to a bounded implicative dual BCK-algebra is aG™-algebra and any implication
dualBCK-algebra. algebra is aGT'-algebra. For the converse relation
The concept of filters were studied deeply in somebetween duaBCK-algebra ands*-algebra we need extra
algebras as the filters in general provides a preciseonditions that will be shown further in Theorem 3.2.
language to locate elements that are large enough t@hroughout the section, we study properties of
satisfy some criterion, which is useful in analysis, gehera G*-algebra. Then we define a binary operatignby
topology and logic. One of the algebras studied, wasx < y if and only if xoy = 1 and show that every
BE-algebra where B. L. Meng gave a procedure used toG+t-algebra determines a partially ordered set (a poset).
generate a filter by a subset in a transistEe-algebra  Finally, in Section 4, we consider the definition of filters
and constructed the quotient algebra of a transitiveand upper sets. We give in Theorem 4.1 an equivalent
BE-algebra via a filter of it 4] and Rough filters are condition for filters inG*-algebra and we generalize the
establishedq]. condition in Corollary 4.1. Through an example we note
Then the idea of a generalized upper sets inthat upper sets are not filters in general and we obtain
BE-algebra were developed, extended upper sets ofelations between them in Theorems 4.5, 4.6, 4.7, 4.8.
BE-algebra were introduced and some relations with
filters were obtained (seed][ and [7] repectively). In
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2 Preliminaries

We recall some definition fromi], [9], [11], [12], [13].

(1) xox=1,
(2) (yox)ox=y.

Note that the bottom and top elements is denoted by 0 an&roposition 3.1.Let (X, 0, 1) be aG"-algebra, then

1, respectively.

Definition 2.1.[9] A G-algebra is a non-empty sEtwith

a constant 0 and a binary operatiosatisfying the axioms,
forall x,y € X:

(1) xxx=0,

(2) Xx(xxy)=Y.

Definition 2.2. [1] A dual BCK-algebra is an algebra
(X,0,1) of type(2,0) satisfying for allx,y,z € X:

(1) (xey)o((yez)o(xez))=1,

(2) xo((xey)oy) =1,

(3) xox=1,

(4) xoy=1andyox=1limplyx=y,
(5) xol=1.

Definition 2.3.[11] An implication algebra is a sét with
a binary operatios which satisfies the following axioms,
forall x,y,z€ X:

(1) (xxy)xx=X,

(2) (Xxy)*y=(y*X)*X,

(3) Xxx(y*x2) =yx(xx2).

Proposition 2.1.[1] If (X,*) is an implication algebra,
then(X,x,1) is a duaBCK-algebra.

Definition 2.4.[12] An algebra(X,x) is said to be al-
algebra if, for any,y € X,

Xt (X (Y (Y* X)) = Y (Y (Xx (X%Y))).

Definition 2.5.[13] An algebra(X;x*,1) is called aBE-
algebra if, for allx,y,z € X:

(1) xxx=1,
(2) xx1=1,
(3) lxx=x,

(4) xx(yx2z) =y*(xx2).
Proposition 2.2.[11] Every BE-algebra is a-algebra.

3 On G*-algebra

In this section we introduce the notion Gf -algebra and
study its relation with dualBCK-algebra, implication
algebra,BE-algebra andl-algebra. We also study some

properties ofG™-algebra. Moreover, we show that every

G'-algebra determines a partially ordered set.
From Definition 2.1, we introduce the definition of
G'-algebra as follows.

Definition 3.1. Let (X, x,0) be aG-algebra and a binary
operation« defined onX as follows:xxy =yoXx. Then
(X,0,1) of type (2,0) is called aG*-algebra, if for any
X,y € X, it satisfies the following conditions:

yol(yox)ox) = 1
Proof.yo ((yoX)ox) =yoy=1.

Proposition 3.2.Any dualBCK-algebra is &5*-algebra.
Proof. Obvious.

Corollary 3.1. G*™-algebra is a generalization of dual
BCK-algebra.

Corollary 3.2. Any implication algebra is &*-algebra.
Proof. Follows directly from Propositions 2.1 and 3.1.

Proposition 3.3.Let (X,0,1) be aG*-algebra, then the
following statements hold, for ak € X:

(1) lox=x,

(2) (xol)ol=x.

Proof. Let x € X, using Definition 3.1, we havedx =
(xoXx) ox = x. We can get the second equation by putting
y=xandx=1in (2).

Theorem 3.1.Let (X,0,1) be aBE-algebra and,y € X
then(X,0,1) is aG*-algebra.

Proof. By using condition (1) and (4) oBE-algebra in
Definition 2.5 we geyo ((yoX)oX) = (yoX)o (yox) =1
which is the second axiom of™-algebra. Therefore,
(X,0,1) is aGT-algebra.

Proposition 3.4. Let (X,0,1) be a G'-algebra and
XY,z € X, such thatxo (yoz) =yo (xoz) andxol=1,
then(X,o,1) is aBE-algebra.

Proof. Direct from Definition 2.5 and Proposition 3.3(1).

Corollary 3.3. Let (X,0,1) be aG"-algebraand,y,z€ X,
such thaiko (yoz) =yo (Xxoz) andxo1=1, then(X,o,1)

is aJ-algebra.

Proof. Follows directly from Proposition 3.4 and
Proposition 2.2.

Proposition 3.5.Let (X,0,1) be aG*-algebra. Then for
anyx,y € X:

(1) Ifyox=1theny=x,

(2) Ifxol=yoltheny=x.

Proof. Letx,y € X.

(1) If yox=1, we havey = (yox) oX=1oX=X.

(2) If xol=yo1l, then(xol)ol= (yol)ol. Therefore,
x =Yy, from axiom (2) of Proposition 3.3.

Proposition 3.6.Let (X, 0,1) be aG*-algebra. Lek,y,z€
X, such thatxo (yoz) = yo(xoz) andxol=1. Then
xo (yox)=1.

Proof. We havexo (yox) =yo (Xox) =yol=1.
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Define a binary operationy’” on X as the following:
foranyx,y € X, xVy = (xoy)oy.

Definition 3.2. For any algebraX, we say thatX is
commutative ilxVy =y VX, ¥x,y € X.

Corollary 3.4. In GT-algebraX, xVy = x,Vx,y € X.

Corollary 3.5. A G'-algebraX is not commutative in
general.

Proof. Letx,y € X. ThenxVy = (Xoy)oy=xandyVx=
(yox)ox=Y.

Definition 3.3.A G -algebraX, o, 1) is a self-distributive
if the operatior is:

(1) left self-distributed if, for alk,y,z € X,
Xo (yoz) = (Xoy)o(xo2),

(2) right self-distributed if, for alk,y,z € X,
(xoy)oz= (xoZ)o(yo2).

Proposition 3.7.In G*-algebraxo (xVvVy) = 1.
Proof. We havexo (xVy) = xox =1 from Definition 3.1.

Proposition 3.8.Let (X,0,1) be aG*-algebra, then:

(1) (xoy)Vz=(xVz)o(yVz),
(2) (xVy)oz=(Xo2z)V(yo2z).
Proof. Direct.

Proposition 3.9.In a right self-distributiveG™-algebra,

(1) xoy=1imply(xvVz)o(yVvz) =1,

(2) xoy=yoz=1imply(xva)o(zva)=1.

Proof. (1) (xVz)o(yVz) = (Xoy)Vz=(1vz) =1.

(2) Letxoy=1andyoz=1. Asxoz= ((Xoy)oy)oz=
(loy)oz=yoz=1. Therefore from (1)xVa)o(zVa) =
1.

Theorem 3.2.Let (X,0,1) be aG'-algebra ando (yo
z) =yo(xoz) andxol=1, then(X,o,1) is a dualBCK-
algebra.

Proof. Let xoy =1 andyox = 1. Then from Proposition
3.5 (1),x=Yy. To prove that(xoy)o ((yoz)o(xo2z)) =
1. Consider(yo z) o (xoz), usingxo (yoz) =yo (Xo2)
we get,(yoz)o (Xoz) =xo((yoz) oz) =xoy. Hence,
(Xoy)o((yoz)o(Xoz)) = (Xoy)o(xoy)=1. Therefore,
GT-algebra is a du#BCK-algebra.

Proof. Letzox=zoy. Then(zo 1) o (zoXx) = (zo1) o (zoy).
Hencex=y.

Proposition 3.12.In G'-algebraX, the following are
equivalent for anxy,z € X:

(1) zo(yox)=yo(zoXx),

(2) (zox)o(yox)=yoz

Proof. To prove that (1) implies (2). Assun® (yoX) =
yo(zoX). Then(zoX)o (yoX) =yo ((ZzoX)oX) =yoz
Conversely, suppose théto x) o (yoX) = yoz Then we
have,zo (yox) = ((yoXx) oX) o (zoX) =yo (zoX).

Proposition 3.13.In G*-algebraX, for x,y,ze X if y= z,
then the following are equivalent:

(1) (zoy)o(zox)=YyoX,

(2) (zox)o(yox)=yoz

Proof. Suppose tha{zoy)o (zox) = yox. We have
(zoy)o(zox) = [(yoX)o(zoXx)]o(zoXx). By the right
cancellation law in Proposition 3.10 we get,
zoy = (yoX)o(zoX). Henceyyoz= (zox)o (yox). On
the other hand, assume th@ox)o (yox) =yoz We
have, [(zoXx) o (yoX)] o (yoX) = (Yo Zz) o (yoXx). Thus,
zox= (yoz)o(yoX). By puttingz=y, we get (1).

Definition 3.4. Let (X,0,1) be aGT'-algebra. Define a
binary relation< on X as follows:x <y if and only if
Xoy=1.

Every G"-algebra determines a partially ordered set (a
poset), with the binary operation defined above.

Theorem 3.3.If X is aG™-algebra, then the relation is
a partial order orX wherex <y if and only if xoy = 1.

Proof. (i) Since xox =1, we getx < x. Thus < is
reflexive.

(i) Let x < yandy < x. Then,yox =1 andxoy= 1. If
yox =1 we gety = x from Proposition 3.5. Hencg is
anti-symmetric.

(iii) Let x<yandy<z. Thenxoy=1andyoz=1.
Sincexoz= ((Xoy)oy)oz= (loy)oz=yoz=1, we
havex < z. Hence< is transitive.

If a GT-algebra is a poset oKX, then we have the
following Theorem.

Theorem 3.4. Let (X,0,1) be a G'-algebra. Then

The right cancellation holds in @*-algebra whereas  G*-algebra is the algebra generated by a partial order
the left cancellation holds with an extra axiom as shown inrelation < which satisfies the following axioms for all

the next Propositions.

Proposition 3.10.Let (X, 0,1) be aG"-algebra anco z=
yoz foranyx,y,ze X. Thenx=y.

Proof. Let xoz=yoz We have, from Definition 3.1 (2),
X=(Xo0z)oz=(yoz)oz=Yy.

Proposition 3.11.Let (X,0,1) be aG™-algebra andzo
1) o (zoXx) =X, for anyx,y,z € X. Thenzox = zoy imply
X=Y.

X,y € X:
(1) x<x,
(2) y<((yex)ox).
Proposition 3.14.1 < ximply x = 1.
Proof. As 1ox =1, Proposition 3.5 proves the axiom.

Proposition 3.15.Let (X,0,1) be a left self-distributive
Gt-algebraandol=1.If x<ythenzox < zoy.

(@© 2016 NSP
Natural Sciences Publishing Cor.


www.naturalspublishing.com/Journals.asp

2134

N SS ¥

D. Al-Kadi, R. Hosny:G™-algebra, filters and upper sets

Table 1: Cayley table
al|b

(@]

[opRORN N

1 alb
a 1] a
b b |1

Proof. Given thatxoy = 1 andxo 1 = 1. We have that,
(zoX)o(zoy)=2zo(Xxoy)=z0l=1.

Corollary 3.6. If x < ythenz < (xoy).

Proposition 3.16. Let (X,0,1) be a G'-algebra and
suppose thatxo (yoz) = yo (xo2z). If x <y then
yoz<XozZ

Proof. We have(yoz)o (xoz) =Xo((yoz)oz) =Xoy=1.

Corollary 3.7. In a right self-distributiveG™-algebra, If
x<ythen(yox) <z

4 Filters and Upper sets

In this section we consider the concepts of filters and uppefrhegrem 4.3.1n G*+-algebrax =y if and only if U ()

The proof of Corollary 4.2 follows directly from
Proposition 3.5.

Corollary 4.2. Let X beG™-algebra. Ifxoy = 1, thena" o
x=1impliesa"oy =1, for allx,y,a € X.

Definition 4.2. Let (X,0,1) be aG™-algebra. Define the
upper set of an elemere X byU (x) := {z€ X|xoz=1}
and the upper set of two elementy € X by U (x,y) :=
{ze X|xo(yoz)=1}.

Example 4.2.Using the algebra in Example 4.1, we have
U(b,b) ={1a},U(a) = {a}.

Remark. Upper sets need not to be filter in general as in
Example 4.1U (b, b) is not a filter.

Proposition 4.1.Let X be G"-algebra. Ifxoy =1 then
U9 =U(y).

Proof. Supposecoy=1. Letze U (y), thusyoz= 1 and so
from Proposition 3.5 (1)y = z We also havex=y. Thus
x =y =z Thereforexoz= xox = 1 which impliesz €
U (x). Similarly,ze U (x) impliesze U (y). HenceU (x) =
U(y).

sets. We study their properties and find out how filters and (y).

upper sets are related @i -algebra.

Definition 4.1.Let (X,0,1) be aG"-algebra. A non-empty
subsef of X is said to be a filter oX if:

(1) 1eF,
(2) xoyeF andxeFimplyyeF.

Example 4.1.The algebraX,o,1) whereX = {1,a,b}
with Cayley table (Tabld) is aG'-algebra.

Observe thafF; := {1,a,b} is a filter whereas, :=
{1,a} is notafilteramob=ac F, andac F, butb ¢ F..

Theorem 4.1.Let (X,0,1) be aG*-algebra and IeF be
a set containing 1. Theh is a filter if and only if for any
elemenix € F, xoy=1impliesy € F.

Proof. Suppose that for any elemerte F, xoy =1
impliesy € F. Given 1€ F, the first condition holds. Let
xoy € F and x € F, from Proposition 3.1 we have
xo ((xoy)oy) = 1. Thenxo(loy) =1 and soxoy =1
which impliesy € F, the second condition holds.

Now suppose thaF is a filter andxoy = 1 for any
X,y € F. As F is a filter contains 1 we haveoy € F.
From Definition 4.1 (2)y € F.

In the next corollary we will writex" for x which
occursn times, for anyn € N.

Corollary 4.1. Let F be a set containing 1. Thenis a
filter if and only if for any element € F, X"oy = 1 implies
yeF.

Proof. Straightforward by induction.

Proof. Supposex=y and Letzc U(x). Thenxoz=1=
yozwhich implies thatz € U (y). Similarly, we can show
thatU (y) C U (x). It follows thatU (x) = U (y).

Supposé) (x) =U(y), and leze U (x). Thusxoz=yoz=
1. From Proposition 3.1&=y.

Theorem 4.4.1n a left self-distributiveG'-algebra, if
a,beU(xy) thenaobec U(x,y) andboac U(x,y).

Proof. Sincea, b € U (x,y), we know thako (yoa) =1 and
xo (yob) = 1. Using the left self-distributive law twice we
havexo (yo (a0 b)) = xo((yoa) o (yob)) = (xo(yoa)) o
(Xo(yob)) =101=1.In a similar way it can be shown
thatboaec U(x,y).

Remark. aob ¢ U (y,x) andboa¢ U (y,x).

Proposition 4.2. In G'-algebra, if xo1l = 1 then
leU(xy).

Proof. Let Xxo 1 = 1. So,Xo (yo 1) = 1 this means that
leU(xy).

Theorem 4.5.1In a left self-distributiveG™-algebra an
upper set (x,y) is afilter if xo1=1.

Proof. From Proposition 4.2, we know thatd U (x,y).
Letaob € U(x,y) anda € U(x,y). Thus we know that
Xo(yo(aoh)) =1 andxo (yoa) = 1. Starting with
Xo (yo (aob)) =1 and using left distribution law we have
xo (yo(aoh)) =xo((yoa)o(yob)) = (xo(yoa))o(xo
lo(xo(yoh)) = xo(yob) = 1. Hence,

) i.e. the upper séfl (x,y) is a filter of X.

<

?
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In the following part we give properties of upper sets. Acknowledgement

We omit obvious proofs.
Proposition 4.3.For anyx € X, x € U(X).
Proposition 4.4.For 1€ X, 1€ U (1,1).

Proposition 4.5.For anyx € X, U (x) = U (1,x).

Proof. Using the definitions of upper setd(1,x) = {z¢
X]|lo(xoz)=1} = {z€ X|xoz=1} =U(X).

Proposition 4.6.1f yo 1= 1 thenU (x) C U (y,X).

Proof. Suppose thato1=1and leze U (X) i.e.xoz=1.
Thenyo (xoz) =yol=1. Then obviouslyz € U (y,Xx).
This proves thalt) (x) C U (y,x).

Corollary 4.3. If yo1# 1 thenU (x) \ {1} € X\ U (y,X).

Proof. Supposeyo1 # 1 and letze U(x) \ {1}. From
Definition 4.2xoz= 1. Thenyo (xoz) =yo1+# 1. Thus,
z ¢ U(y,x). Hence, z ¢ X \ U(y,x). Therefore,
U)\ {1} S X\U(y,x).

Theorem 4.6.Let F be a subset of &"-algebraX. If F is
afilter of X thenU (x,y) CF ¥x,y € F. Similarly,U (y,x) C
F.vx,yeF.

Proof. Suppose- is a filter. Letx,y € F andz e U(x,y).
Thenxo (yoz) =1. As 1€ F, we know thaio (yoz) € F.
Applying Definition 4.1 (2) twice we have € F. Thus
U(xy) CF.

Theorem 4.7.Let F be a subset of &"-algebraX and
xol=1.1fU(xy) C F,¥xy € F thenF is afilter.

Proof. Suppose that foranyy € F, U (x,y) C F. Consider
the elemenk € F,xo (xo1) =1 and so 1 U(x,x) C F.
Letxoy e F andx € F. From Definition 3.1 (1)(Xoy)o
(xoy) =1, which impliesy € U(xoy,Xx) C F. This proves
thatF is a filter.

Corollary 4.4.1f U(x) is a filter ofX that containg,y then
U (x,y) CU(x) andU (y,x) C U (x).

Proof. Suppose thdt (x) is a filter of X. Letze U(X,y).
Thus, Xxo (yoz) = 1. As U(x) is a filter, we have
Xo(yoz) € U(x) andy € U(x) which implies that
z e U(x). This proves that) (x,y) C U(x). The second
part is proved similarly.

We consider the generalization of upper sets
G'-algebraly(x,y) := {z€ X|x" o (yoz) = 1}. The next
theorem is proved directly.

Theorem 4.8.1f X is a left self-distributiveG"-algebra
andxo1 =1 then the generalized upper &{(x,y) is a
filter.

Proposition 4.7.1n G*-algebra, ifzo (yox) = yo (zoX)
andyoa= 1 thenUp(X,y) = Un(y,X).

Proof. We havelJp(x,y) =X"o (yoa) =X"o1=1. On the
other handUn(y,X) = y"o (xoa) =y 1o (yo (xoa)) =
y"1o(xo(yoa)) =y o (xol) =y"lol=1.

The authors are grateful to the reviewers for their
comments.
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