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Abstract: In this paper, a new notion namedG+-algebra is introduced as a dualG-algebra. Then the relation betweenG+-algebra
with number of abstract algebras including dualBCK-algebra, implication algebra,BE-algebra andJ-algebra is investigated and some
properties ofG+-algebra are studied. Moreover, a binary relation onG+-algebra is defined and proved that it forms a partially ordered
relation. Finally, consideringG+-algebra, filters and upper sets are studied and related properties are discussed providing an equivalent
condition of a filter and finding the relation between filters and upper sets.
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1 Introduction

The notion of dualBCK-algebra was considered in 2006
by R. Borzooei and S. Shoar. They showed that the
implication algebra is equivalent to the dual implicative
BCK-algebra [1]. Based on this notion, K. Kim and Y.
Yon in 2007 studied the properties of dualBCK-algebra
and proved thatMV -algebra is equivalent to the bounded
commutative dualBCK-algebra [2]. Later in 2008, A.
Walendziak investigated the relation betweenBE-algebra,
implicative algebra andJ-algebra and stated that they are
equivalent to the commutative dualBCK-algebra [3]. In
2012, Y. Yon and K. Kim showed that a commutative
Heyting algebra is equivalent to a bounded implicative
dualBCK-algebra.

The concept of filters were studied deeply in some
algebras as the filters in general provides a precise
language to locate elements that are large enough to
satisfy some criterion, which is useful in analysis, general
topology and logic. One of the algebras studied, was
BE-algebra where B. L. Meng gave a procedure used to
generate a filter by a subset in a transistiveBE-algebra
and constructed the quotient algebra of a transitive
BE-algebra via a filter of it [4] and Rough filters are
established [5].

Then the idea of a generalized upper sets in
BE-algebra were developed, extended upper sets of
BE-algebra were introduced and some relations with
filters were obtained (see [6] and [7] repectively). In

2011, filters of CI-algebra are considered and an
equivalent condition of filters using the notion of upper
sets is provided [8]. In this paper we continue to study
filter theory. In particular, for a new notion, named
G+-algebra obtained fromG-algebra (we refer the reader
to [9] for more information onG-algebra). Such algebra
is a generalization ofCI/BE-algebra in the sense that
everyCI/BE-algebra is aG+-algebra but not vice versa.
In [10], it is proved that anyCI-algebra is equivalent to
dual Q-algebra. Thus,G+-algebra is considered as a
generalization of dualQ-algebra as well. The paper is
organized as follows. We start in Section 2 by giving
preliminary definitions. In Section 3, we show that any
dual BCK-algebra is aG+-algebra and any implication
algebra is a G+-algebra. For the converse relation
between dualBCK-algebra andG+-algebra we need extra
conditions that will be shown further in Theorem 3.2.
Throughout the section, we study properties of
G+-algebra. Then we define a binary operation≤ by
x ≤ y if and only if x ◦ y = 1 and show that every
G+-algebra determines a partially ordered set (a poset).
Finally, in Section 4, we consider the definition of filters
and upper sets. We give in Theorem 4.1 an equivalent
condition for filters inG+-algebra and we generalize the
condition in Corollary 4.1. Through an example we note
that upper sets are not filters in general and we obtain
relations between them in Theorems 4.5, 4.6, 4.7, 4.8.
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2 Preliminaries

We recall some definition from [1], [9], [11], [12], [13].
Note that the bottom and top elements is denoted by 0 and
1, respectively.

Definition 2.1. [9] A G-algebra is a non-empty setX with
a constant 0 and a binary operation∗ satisfying the axioms,
for all x,y ∈ X :

(1) x∗ x = 0,
(2) x∗ (x∗ y) = y.

Definition 2.2. [1] A dual BCK-algebra is an algebra
(X ,◦,1) of type(2,0) satisfying for allx,y,z ∈ X :

(1) (x◦ y)◦ ((y◦ z)◦ (x◦ z))= 1,
(2) x◦ ((x◦ y)◦ y) = 1,
(3) x◦ x = 1,
(4) x◦ y = 1 andy◦ x = 1 imply x = y,
(5) x◦1= 1.

Definition 2.3. [11] An implication algebra is a setX with
a binary operation∗ which satisfies the following axioms,
for all x,y,z ∈ X :

(1) (x∗ y)∗ x = x,
(2) (x∗ y)∗ y = (y∗ x)∗ x,
(3) x∗ (y∗ z) = y∗ (x∗ z).

Proposition 2.1. [1] If (X ,∗) is an implication algebra,
then(X ,∗,1) is a dualBCK-algebra.

Definition 2.4. [12] An algebra(X ,∗) is said to be aJ-
algebra if, for anyx,y ∈ X ,

x∗ (x∗ (y∗ (y∗ x)))= y∗ (y∗ (x∗ (x∗ y))).

Definition 2.5. [13] An algebra(X ;∗,1) is called aBE-
algebra if, for allx,y,z ∈ X :

(1) x∗ x = 1,
(2) x∗1= 1,
(3) 1∗ x = x,
(4) x∗ (y∗ z) = y∗ (x∗ z).

Proposition 2.2.[11] EveryBE-algebra is aJ-algebra.

3 On G+-algebra

In this section we introduce the notion ofG+-algebra and
study its relation with dualBCK-algebra, implication
algebra,BE-algebra andJ-algebra. We also study some
properties ofG+-algebra. Moreover, we show that every
G+-algebra determines a partially ordered set.

From Definition 2.1, we introduce the definition of
G+-algebra as follows.

Definition 3.1. Let (X ,∗,0) be aG-algebra and a binary
operation∗ defined onX as follows:x ∗ y = y ◦ x. Then
(X ,◦,1) of type (2,0) is called aG+-algebra, if for any
x,y ∈ X , it satisfies the following conditions:

(1) x◦ x = 1,
(2) (y◦ x)◦ x = y.

Proposition 3.1.Let (X ,◦,1) be aG+-algebra, then

y◦ ((y◦ x)◦ x) = 1.

Proof. y◦ ((y◦ x)◦ x) = y◦ y = 1.

Proposition 3.2.Any dualBCK-algebra is aG+-algebra.

Proof. Obvious.

Corollary 3.1. G+-algebra is a generalization of dual
BCK-algebra.

Corollary 3.2. Any implication algebra is aG+-algebra.

Proof. Follows directly from Propositions 2.1 and 3.1.

Proposition 3.3.Let (X ,◦,1) be aG+-algebra, then the
following statements hold, for allx ∈ X :

(1) 1◦ x = x,
(2) (x◦1)◦1= x.

Proof. Let x ∈ X , using Definition 3.1, we have 1◦ x =
(x ◦ x) ◦ x = x. We can get the second equation by putting
y = x andx = 1 in (2).

Theorem 3.1.Let (X ,◦,1) be aBE-algebra andx,y ∈ X
then(X ,◦,1) is aG+-algebra.

Proof. By using condition (1) and (4) ofBE-algebra in
Definition 2.5 we gety◦ ((y◦ x)◦ x) = (y◦ x)◦ (y◦ x) = 1
which is the second axiom ofG+-algebra. Therefore,
(X ,◦,1) is aG+-algebra.

Proposition 3.4. Let (X ,◦,1) be a G+-algebra and
x,y,z ∈ X , such thatx ◦ (y ◦ z) = y ◦ (x ◦ z) andx ◦ 1 = 1,
then(X ,◦,1) is aBE-algebra.

Proof. Direct from Definition 2.5 and Proposition 3.3(1).

Corollary 3.3. Let (X ,◦,1) be aG+-algebra andx,y,z ∈X ,
such thatx◦ (y◦ z) = y◦ (x◦ z) andx◦1= 1, then(X ,◦,1)
is aJ-algebra.

Proof. Follows directly from Proposition 3.4 and
Proposition 2.2.

Proposition 3.5.Let (X ,◦,1) be aG+-algebra. Then for
anyx,y ∈ X :

(1) If y◦ x = 1 theny = x,
(2) If x◦1= y◦1 theny = x.

Proof. Let x,y ∈ X .
(1) If y◦ x = 1, we havey = (y◦ x)◦ x = 1◦ x = x.
(2) If x ◦1= y◦1, then(x ◦1)◦1= (y◦1)◦1. Therefore,
x = y, from axiom (2) of Proposition 3.3.

Proposition 3.6.Let (X ,◦,1) be aG+-algebra. Letx,y,z ∈
X , such thatx ◦ (y ◦ z) = y ◦ (x ◦ z) and x ◦ 1 = 1. Then
x◦ (y◦ x) = 1.

Proof. We have,x◦ (y◦ x) = y◦ (x◦ x) = y◦1= 1.
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Define a binary operation ”∨ ” on X as the following:
for anyx,y ∈ X , x∨ y = (x◦ y)◦ y.

Definition 3.2. For any algebraX , we say thatX is
commutative ifx∨ y = y∨ x, ∀x,y ∈ X .

Corollary 3.4. In G+-algebraX , x∨ y = x,∀x,y ∈ X .

Corollary 3.5. A G+-algebraX is not commutative in
general.

Proof. Let x,y ∈ X . Thenx∨y = (x◦y)◦y = x andy∨x =
(y◦ x)◦ x = y.

Definition 3.3.A G+-algebra(X ,◦,1) is a self-distributive
if the operation◦ is:

(1) left self-distributed if, for allx,y,z ∈ X ,
x◦ (y◦ z) = (x◦ y)◦ (x◦ z),

(2) right self-distributed if, for allx,y,z ∈ X ,
(x◦ y)◦ z = (x◦ z)◦ (y◦ z).

Proposition 3.7.In G+-algebra,x◦ (x∨ y) = 1.

Proof. We have,x◦ (x∨y) = x◦x = 1 from Definition 3.1.

Proposition 3.8.Let (X ,◦,1) be aG+-algebra, then:

(1) (x◦ y)∨ z = (x∨ z)◦ (y∨ z),
(2) (x∨ y)◦ z = (x◦ z)∨ (y◦ z).

Proof. Direct.

Proposition 3.9.In a right self-distributiveG+-algebra,

(1) x◦ y = 1 imply (x∨ z)◦ (y∨ z) = 1,
(2) x◦ y = y◦ z = 1 imply (x∨a)◦ (z∨a) = 1.

Proof. (1) (x∨ z)◦ (y∨ z) = (x◦ y)∨ z = (1∨ z) = 1.
(2) Let x◦ y = 1 andy◦ z = 1. Asx◦ z = ((x◦ y)◦ y)◦ z =
(1◦y)◦z = y◦z = 1. Therefore from (1),(x∨a)◦(z∨a) =
1.

Theorem 3.2.Let (X ,◦,1) be aG+-algebra andx ◦ (y ◦
z) = y◦ (x ◦ z) andx ◦1= 1, then(X ,◦,1) is a dualBCK-
algebra.

Proof. Let x ◦ y = 1 andy ◦ x = 1. Then from Proposition
3.5 (1), x = y. To prove that(x ◦ y) ◦ ((y ◦ z) ◦ (x ◦ z)) =
1. Consider(y ◦ z) ◦ (x ◦ z), usingx ◦ (y ◦ z) = y ◦ (x ◦ z)
we get,(y ◦ z) ◦ (x ◦ z) = x ◦ ((y ◦ z) ◦ z) = x ◦ y. Hence,
(x ◦ y) ◦ ((y ◦ z) ◦ (x ◦ z)) = (x ◦ y) ◦ (x ◦ y) = 1. Therefore,
G+-algebra is a dualBCK-algebra.

The right cancellation holds in aG+-algebra whereas
the left cancellation holds with an extra axiom as shown in
the next Propositions.

Proposition 3.10.Let (X ,◦,1) be aG+-algebra andx◦z=
y◦ z, for anyx,y,z ∈ X . Thenx = y.

Proof. Let x ◦ z = y ◦ z. We have, from Definition 3.1 (2),
x = (x◦ z)◦ z = (y◦ z)◦ z = y.

Proposition 3.11.Let (X ,◦,1) be aG+-algebra and(z ◦
1)◦ (z◦ x) = x, for anyx,y,z ∈ X . Thenz◦ x = z◦ y imply
x = y.

Proof. Let z◦x= z◦y. Then(z◦1)◦(z◦x)= (z◦1)◦(z◦y).
Hencex = y.

Proposition 3.12. In G+-algebraX , the following are
equivalent for anyx,y,z ∈ X :

(1) z◦ (y◦ x) = y◦ (z◦ x),
(2) (z◦ x)◦ (y◦ x) = y◦ z.

Proof. To prove that (1) implies (2). Assumez ◦ (y ◦ x) =
y ◦ (z ◦ x). Then(z ◦ x) ◦ (y ◦ x) = y ◦ ((z ◦ x) ◦ x) = y ◦ z.
Conversely, suppose that(z ◦ x) ◦ (y ◦ x) = y ◦ z. Then we
have,z◦ (y◦ x) = ((y◦ x)◦ x)◦ (z◦ x) = y◦ (z◦ x).

Proposition 3.13.In G+-algebraX , for x,y,z ∈ X if y = z,
then the following are equivalent:

(1) (z◦ y)◦ (z◦ x) = y◦ x,
(2) (z◦ x)◦ (y◦ x) = y◦ z.

Proof. Suppose that(z ◦ y) ◦ (z ◦ x) = y ◦ x. We have
(z ◦ y) ◦ (z ◦ x) = [(y ◦ x) ◦ (z ◦ x)] ◦ (z ◦ x). By the right
cancellation law in Proposition 3.10 we get,
z ◦ y = (y ◦ x) ◦ (z ◦ x). Hence,y ◦ z = (z ◦ x) ◦ (y ◦ x). On
the other hand, assume that(z ◦ x) ◦ (y ◦ x) = y ◦ z. We
have, [(z ◦ x) ◦ (y ◦ x)] ◦ (y ◦ x) = (y ◦ z) ◦ (y ◦ x). Thus,
z◦ x = (y◦ z)◦ (y◦ x). By puttingz = y, we get (1).

Definition 3.4. Let (X ,◦,1) be a G+-algebra. Define a
binary relation≤ on X as follows:x ≤ y if and only if
x◦ y = 1.
Every G+-algebra determines a partially ordered set (a
poset), with the binary operation≤ defined above.

Theorem 3.3.If X is aG+-algebra, then the relation≤ is
a partial order onX wherex ≤ y if and only if x◦ y = 1.

Proof. (i) Since x ◦ x = 1, we get x ≤ x. Thus ≤ is
reflexive.
(ii) Let x ≤ y andy ≤ x. Then,y ◦ x = 1 andx ◦ y = 1. If
y ◦ x = 1 we gety = x from Proposition 3.5. Hence≤ is
anti-symmetric.
(iii) Let x ≤ y andy ≤ z . Then,x ◦ y = 1 andy ◦ z = 1.
Sincex ◦ z = ((x ◦ y) ◦ y) ◦ z = (1◦ y) ◦ z = y ◦ z = 1, we
havex ≤ z. Hence≤ is transitive.

If a G+-algebra is a poset onX , then we have the
following Theorem.

Theorem 3.4. Let (X ,◦,1) be a G+-algebra. Then
G+
≤-algebra is the algebra generated by a partial order

relation ≤ which satisfies the following axioms for all
x,y ∈ X :

(1) x ≤ x,
(2) y ≤ ((y◦ x)◦ x).

Proposition 3.14.1≤ x imply x = 1.

Proof. As 1◦ x = 1, Proposition 3.5 proves the axiom.

Proposition 3.15.Let (X ,◦,1) be a left self-distributive
G+-algebra andx◦1= 1. If x ≤ y thenz◦ x ≤ z◦ y.
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Table 1: Cayley table

◦ 1 a b
1 1 a b
a a 1 a
b b b 1

Proof. Given thatx ◦ y = 1 andx ◦ 1 = 1. We have that,
(z◦ x)◦ (z◦ y) = z◦ (x◦ y) = z◦1= 1.

Corollary 3.6. If x ≤ y thenz ≤ (x◦ y).

Proposition 3.16. Let (X ,◦,1) be a G+-algebra and
suppose thatx ◦ (y ◦ z) = y ◦ (x ◦ z). If x ≤ y then
y◦ z ≤ x◦ z.

Proof. We have,(y◦z)◦(x◦z) = x◦((y◦z)◦z) = x◦y= 1.

Corollary 3.7. In a right self-distributiveG+-algebra, If
x ≤ y then(y◦ x)≤ z.

4 Filters and Upper sets

In this section we consider the concepts of filters and upper
sets. We study their properties and find out how filters and
upper sets are related inG+-algebra.

Definition 4.1.Let (X ,◦,1) be aG+-algebra. A non-empty
subsetF of X is said to be a filter ofX if:

(1) 1∈ F ,
(2) x◦ y ∈ F andx ∈ F imply y ∈ F.

Example 4.1.The algebra(X ,◦,1) whereX = {1,a,b}
with Cayley table (Table1) is aG+-algebra.

Observe thatF1 := {1,a,b} is a filter whereasF2 :=
{1,a} is not a filter asa◦b = a ∈ F2 anda ∈ F2 butb /∈ F2.

Theorem 4.1.Let (X ,◦,1) be aG+-algebra and letF be
a set containing 1. ThenF is a filter if and only if for any
elementx ∈ F , x◦ y = 1 impliesy ∈ F.

Proof. Suppose that for any elementx ∈ F , x ◦ y = 1
impliesy ∈ F . Given 1∈ F , the first condition holds. Let
x ◦ y ∈ F and x ∈ F , from Proposition 3.1 we have
x ◦ ((x ◦ y) ◦ y) = 1. Thenx ◦ (1◦ y) = 1 and sox ◦ y = 1
which impliesy ∈ F , the second condition holds.
Now suppose thatF is a filter andx ◦ y = 1 for any
x,y ∈ F. As F is a filter contains 1 we havex ◦ y ∈ F .
From Definition 4.1 (2),y ∈ F .

In the next corollary we will writexn for x which
occursn times, for anyn ∈ N.

Corollary 4.1. Let F be a set containing 1. ThenF is a
filter if and only if for any elementx ∈F , xn◦y = 1 implies
y ∈ F .

Proof. Straightforward by induction.

The proof of Corollary 4.2 follows directly from
Proposition 3.5.

Corollary 4.2. Let X beG+-algebra. Ifx◦ y = 1, thenan ◦
x = 1 impliesan ◦ y = 1, for all x,y,a ∈ X .

Definition 4.2. Let (X ,◦,1) be aG+-algebra. Define the
upper set of an elementx ∈ X byU(x) := {z ∈ X |x◦ z= 1}
and the upper set of two elementsx,y ∈ X by U(x,y) :=
{z ∈ X |x◦ (y◦ z) = 1}.

Example 4.2.Using the algebra in Example 4.1, we have
U(b,b) = {1,a}, U(a) = {a}.

Remark. Upper sets need not to be filter in general as in
Example 4.1U(b,b) is not a filter.

Proposition 4.1.Let X be G+-algebra. Ifx ◦ y = 1 then
U(x) =U(y).

Proof. Supposex◦y= 1. Letz∈U(y), thusy◦z= 1 and so
from Proposition 3.5 (1),y = z. We also havex = y. Thus
x = y = z. Therefore,x ◦ z = x ◦ x = 1 which impliesz ∈
U(x). Similarly,z ∈U(x) impliesz ∈U(y). HenceU(x) =
U(y).

Theorem 4.3.In G+-algebra,x = y if and only if U(x) =
U(y).

Proof. Supposex = y and Letz ∈ U(x). Thenx ◦ z = 1=
y ◦ z which implies thatz ∈ U(y). Similarly, we can show
thatU(y)⊆U(x). It follows thatU(x) =U(y).
SupposeU(x) =U(y), and letz∈U(x). Thusx◦z= y◦z=
1. From Proposition 3.10,x = y.

Theorem 4.4. In a left self-distributiveG+-algebra, if
a,b ∈U(x,y) thena ◦ b ∈U(x,y) andb ◦ a ∈U(x,y).

Proof. Sincea,b∈U(x,y), we know thatx◦(y◦a)= 1 and
x◦ (y◦b) = 1. Using the left self-distributive law twice we
have,x◦ (y◦ (a◦b))= x◦ ((y◦a)◦ (y◦b))= (x◦ (y◦a))◦
(x ◦ (y ◦ b)) = 1◦1= 1. In a similar way it can be shown
thatb ◦ a ∈U(x,y).

Remark. a ◦ b /∈U(y,x) andb ◦ a /∈U(y,x).

Proposition 4.2. In G+-algebra, if x ◦ 1 = 1 then
1∈U(x,y).

Proof. Let x ◦ 1 = 1. So,x ◦ (y ◦ 1) = 1 this means that
1∈U(x,y).

Theorem 4.5. In a left self-distributiveG+-algebra an
upper setU(x,y) is a filter if x◦1= 1.

Proof. From Proposition 4.2, we know that 1∈ U(x,y).
Let a ◦ b ∈ U(x,y) and a ∈ U(x,y). Thus we know that
x ◦ (y ◦ (a ◦ b)) = 1 and x ◦ (y ◦ a) = 1. Starting with
x◦ (y◦ (a◦b)) = 1 and using left distribution law we have
x ◦ (y ◦ (a ◦ b)) = x ◦ ((y ◦ a) ◦ (y ◦ b)) = (x ◦ (y ◦ a)) ◦ (x ◦
(y ◦ b)) = 1 ◦ (x ◦ (y ◦ b)) = x ◦ (y ◦ b) = 1. Hence,
b ∈U(x,y) i.e. the upper setU(x,y) is a filter ofX .

c© 2016 NSP
Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci.10, No. 6, 2131-2136 (2016) /www.naturalspublishing.com/Journals.asp 2135

In the following part we give properties of upper sets.
We omit obvious proofs.

Proposition 4.3.For anyx ∈ X , x ∈U(x).

Proposition 4.4.For 1∈ X , 1∈U(1,1).

Proposition 4.5.For anyx ∈ X , U(x) =U(1,x).

Proof. Using the definitions of upper sets,U(1,x) = {z ∈
X |1◦ (x◦ z) = 1}= {z ∈ X |x◦ z = 1}=U(x).

Proposition 4.6.If y◦1= 1 thenU(x)⊆U(y,x).

Proof. Suppose thaty◦1= 1 and letz ∈U(x) i.e.x◦ z = 1.
Theny ◦ (x ◦ z) = y ◦ 1 = 1. Then obviouslyz ∈ U(y,x).
This proves thatU(x)⊆U(y,x).

Corollary 4.3. If y◦1 6= 1 thenU(x)\ {1}⊆ X \U(y,x).

Proof. Supposey ◦ 1 6= 1 and letz ∈ U(x) \ {1}. From
Definition 4.2x◦ z = 1. Theny◦ (x◦ z) = y◦1 6= 1. Thus,
z /∈ U(y,x). Hence, z ∈ X \ U(y,x). Therefore,
U(x)\ {1} ⊆ X \U(y,x).

Theorem 4.6.Let F be a subset of aG+-algebraX . If F is
a filter ofX thenU(x,y)⊆F ∀x,y∈F . Similarly,U(y,x)⊆
F ,∀x,y ∈ F .

Proof. SupposeF is a filter. Letx,y ∈ F andz ∈ U(x,y).
Thenx◦ (y◦ z) = 1. As 1∈ F, we know thatx◦ (y◦ z) ∈ F .
Applying Definition 4.1 (2) twice we havez ∈ F . Thus
U(x,y)⊆ F .

Theorem 4.7.Let F be a subset of aG+-algebraX and
x◦1= 1. If U(x,y)⊆ F,∀x,y ∈ F thenF is a filter.

Proof. Suppose that for anyx,y∈F,U(x,y)⊆F . Consider
the elementx ∈ F,x ◦ (x ◦1) = 1 and so 1∈ U(x,x) ⊆ F .
Let x ◦ y ∈ F andx ∈ F . From Definition 3.1 (1),(x ◦ y) ◦
(x◦ y) = 1, which impliesy ∈U(x◦ y,x)⊆ F. This proves
thatF is a filter.

Corollary 4.4. If U(x) is a filter ofX that containsx,y then
U(x,y)⊆U(x) andU(y,x)⊆U(x).

Proof. Suppose thatU(x) is a filter ofX . Let z ∈ U(x,y).
Thus, x ◦ (y ◦ z) = 1. As U(x) is a filter, we have
x ◦ (y ◦ z) ∈ U(x) and y ∈ U(x) which implies that
z ∈ U(x). This proves thatU(x,y) ⊆ U(x). The second
part is proved similarly.
We consider the generalization of upper sets in
G+-algebraUn(x,y) := {z ∈ X |xn ◦ (y ◦ z) = 1}. The next
theorem is proved directly.

Theorem 4.8. If X is a left self-distributiveG+-algebra
andx ◦1 = 1 then the generalized upper setUn(x,y) is a
filter.

Proposition 4.7. In G+-algebra, ifz ◦ (y ◦ x) = y ◦ (z ◦ x)
andy◦ a = 1 thenUn(x,y) =Un(y,x).

Proof. We have,Un(x,y) = xn ◦ (y◦a) = xn ◦1= 1. On the
other hand,Un(y,x) = yn ◦ (x ◦ a) = yn−1 ◦ (y ◦ (x ◦ a)) =
yn−1◦ (x◦ (y◦ a)) = yn−1◦ (x◦1) = yn−1◦1= 1.
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