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Abstract: In this paper a mathematical model for trypanosomiasis-cryptosporidium co-infection dynamics is investigated to give
a theoretical mathematical account of the impact of cryptosporidiosis on trypanosomiasis dynamics. The model steady states are
analyzed. The disease-free equilibrium is shown to be locally asymptotically stable when the associated epidemic basic reproduction
number for the model is less than unity. The trypanosomiasisonly and the cryptosporidiosis only model are each found to exhibit
transcritical and backward bifurcation phenomena respectively. While the co-infection model exhibits the possibility of multiple
endemic equilibria. From the sensitivity analysis, the trypanosomiasis reproductive numberR lt

0 is more sensitive toδ (death due to
insecticides) and crypto parameters wheneverRcr

0 > 1 (crypto reproductive number). While the cryptosporidiosis reproductive number

Rcr
0 is less sensitive to trypanosomiasis parameters wheneverR lt

0 > 1 (trypanosomiasis reproductive number). This is an indication
that cryptosporidiosis infection may be associated with anincreased risk of trypanosomiasis, while trypanosomiasisinfection is not
associated with an increased risk for cryptosporidiosis. We incorporate time dependent controls, using Pontryagin’sMaximum Principle
to derive necessary conditions for the optimal control of the disease. Furthermore, the effect of the presence of each infection on the
endemicity of the other is investigated and presented numerically.
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1 Introduction

Tsetse-transmitted African animal trypanosomosis
hinders the establishment of developmental and
sustainable agricultural systems in more than 30 countries
of sub-Saharan Africa (FAO, 2001). Tsetse-transmitted
Trypanosomiasis diseases are caused by protozoa of the
genus Trypanosoma which affects all domestic animals.
Most tsetse transmission is cyclic and begins when blood
from a trypanosome-infected animal is ingested by the fly.
The trypanosome then loses its surface coat and
multiplies in the fly, thereafter it reacquires a surface coat
and becomes infective.T brucei sppmigrate from the gut
to the proventriculus to the pharynx and eventually to the
salivary glands; while the cycle forT congolensestops at
the hypopharynx, and the salivary glands are not invaded.
The entire cycle forT vivaxoccurs in the proboscis. The
animal-infective form in the tsetse salivary gland is
referred to as the metacyclic form. The life cycle in the
tsetse may be as short as 1 week withT vivaxor extend to
a few weeks forT brucei spp. Severity of disease varies
with species and age of the animal infected and the

species of trypanosome involved. The incubation period
is usually 1 week to 4 weeks. The primary clinical
symptoms are intermittent fever, anemia, and weight loss.
Cattle usually have a chronic course with high mortality,
especially if there is poor nutrition or other stress factors.
Ruminants may gradually recover if the number of
infected tsetse flies is low; however but stress results in
relapse [28].

Control measures include eradication of tsetse flies (if
possible) and use of prophylactic drugs. Tsetse flies can
be partially controlled by frequent spraying and dipping
of animals, aerial and ground spraying of insecticides on
fly-breeding areas, use of insecticide-impregnated screens
and targets, bush clearing, and other methods. The
trypanosomes that cause tsetse-transmitted
trypanosomiasis (sleeping sickness) in animals,T brucei
brucei, closely resembleT brucei rhodesienseand T
brucei gambiensefrom people, which requires that
adequate precautions should be taken when working with
such isolates [28]. Humans and animals cannot be
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infected through direct contact with each other, so tsetse
flies remains the vehicle for the spread of the disease [27].

Cryptosporidiosis on the other hand is a diarrheal
disease caused by microscopic parasites,
Cryptosporidium, that can live in the intestine of humans
and animals and is passed in the stool of an infected
person or animal. Both the disease and the parasite are
commonly known as “Crypto”. The parasite is protected
by an outer shell that allows it to survive outside the body
for long periods of time and makes it very resistant to
chlorine-based disinfectants. During the past 2 decades,
Crypto has become recognized as one of the most
common causes of waterborne disease (recreational water
and drinking water) in humans in the United States.
Millions of Crypto germs can be released in a bowel
movement from an infected human or animal. Shedding
of Crypto in the stool begins when the symptoms begin
and can last for weeks after the symptoms (e.g.,diarrhea)
stop [24]. Cryptosporidium may be found in soil, food,
water, or surfaces that have been contaminated with the
feces from infected humans or animals. Crypto is not
spread by contact with blood. Crypto can be spread by:

–Putting something in your mouth or accidentally
swallowing something that has come into contact with
stools of a person or animal infected with Crypto.

–Swallowing recreational water contaminated with
Crypto. Recreational water is water in swimming
pools, hot tubs, Jacuzzis, fountains, lakes, rivers,
springs, ponds, or streams. Recreational water can be
contaminated with sewage or feces from humans or
animals.

–Swallowing water or beverages contaminated with
stools from infected humans or animals.

–Eating uncooked food contaminated with Crypto.
Thoroughly wash with uncontaminated water all
vegetables and fruits you plan to eat raw.

Although cryptosporidium infection itself isn’t
life-threatening, but if an immune system is compromised
through diseases such as trypanosomiasis, then a
cryptosporidium infection can become life-threatening
without proper treatment [29]. Cryptosporidium infection
can be prevented by practicing good hygiene and avoiding
swallowing water from pools, recreational water parks,
lakes and streams. Therefore, cryptosporidiosis remains
an important global cause of morbidity and mortality,
capable of causing periodic epidemic disease.

Hence, a good understanding of the transmission
dynamics and ecology of
trypanosomiasis-cryptosporidiosis co-infection in
emergent epidemic regions can help to improve the
control of future epidemics. Mathematical models
provide a quantitative and potentially valuable tool for
this purpose.

Recently, the authors in [15] presented and analyzed a
deterministic model for the co-infection of HIV and
malaria in a community. Also, in [19], the authors
examined a deterministic model for the co-infection of

tuberculosis and malaria, while in [17,?] the authors
proposed a model for Schistosomiasis and HIV/AIDS
co-dynamics and a deterministic model for malaria and
typhoid co-infection. Also, in [1], the authors presented a
mathematical assessment of the effect of traditional
beliefs and customs on ebola transmission. In [20], a
mathematical model for cholera which include essential
components such as hyper-infectious, short-lived bacterial
state, a separate class for mild human infections and
waning disease immunity was formulated and analyzed.
An optimal control analysis of hepatitis C virus with
acute and chronic stages was presented in [23]. In [32], a
global dynamics of an hepatitis C virus was studied. The
authors in Nyabadza et.al [21], presented the implications
of HIV treatment on the HIV-malaria coinfection
dynamics. A simple mathematical model was presented in
[16] to assess whether HIV infection is associated with an
increased risk for cholera or not. While the co-infection
dynamics of malaria and cholera were studied in [22].
The authors in [33] presented a qualitative analysis of a
mathematical model for malaria transmission and its
variation. Hargrove et.al. [6], presented a mathematical
model for trypanosomiasis transmission to identify
treatment coverages required to break transmission when
host populations consisted of various proportions of wild
and domestic mammals, and reptiles. However, some few
studies have been carried out on the formulation and
analysis to cryptosporidiosis, trypanosomiasis or
co-infection models. In [25], the author presented a
general mathematical model of a vector-borne disease
involving two vertebrate host species and one insect
vector species. A compartmental model of sleeping
sickness is described in [13] that takes into account a
density-dependence of the vector population which is
subjected to a regulating migratory mechanism. Also, a
three-parameter(k(1)− k(3)) model for age-dependent
adult instantaneous mortality rates was constructed using
mark-recapture data for the tsetse fly Glossina morsitans
morsitans Westwood (Diptera: Glossinidae) in [8]. In [9],
the authors presented a spatial model of tsetse (Glossina
palpalis ssp. and G. pallidipes) life cycle incorporating
four control measures (aerial spraying of nonresidual
insecticides, traps and targets, insecticide-treated
livestock (ITL) and the sterile insect technique) in order
to assess how much of each of various combinations of
these control tactics would be necessary to eradicate the
population. The model further included
density-independent and dependent mortality rates,
temperature-dependent mortality, an age-dependent
mortality, two mechanisms of dispersal and a component
of aggregation.

To the authors’ knowledge no work has been done to
investigate the trypanosomiasis-cryptosporidiosis
co-infection dynamics.

In this paper, anSIR(susceptible, infected, recovered)
model for trypanosomiasis-cryptosporidiosis co infection
is formulated. The paper is then organized as follows: The
model description and the underlying assumptions are
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presented in Section 2. In Section 3, the mathematical
analysis of the model is presented. While in Section 4, the
trypanosomiasis only model is analyzed. Section 5 is
devoted to the analysis of the cryptosporidiosis only
model. In Section 6, the analysis of the co-infection
model is presented. The numerical results and discussions
are presented in Section 7. The conclusion is presented in
Section 8.

2 Mathematical Model

The total population, denoted byNl , is divided into
sub-populations of Susceptible individualsSl , individuals
infected with trypanosomiasis onlyIlt , individuals
infected with cryptosporidiosis onlyIcr, individuals
infected with both trypanosomiasis and cryptosporidiosis
Clbt , individuals who recovered from trypanosomiasis
only Rlt , individuals who recovered from
cryptosporidiosis onlyRcr, individuals who recovered
from both trypanosomiasis and cryptosporidiosisRlbt . So
thatNl = Sl + Ilt + Icr +Clbt +Rlt +Rcr +Rlbt .

The vector population is assumed to comprise just
two compartments, susceptible (Sp) and infective (Ip), (so
that Np = Sp + Ip) and the concentration of microbes
population isEc.

Susceptible individuals are recruited at rateΛl ; they
either die from natural causes, at a rateµc, or get infected
at a rateξ ∗

m = βc+βl Ip. Whereβ ∗
c = νIcr

K+Icr
+Ec, Ec is the

microbes population,ν is the contact rate and the
microbes concentration is denoted byK. The transmission
rate of trypanosomiasis to livestock isβl . Infected species
either die due to disease, at rateψ3c or/and ψ4c, they
respectively recover due to treatments at ratesρc, σc and
γl . Recovered individuals may lose their immunity and
move to the susceptible class at ratesνc, ωl andαl . It is
also assumed that infected individuals do not recover
spontaneously.

Susceptible tsetse flies are generated at a rateΛv, they
may die, from natural causes, at a rateµv, or from contact
with insecticides treated cattle, at a rateδ . They become
infected after a blood meal from any infective individuals,
the probability of blood meal from infectious is given by
ac and the probability of an infected fly bite causing
infection is equal tocc. Susceptible tsetse flies thus
become infectious at rateλ = accc(Ilt +Clbt). Infectious
tsetse flies are also assume to die, from natural causes, at
a rateµv, or from contact with insecticides treated cattle,
at a rateδ . It is further assume here that tsetse flies are not
involve in the spread of cryptosporidiosis. The resulting

system of equations is shown below:
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
















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d
dt Sl = Λl +νcRlt +αl Rlbt +ωlRcr − µcSl − ξ ∗

mSl

d
dt Ilt = β ∗

l Sl −βcIlt − (µc+ψ3c+ρc)Ilt
d
dt Icr = βcSl −β ∗

l Icr − (µc+ψ4c+σc)Icr

d
dtClbt = β ∗

l Icr +βcIlt − (γc+ µc+ψ3c+ψ4c)Clbt

d
dt Rlt = ρcIlt − (µc+νc)Rlt + εl (1− γl)Clbt

d
dt Rcr = σcIcr − (ωl + µc)Rcr +(1− εl)(1− γl)Clbt

d
dt Rlbt = γlClbt − (αl + µc)Rlbt

d
dt Sp = Λv−λ ∗Sp− (µv+ δ )Sp

d
dt Ip = λ ∗Sp− (µv+ δ )Ip

d
dt Ec = π(Icr +θClbt)− µbEc

(1)
here

β ∗
c =

νIcr

K+ Icr
+ρEc λ ∗ = ccac

(

Ilt +Clbt

)

β ∗
l = βl Ip, ξ ∗

m = βc+βl Ip

(2)

3 Mathematical analysis of the model

3.1 Positivity and boundedness of solutions

For the transmission model (1) to be epidemiologically
meaningful, it is important to prove that all its state
variables are non-negative for all time. In other words,
solutions of the model system (1) with non-negative
initial data will remain non-negative for all timet > 0.

Theorem 1.Let the initial data
Sl (0) ≥ 0, Ilt (0) ≥ 0, Icr(0) ≥ 0,Clbt(0) ≥ 0,Rlt (0) ≥
0,Rcr(0)≥ 0,Rlbt(0)≥ 0,Sp(0)≥ 0, Ip(0)≥ 0,Ec(0)≥ 0.
Then the solutions
(Sl , Ilt , Icr,Clbt ,Rlt ,Rcr,Rlbt , Sp, Ip,Ec) of the model (1)
are non-negative for all t> 0. Furthermore

limsup
t→∞

Nl (t)≤ 1 and limsup
t→∞

Np(t)≤ 1

with,

Nl = Sl + Ilt + Icr +Clbt +Rlt +Rcr +Rlbt ; and

Np = Sp+ Ip; Ec.

Proof.Let t1 = sup{t > 0 : Sl (t) > 0, Ilt (t) > 0, Icr(t) >
0,Clbt(t) > 0,Rlt (t) > 0,Rcr(t) > 0,Rlbt(t) > 0,Sp(t) >
0, Ip(t) > 0,Ec(t) > 0}. Since Sl(0) > 0, Ilt (0) >

0, Icr(0)> 0,Clbt(0)> 0,Clbt(0)> 0,Rlt (0) > 0,Rcr(0)>
0,Rlbt(0) > 0,Sp(0) > 0, Ip(0) > 0,Ec(0) > 0, then,
t1 > 0. If t1 < ∞ , thenSl ,Ilt , Icr, Clbt ,Rlt ,Rcr,Rlbt , Sp, Ip or
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Ec is equal to zero att1. It follows from the first equation
of the system (1), that

dSl

dt
= Λl +νcRlt +αlRlbt +ωl Rcr − µcSc− ξ ∗

mSl

Thus,

d
dt

{

Sl (t) exp

[

(ξ ∗
m+ µc)t

]}

= (µc+νcRlt +αl Rlbt +ωlRcr) exp

[

(ξ ∗
m− µc)t

]

Hence,

Sl (t1) exp

[

(ξ ∗
m+ µc)t

]

−Sl(0)

=

∫ t1

0
(µc+νcRlt +αl Rlbt +ωl Rcr) exp

[

(ξ ∗
m− µc)p

]

dp

so that,

Sl (t1) = Sl (0) exp

[

− (ξ ∗
m+µc)t1

]

+exp

[

− (ξ ∗
m+µc)t1

]

∫ t1

0
(µc+νcRlt +αl Rlbt +ωl Rcr) exp

[

(ξ ∗
m−µc)p

]

dp

> 0.
(3)

It can similarly be shown thatIlt > 0, Icr > 0,Clbt > 0,Rlt >

0,Rcr > 0,Rlbt > 0,Sp > 0, Ip > 0 andEc > 0 for all t > 0.
For the second part of the proof, it should be noted that
0< Ilt (t)≤ Nl (t) and 0< Ip(t)≤ Np(t).

Adding the first eight equations and the last three equations
of the model (1) gives

dNl (t)

dt
= Λl −µcNl (t)−ψ3c(Ilt (t)+Clbt(t))−ψ4c(Ilt (t)+Clbt(t)),

dNp(t)

dt
= µv −µvNp(t).

(4)

Thus,

Λl −µcNl (t)−ψ3c(Ilt (t)+Clbt(t))−ψ4c(Ilt (t)+Clbt(t))Nl(t)

≤ dNl (t)
dt

≤ Λl −µcNl (t),

Λv− (µv +δ )Np(t)≤
dNv(t)

dt
≤ Λv−µvNp(t).

Hence, respectively

Λl

µc+ψ3c+ψ4c
≤ lim inf

t→∞
Nl (t)≤ limsup

t→∞
Nl (t)≤

Λl

µc
,

and,

Λv

µv
≤ lim inf

t→∞
Np(t)≤ limsup

t→∞
Np(t)≤

Λv

µv
,

as required.

3.2 Invariant regions

Model (1) will be analyzed in a biologically-feasible
region as follows. The system (1) is split into individual
population (Nl ; with
Nl = Sl + Ilt + Icr +Clbt +Rlt +Rcr +Rlbt) and the vector
population (Np; with Np = Sp+ Ip). Consider the feasible
region

D = Dl ∪Dp∪DB ⊂ R
7
+×R

2
+×R

1
+

with,

Dl =

{

(Sl , Ilt , Icr ,Clbt ,Rlt ,Rcr ,Rlbt)∈R
7
+ : Sl + Ilt + Icr+Clbt +Rlt +Rcr+Rlbt ≤Nl

}

,

DB =

{

Ec ∈ R
1
+ : Ec

}

.

and

Dp =

{

(Sp, Ip) ∈R
2
+ : Sp+ Ip ≤ Np

}

.

The following steps are followed to establish the positive
invariance ofD (i.e., solutions inD remain inD for all
t > 0). The rate of change of the individual and vector
populations is given in equation (4), it follows that

dNl (t)
dt

≤ Λl − µcNl (t),

dNp(t)
dt

≤ Λv− µvNp(t).

(5)

A standard comparison theorem [11] can then be used to
show that Nl (t) ≤ Nl (0)e−µct + (1 − e−µct) and
Np(t) ≤ Np(0)e−µvt +(1−e−µvt). In particular,Nl (t) ≤ 1
and Np(t) ≤ 1 if Nl (0) ≤ 1 andNp(0) ≤ 1 respectively.
Thus, the regionD is positively-invariant. Hence, it is
sufficient to consider the dynamics of the flow generated
by (1) in D . In this region, the model can be considered
as been epidemiologically and mathematically well-posed
[5]. Thus, every solution of the basic model (1) with
initial conditions in D remains in D for all t > 0.
Therefore, theω-limit sets of the system (1) are contained
in D . This result is summarized below.

Lemma 1.The regionD =Dl ∪Dp∪DB ⊂R
7
+×R

2
+×R

1
+

is positively-invariant for the basic model (1) with non-
negative initial conditions inR11

+
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4 Trypanosomiasis only model

Here, the trypanosomiasis only model is considered.




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







































d
dt Sl = Λl +νcRlt − µcSl −β ∗

l Sl

d
dt Ilt = β ∗

l Sl − (µc+ψ3c+ρc)Ilt
d
dt Rlt = ρcIlt − (µc+νc)Rlt

d
dt Sp = Λv−λ ∗Sp− (µv+ δ )Sp

d
dt Ip = λ ∗Sp− (µv+ δ )Ip

(6)

hence,

λ ∗ = ccacIlt , β ∗
l = βl Ip (7)

4.1 Stability of the disease-free equilibrium for
trypanosomiasis only model

The trypanosomiasis only model (6) has a DFE, obtained
by setting the right-hand sides of the equations in the
model to zero, given by

E0 = (S∗l , I
∗
lt ,R

∗
lt ,S

∗
p, I

∗
p)

=

(

Λl

µc
,0,0,

Λv

(µv+ δ )
,0

)

.

(8)

The linear stability ofE0 can be established using the next
generation operator method [31] on the system (6), it then
follows that the reproductive number for trypanosomiasis
only is given by

Rlt
0 =

√

acccΛl Λv βl

µc (δ + µv)
2 (µc+ρc+ψ3c) (9)

Theorem 2.The DFE of the model (6), given byR lt
0 , is

locally asymptotically stable (LAS) ifR lt
0 < 1, and

unstable ifR0t > 1.

4.2 Existence of endemic equilibrium


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












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










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






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











































S∗l =
Λl +νcR∗

lt

µc+β ∗
l

I∗lt =
β ∗

l S∗l
(µc+ψ3c+ρc)

R∗
lt =

ρcI∗lt
νc+ µc

S∗p =
Λv

µv+ δ +λ ∗

I∗p =
λ ∗S∗p

µc+ δ

(10)

Hence, the trypanosomiasis endemic equilibrium, satisfies
the following polynomial

P(I∗lt ) = I∗lt

(

G1(I
∗
lt )

2+G2(I
∗
lt )+G3

)

= 0 (11)

G1 = (δ + µv)[µc(µc+ρc+νc)+ (µc+νc)ψ3c][acccΛl (µc+νc)+M1]],

G2 = µc(δ + µv)(µc+νc)(µc+ρc+ψ3c)[acccΛl (µc+νc)
+2(δ + µv)[µc(µc+νc+ρc)+ (µc+νc)ψ3c]],

G3 = µ2
c (µc+νc)

2(µc+ρc+ψ3c)
2(δ + µv)

2(1−Rlt 2
0)

(12)
where

M1 = (δ + µv)(µc(µc+ρc+νc)+ (µc+νc)ψ3c

Proposition 1

1. If Rlt
0 ≥ 1 then system (6) exhibits a transcritical

bifurcation.
2. If Rlt

0 ≤ 1 then system (6) has no endemic equilibrium.

Proof.
For Rlt

0 > 1 thatG3 < 0. This implies that system (6) has
a unique endemic steady state. IfRlt

0 ≤ 1, thenG3 ≥ 0 and
sinceG2 ≥ 0, in this case system (6) has no endemic steady
states.

5 Cryptosporidiosis only model

The cryptosporidiosis only model is considered here.


























d
dt Sl = Λl +ωlRcr − µcSl −βcSl

d
dt Icr = βcSl − (µc+ψ4c+σc)Icr

d
dt Rcr = σcIcr − (ωl + µc)Rcr

d
dt Ec = π Icr − µbEc

(13)
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here,

β ∗
c =

ν(Icr)

K + Icr
+ρEc, (14)

5.1 Stability of the disease-free equilibrium for
cryptosporidiosis only model

The cryptosporidiosis only model (13) has a DFE,
obtained by setting the right-hand sides of the equations
in the model to zero, given by

E0 = (S∗l , I
∗
cr,R

∗
cr,E

∗
c )

=

(

Λl

µc
,0,0,0

)

.

(15)

The linear stability ofE0 can be established using the next
generation operator method [31] on the system (13), it then
follows that the reproductive number of cryptosporidiosis
only is given by

Rcr
0 =

νΛl
√µb+

√

(ν2Λ2
l µb+4K2πµ2

c ρ(µc+σc+ψ4c))

2Kµc
√µb(µc+σc+ψ4c)

(16)

Theorem 3.The DFE of the model (13), given byRcr
0 , is

locally asymptotically stable (LAS) ifRcr
0 < 1, and

unstable ifR0c > 1.

5.2 Existence of endemic equilibrium
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























S∗l =
Λl +ωlR∗

cr

µc+β ∗
c

R∗
cr =

σcI∗cr

ωc+ µc

E∗
c =

π I∗cr

µb

(17)

and hence, the cryptosporidiosis endemic equilibrium,
satisfies the following polynomial

P(I∗cr) = I∗cr

(

F1(I
∗
cr)

2+F2(I
∗
cr)+F3

)

= 0 (18)

F1 = ρρc(µc(µc+σc+ψ4c)+ (µc+ψ4c)ωl ),

F2 =
Kµbµc(µc+σc+ψ4c)

νµb+Kρρc
(Rk−Rcr

0 ),

F3 = Kµbµc(µc+ωl)(µc+σc+ψ4c)(1−Rcr
0 )

(19)

where

Rk =
(νµb+Kρρc)(Kρρc[µ2

c+(µc+ωl )(σc+ψ4c)]+µcµb(ν+µc)(µc+σc+ψ4c+M2))
Kµbµc(µc+σc+ψ4c)

M2 = µbωl [µc(µc+σc+ν)+ (ν + µc)ψ4c]

Theorem 4.For K = 0, the cryptosporidiosis only model
(13) has no endemic equilibrium

Theorem 5.For K > 0, the cryptosporidiosis only model
(13) exhibits

1. a transcritical bifurcation if Rk ≥ 1.
2. a backward bifurcation if Rk < 1.

Proof.

1. For Rk ≥ 1 we obtain whenRcr
0 > 1 that F3 < 0.

This implies that the system (13) has a unique endemic
steady state. IfRcr

0 ≤ 1, thenF3 ≥ 0 andF2 ≥ 0. In this
case system (13) has no endemic steady states.

2. ForRk < 1 we discuss the following cases:
i. Rcr

0 > 1, in this caseF3 < 0 and system (13)
has a unique endemic steady state.

ii. Rcr
0 ≤ Rk, in this case bothF2 and F3 are

positive implying that system (13) has no endemic
steady states.

iii.
√

Rk < Rcr
0 < 1, hereF3 > 0 andF2 < 0

while the discriminant of (13),
∆(Rcr

0 ) := F2
2 − 4F1F3, can be either positive or

negative. We have ∆(1) = F2
2 > 0 and

∆(Rk) = −4F1F3 < 0, then there existsRcr
0c such that

∆(Rcr
0c) = 0, ∆(Rcr

0 ) < 0 for Rk < Rcr
0 < Rcr

0c and
∆(Rcr

0 ) > 0 for Rcr
0c < Rcr

0 . This together with the
signs of F2 and F3 imply that system (13) has no
endemic steady states whenRk < Rcr

0 < Rcr
0c, one

endemic steady state whenRcr
0 = Rcr

0c and two
endemic steady states whenRcr

0c < Rcr
0 < 1.

The existence of backward bifurcation is illustrated
numerically in Figure (1(a))

6 The co-infection model

6.1 Stability of the disease-free equilibrium
(DFE)

The cryptosporidiosis-trypanosomiasis model (1) has a
DFE, obtained by setting the right-hand sides of the
equations in the model to zero, given by

E0 = (S∗l , I
∗
lt , I

∗
lb,C

∗
lbt ,R

∗
lt ,R

∗
lb,R

∗
lbt ,S

∗
p, I

∗
p,E

∗
c )

=

(

Λl

µc
,0,0,0,0,0,0,

Λv

(µv+ δ )
,0,0

)

.

(20)
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The linear stability ofE0 can be established using the next
generation operator method [31] on the system (1), it then
follows that the co-infection reproductive number is given
by

R0c = max{Rlt
0 ,R

cr
0 } (21)

Theorem 6.The DFE of the model (1), given byR0c, is
locally asymptotically stable (LAS) ifR0c < 1, and
unstable ifR0 > 1.

6.2 Endemic equilibrium (EEE)

Next we calculate the endemic steady states. Solving
system (1) at the equilibrium we obtainI∗cr = 0 (which
corresponds to the DFE) or

H1I∗4
cr +H2I∗3

cr +H3I
∗2
cr +H4I∗cr +H5 = 0 (22)

Remark: The system (1) has a unique endemic
equilibrium E∗ if Roc > 1 and Cases 1-3 (as declared in
Table 1) are satisfied. It could have more than one
endemic equilibrium ifRoc > 1 and Case 4 is satisfied; it
could have 2 endemic equilibria ifRoc < 1 and Cases 2-4
are satisfied.

Theorem 7.
The system (1) has a unique endemic equilibrium E∗ if
R0c > 1 and Cases 1-3 and 6 are satisfied; it could have
more than one endemic equilibrium if R0c > 1 and Cases
4, 5, 7, and 8 are satisfied; it could have 2 or more
endemic equilibria if R0c < 1 and Cases 2-8 are satisfied.

Table 1, shows the existence of multiple endemic
equilibria when R0c < 1. The Table suggests the
possibility of backward bifurcation, where the stable DFE
coexists with a stable endemic equilibrium, when the
reproduction number is less than unity. Thus, the
occurrence of a backward bifurcation has important
implications for epidemiological control measures, since
an epidemic may persist at steady state even ifR0c < 1.

Table 1: Number of possible positive real roots ofP(I∗cr)
for Roc > 1 andRoc < 1

Cases H1 H2 H3 H4 H5 Roc No of sign No of +ve
change real roots

+ + + + + Roc < 1 0 0
1

+ + + - - Roc > 1 1 1

+ - - - + Roc < 1 2 0, 2
2

+ - - - - Roc > 1 1 1

+ + - - + Roc < 1 2 0, 2
3

+ + - - - Roc > 1 1 1

+ - + - + Roc < 1 4 0, 2, 4
4

+ - + - - Roc > 1 3 1, 3

+ - - + + Roc < 1 2 0, 2
5

+ - - + - Roc > 1 3 1, 3

+ + + - + Roc < 1 2 0, 2
6

+ + + - - Roc > 1 1 1

+ + - + + Roc < 1 2 0, 2
7

+ + - + - Roc > 1 3 1, 3

+ - + + + Roc < 1 2 0, 2
8

+ - + + - Roc > 1 3 1, 3

7 Numerical Simulations

In order to illustrate the results of the foregoing analysis,
numerical simulations of the co-infection model are
carried out, using parameter values given in Table (2). For
the purpose of illustration, some parameter values are
assumed. Find below in Table (2) the parameter
descriptions and values used in the numerical simulation
of the co-infection model.

Figure (1) shows the existence of a backward
bifurcation phenomena, a situation where the disease free
and endemic equilibrium coexists. The implication of this
is that the classical epidemiological requirement for
disease eradication of cryptosporidiosis with reproduction
number less that unity is no longer sufficient. In Figure
(2), the bifurcation diagram shows that whenRlt

0 < 1 there
is a stable disease free equilibrium and whenRlt

0 > 1, a
stable endemic equilibrium exists. This further confirms
the analytical results which shows that a stable endemic
equilibrium exists whenRlt

0 > 1 and the disease free
equilibrium becomes unstable when this condition holds.
Figures (3, 4) illustrate the existence of endemic
equilibrium. Figure (5, 6) shows that in both host and
microbes, cryptosporidiosis infection is lower and faster
to reach equilibrium when trypanosomiasis is present.
The effect of trypanosomiasis is therefore to reduce
cryptosporidiosis incidence. Also (7, 8) show that in both
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Table 2: Description of variables and parameters of the
co-infection model (1).

Para. Description value Ref

Trypa.

ψ3c trypa. related death 0.006day−1 [6]
βl prob. of getting infected 0.62day−1 [6]
µc Natural death rate in humans 0.00055day−1 [6]
µv Natural death rate in tsetse flies 0.03 [6]
νc trypa. immunity waning rate 1day−1 [6]
ωl cryptos. immunity waning rate 0.001 assd
α1 trypa-cryptos immunity waning rate 0.001 assd
Bl birth rate 22day−1 [6]
Bv tsetse flies birth rate 1,440day−1 [6]
γc recovery rate of co-infected 0.0000134 assd
σc recovery rate of cryptos infected 0.07day−1 assd
ρc recovery rate of trypa. infected 0.034day−1 assd
ε co-infected recovering from trypa. only 0.0001 assd

Cryptos

ν ingestion rate 0.5 [20]
K Microbes concentration in environment 1000 assd
ψ4c cryptos related death 0.02407 assd
π cryptos. infected contrib. to the environment 0.7 assd
θ modification parameter 1.2 [16]
µb microbes mortality rate 0.033 [20]
βc microbes contact rate with individual 0.05 assd

host and vectors, trypanosomiasis infection is lower and
faster to reach equilibrium when cryptosporidiosis is
present. The effect of cryptosporidiosis is therefore to
reduce trypanosomiasis incidence.

0.8 1 1.2 1.4 1.6 1.8 2
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Reproduction Number ( Rcr
0

 ) 

In
d

iv
id

u
a

ls
 I

n
fe

ct
e

d
 w

ith
 C

ry
p

to
sp

o
ri
d

io
si

s 
o

n
ly

 (
 I

cr
 )

(a)

Fig. 1: Simulations of model (1) showing the bifurcation
phenomena of cryptosporidiosis and trypanosomiasis.

0 0.5 1 1.5 2 2.5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Reproduction Number ( Rtr
0
 ) 

In
d

iv
id

u
a

ls
 I

n
fe

ct
e

d
 w

ith
 T

ry
p

a
n

o
so

m
ia

si
s 

o
n

ly
 (

 I lt )

(a)

Fig. 2: Simulations of model (1) showing the bifurcation
phenomena of cryptosporidiosis and trypanosomiasis.
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Fig. 3: Simulations of model (1) showing the phase plane
of co-infected individuals against individuals infected with
trypanosomiasis. The graph shows a phase plane for
endemic model withR0c > 1. It was obtained by varying
the parameter values ofδ andµc respectively with other
parameters fixed as shown in Table (2)
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Fig. 4: Simulations of model (1) showing the phase plane
of co-infected individuals against individuals infected with
trypanosomiasis. The graph shows a phase plane for
endemic model withR0c > 1. It was obtained by varying
the parameter values ofδ andµc respectively with other
parameters fixed as shown in Table (2)
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Fig. 5: Simulations of model (1) showing
cryptosporidiosis incidence in host and microbes with and
without trypanosomiasis infection.
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Fig. 6: Simulations of model (1) showing
cryptosporidiosis incidence in host and microbes with and
without trypanosomiasis infection.
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Fig. 7: Simulations of model (1) showing the
trypanosomiasis incidence in host and vectors with
and without cryptosporidiosis infection is shown.
Trypanosomiasis and cryptosporidiosis are simulteneously
introduced into a population in the presence and absence
of co-infection.
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Fig. 8: Simulations of model (1) showing the
trypanosomiasis incidence in host and vectors with
and without cryptosporidiosis infection is shown.
Trypanosomiasis and cryptosporidiosis are simulteneously
introduced into a population in the presence and absence
of co-infection.
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Fig. 9: Simulations of model (1) showing in effect of
treatment on cryptosporidiosis in host and microbes with
trypanosomiasis infection.
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Fig. 10: Simulations of model (1) showing effect of
treatment on cryptosporidiosis in host and microbes with
trypanosomiasis infection.
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Fig. 11: Simulations of model (1) showing effect of
treatment on trypanosomiasis in host and vectors with
cryptosporidiosis infection is shown. Trypanosomiasis and
cryptosporidiosis are simulteneously introduced into a
population in the presence and absence of co-infection.
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Fig. 12: Simulations of model (1) showing effect of
treatment on trypanosomiasis in host and vectors with
cryptosporidiosis infection is shown. Trypanosomiasis and
cryptosporidiosis are simulteneously introduced into a
population in the presence and absence of co-infection.

8 Sensitivity analysis of the co-infection
model

8.1 Sensitivity indices of Rlt0 when expressed in
terms of Rcr

0

We next derive the sensitivity ofRlt
0 (i.e. expressing it in

terms of Rcr
0 ) to each of the 16 different parameters.

However, the expression for the sensitivity indices for
some of the parameters are complex, so we evaluate the
sensitivity indices of these parameters at the baseline
parameter values.

The sensitivity index ofRlt
0 with respect toβv, for

example, is

ϒ Rlt
0

βc
≡ ∂Rlt

0

∂βc
× βc

Rlt
0

= 0.5. (23)

The detailed sensitivity indices ofRlt
0 resulting from the

evaluation to the other parameters of the model are shown
in Table3.

Table3 shows the parameters, arranged from the most
sensitive to the least. ForRcr

0 < 1, the most sensitive
parameters are the crypto contributed to the environment,
prob. of infection through contact with environment,
microbes mortality rate, recovery rate of crypto infected
individuals and death due to insecticides (π , ρ , µb, σc and

δ , respectively). Sinceϒ Rlt
0

βc
= 0.5, decreasing (or

increasing) the microbes contact with hostβc by 10%
decreases (or increases)Rlt

0 by 5%; similarly, increasing
(or decreasing)π by 10%, increases (or decreases)Rlt

0 by

Table 3: Sensitivity indices ofRlt
0 expressed in terms ofRcr

0

Para. Descri Sensitivity Sensitivity
if Rcr

0 < 1 if Rcr
0 > 1

1 π crypto contributed to enviro. 1.686 0.51
2 ρ prob. of infection thro enviro. 1.686 0.51
3 µb microbes mortality rate -1.686 -0.51
4 σc recovery rate from crypto -0.877 -0.0077
5 δ death due to insecticides −0.813 −0.813
6 ac prob. of blood meal 0.5 0.5
7 cc prob. of a bite causing infection 0.5 0.5
8 K concentration of microbes 0.5 0.5
9 βl prob. of infection thro trypa 0.5 0.5
10 ν ingestion rate −0.5 -0.5
11 ρc recovery rate from trypa −0.41 -0.41
12 ψ4c crypto death related -0.3 −0.002
13 µv tsetse natural death -0.188 −0.188
14 ψ3c trypanosomiasis death related -0.074 −0.074
15 µc natural death of hosts -0.014 −0.0068

16.8%. In the same way, increasing (or decreasing)µb or
δ , decreases (or increases)Rlt

0 by 16.8% or 8.1% resp. As
the following parametersβl , K andac increases/decreases
by 10%, the reproduction number of trypanosomiasis,Rlt

0 ,
increases/decreases by 5%.

For Rlt
0 > 1, the most sensitive parameters are the

death due to insecticides, crypto mortality rate, the prob.
of blood meal, the prob. of bites causing infection, crypto
contributed to the environment (δ , µb, ac, cc, π ,

respectively). Sinceϒ Rlt
0

βl
= 0.5, increasing (or decreasing)

by 10%, increases (or decreases)Rlt
0 by 5%; similarly,

increasing (or decreasing) theπ , by 10% increases (or
decreases)Rlt

0 by 5.1%. Also, as parametersK, cc andac

increases/decreases by 10%, the reproduction numberRlt
0 ,

increases by only 5%.
It is clear thatRlt

0 is sensitive to changes inRcr
0 . That

is, the sensitivity ofRlt
0 to some parameter variations

depends onRcr
0 ; whenever,Rcr

0 < 1, Rlt
0 is more sensitive

to the model crypto parameters.

8.2 Sensitivity indices of Rcr
0 when expressed in

terms of Rlt0

We next derive the sensitivity ofRcr
0 (i.e. expressing it in

terms of Rlt
0 ) to each of the 16 different parameters.

However, the expression for the sensitivity indices for
some of the parameters are complex, so we evaluate the
sensitivity indices of these parameters at the baseline
parameter values.

The sensitivity index ofRcr
0 with respect toρ , for

example, is

ϒ Rcr
0

ρ ≡ ∂Rcr
0

∂ρ
× ρ

Rcr
0

=−0.5. (24)

The detailed sensitivity indices ofRcr
0 resulting from the

evaluation to the other parameters of the model are shown
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in Table4. Table4 shows the parameters, arranged from

Table 4: Sensitivity indices ofRcr
0 expressed in terms ofRlt

0

Para. Description Sensitivity Sensitivity
if Rlt

0 < 1 if Rlt
0 > 1

1 π crypto contributed to environment −0.5 −0.5
2 µb microbes mortality rate 0.5 0.5
3 σc recovery rate from crypto 0.37 0.37
4 ψ4c crypto death related 0.127 0.127
5 µc natural death of hosts 0.0029 0.0029
6 δ death due to insecticides −0.00000045 −0.000000018
7 ac prob. of blood meal 0.00000027 0.000000011
8 cc prob. of a bite causing infection 0.00000027 0.000000011
9 K concentration of microbes 0.00000027 0.000000011
10 βc prob. of infection thro crypto 0.00000027 0.000000011
11 βl prob. of infection thro trypa. 0.00000027 0.000000011
12 ν ingestion rate −0.00000027 −0.000000011
13 ρc recovery rate from trypa −0.00000023 -0.0000000092
14 µv tsetse natural death -0.0000001 −0.0000000041
15 ψ3c trypanosomiasis death related -0.000000041−0.0000000016

the most sensitive to the least. ForRlt
0 < 1, the most

sensitive parameters are the crypto contributed to the
environment, prob. of infection through contact with
environment and microbes mortality rate, (π , ρ and µb

respectively). Since ϒ Rcr
0

ρ = −0.5, decreasing (or
increasing) the prob of contact with cryptoρ by 10%
increases (or decreases)Rcr

0 by 5%; similarly, increasing
(or decreasing)π by 10%, decreases (or increases)Rcr

0 by
5%. In the same way, increasing (or decreasing)σc or
ψ4c, increases (or decreases)Rcr

0 by 3.7% or 1.3% resp.
As the following parameters βl , K and βc
increases/decreases by 10%, the reproduction number of
cryptosporidiosis, Rcr

0 , increases/decreases by
0.0000027%.

For Rcr
0 > 1, the most sensitive parameters are also

thecrypto contributed to the environment, prob. of
infection through contact with environment and microbes
mortality rate, (π , ρ and µb respectively). Since

ϒ Rcr
0

µc = 0.0029, increasing (or decreasing)µc by 10%,
increases (or decreases)Rcr

0 by 0.03%.

It is clear thatRcr
0 is sensitive to changes inRlt

0 . That is,
the sensitivity ofRcr

0 to some parameter variations depends
onRlt

0 ; whenever,Rlt
0 < 1,Rcr

0 is less sensitive to the model
trypanosomiasis parameters.

9 Optimal control analysis of the model

In this section, we apply Pontryagin’s Maximum
Principle to determine the necessary conditions for the
optimal control of the co-infection model. We incorporate
time dependent controls into the model (3) to determine
the optimal strategy for controlling the disease. Hence we

have,

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d
dt Sl = Λl +νcRlt +αl Rlbt +ωl Rcr −µcSl − (1−u1)ξ ∗

mSl

d
dt Ilt = (1−u1)β ∗

l Sl − (1−u2)β ∗
c Ilt − (µc +ψ3c +u3ρc)Ilt

d
dt Icr = (1−u2)β ∗

c Sl − (1−u1)β ∗
l Icr − (µc +ψ4c+u4σc)Icr

d
dt Clbt = (1−u1)β ∗

l Icr +(1−u2)β ∗
c Ilt − (u5γl +µc +ψ3c +ψ4c)Clbt

d
dt Rlt = u3ρcIlt − (µc +νc)Rlt + εl (1−u5γl )Clbt

d
dt Rcr = u4σcIcr − (ωl +µc)Rcr +(1− εl )(1−u5γl )Clbt

d
dt Rlbt = u5γlClbt − (αl +µc)Rlbt

d
dt Sp = Λv− (1−u1)λ ∗Sp− (µv +δ )Sp

d
dt Ip = (1−u1)λ ∗Sp − (µv +δ )Ip

d
dt Ec = (1−u2)π(Icr +θClbt)−µbEc

(25)

where,

β ∗
c =

νIcr

K+ Icr
+ρEc λ ∗ = ccac

(

Ilt +Clbt

)

β ∗
l = βl Ip, ξ ∗

m = β ∗
c +βl Ip

(26)

For this, we consider the objective functional

J(u1,u2,u3,u4,u5)=

∫ t f

0
[z1Ilt +z2Icr+z3Clbt +z4Iv+Au2

1+Bu2
2+Cu2

3+Du2
4+Eu2

5]dt

(27)

Our control problem involves a situation in which the
number of trypanosomiasis infected individuals,
cryptosporidiosis infected individuals, co-infected
individuals and the cost of applying preventions and
treatments controlsu1(t), u2(t), u3(t), u4(t) andu5(t) are
minimized subject to the system (13).

t f is the final time and the coefficients,
z1,z2,z3,z4,A,B,C,D,E are the balancing cost factors due
to scales and importance of the ten parts of the objective
function. We seek to find an optimal control,u∗1, u∗2, u∗3, u∗4
andu∗5, such that

J(u∗1,u
∗
2,u

∗
3,u

∗
4,u

∗
5) = min{J(u1,u2,u3,u4,u5)|u1,u2,u3,u4,u5 ∈ U } (28)

whereU = {(u1,u2,u3,u4,u5) such thatu1,u2,u3,u4,u5
are measurable with 0≤ u1 ≤ 1, 0≤ u2 ≤ 1,0≤ u3 ≤ g2,
0≤ u4 ≤ g3 and 0≤ u5 ≤ g4, for t ∈ [0, t f ]} is the control
set.

1.The controlu1(t) and u2(t) represents the efforts on
preventing trypanosomiasis and cryptosporidiosis
infections respectively.

2.The control on treatment of trypanosomiasis infected
individualsu3(t) satisfies 06 u3 6 g2, whereg2 is the
drug efficacy use for treatment of trypanosomiasis
infected individuals.

3.The control on treatment of cryptosporidiosis infected
individualsu4(t) satisfies 06 u4 6 g3, whereg3 is the
drug efficacy use for treatment of cryptosporidiosis
infected individuals and,

4.The control efforts on treatment of co-infected
individualsu5(t) satisfies 06 u5 6 g4, whereg4 is the
drug efficacy use for treatment of co-infected
individuals.
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The necessary conditions that an optimal solution
must satisfy come from the Pontryagin et al [?] Maximum
Principle. This principle converts (13)-(27) into a problem
of minimizing pointwise a HamiltonianH, with respect to
u1,u2,u3,u4 andu5. The adjoint variable associated with
the system is represented byMi , the Hamiltonian is then
written as

H = z1Ilt +z2Icr +z3Clbt +z4Iv +Au2
1+Bu2

2+Cu2
3+Du2

4+Eu2
5

+MSl
{Λl +νcRlt +αl Rlbt +ωl Rcr −µcSl − (1−u1)ξ ∗

mSl }

+MIlt
{(1−u1)β ∗

l Sl − (1−u2)βcIlt − (µc +u3ψ3c+ρc)Ilt }

+MIcr {(1−u2)βcSl − (1−u1)β ∗
l Icr − (µc +u4ψ4c+σc)Icr}

+MClbt
{(1−u1)β ∗

l Icr +(1−u2)βcIlt − (u5γc+µc +ψ3c+ψ4c)Clbt}

+MRlt
{u3ρcIlt − (µc +νc)Rlt + εl (1−u5γl )Clbt}

+MRcr {u4σcIcr − (ωl +µc)Rcr +(1− εl )(1−u5γl )Clbt}

+MRlbt
{u5γlClbt − (αl +µc)Rlbt}

+MSp {Λv− (1−u1)λ ∗Sp − (µv +δ )Sp}

+MIp {(1−u1)λ ∗Sp− (µv +δ )Ip}

+MEc {(1−u2)π(Icr +θClbt)−µbEc}

(29)

whereMSl ,MIlt ,MIcr ,MClbt ,MRlt ,MRcr ,MRlbt ,MSv, MIv and
MEc are the adjoint variables or co-state variables. The
system of equations is found by taking the appropriate
partial derivatives of the Hamiltonian (29) with respect to
the associated state variable.

Theorem 8.Given optimal controls u∗1,u
∗
2,u

∗
3,u

∗
4,u

∗
5 and

solutions
Sl , Ilt , Icr,Clbt ,Rlt ,Rcr,Rlbt ,Sv, Iv,Ec of the corresponding
state system (13)- (27) that minimize J(u1,u2,u3,u4,u5)
over U. Then there exists adjoint variables
MSl ,MIlt ,MIcr ,MClbt ,MRlt ,MRcr ,MRlbt ,MEc,MSv,MIv
satisfying

−dMi

dt
=

∂H
∂ i

(30)

where i = Sl , Ilt , Icr,Cmsc,Rlt ,Rcr,Rmsc,Ec,Sv, Iv and with
transversality conditions

MSl (t f ) = MIlt (t f ) = MIcr (t f ) = MClbt (t f ) = MRlt (t f )

= MRcr(t f ) = MRlbt (t f ) = MEc(t f ) = MSv(t f ) = MIv(t f ) = 0

(31)
and

u∗1 = min

{

1,max

(

0,
Sl [β ∗

c +βl Ip][MIlt
−MSl

]+β ∗
l Icr [MClbt

−MIcr ]+λ ∗Sp[MIv −MSv ]

2A

)}

,

(32)

u∗2 = min

{

1,max

(

0,
β ∗

c Ilt [MClbt
−MIlt

]+β ∗
c Sl MIcr −πMEc [Icr +θClbt ]

2B

)}

,

(33)

u∗3 = min

{

1,max

(

0,
ρcIlt [MIlt

−MRlt
]

2C

)}

. (34)

u∗4 = min

{

1,max

(

0,
σcIcr [MIcr −MRcr ]

2D

)}

. (35)

and

u∗5 = min

{

1,max

(

0,
γlClbt [MClbt

−MRlbt
]+ γl εlClbtMRlt

+(1− εl )γlClbtMRcr

2E

)}

.

(36)

Proof: Corollary 4.1 of Fleming and Rishel [4] gives the
existence of an optimal control due to the convexity of the
integrand ofJ with respect tou1,u2,u3,u4 andu5, apriori
boundedness of the state solutions, and theLipschitz
property of the state system with respect to the state
variables. The differential equations governing the adjoint
variables are obtained by differentiation of the
Hamiltonian function, evaluated at the optimal control.

Solving for u∗1,u
∗
2,u

∗
3,u

∗
4 and u∗5 subject to the

constraints, the characterization (32-36) can be derived
and we have

0=
∂H
∂u1

= 2Au1−Sl [β ∗
c +βl Ip][MIlt

−MSl
]−β ∗

l Icr [MClbt
−MIcr ]−λ ∗Sp[MIv −MSv ]

0=
∂H
∂u2

= 2Bu2−β ∗
c Ilt [MClbt

−MIlt
]−β ∗

c Sl MIcr +πMEc [Icr +θClbt ]

(37)

0=
∂H
∂u3

= 2Cu3−ρcIlt [MIlt −MRlt ]

0=
∂H
∂u4

= 2Du4−σcIcr[MIcr −MRcr ]
(38)

0=
∂H
∂u5

= 2Eu5− γlClbt [MClbt
−MRlbt

]− γl εlClbtMRlt
− (1− εl )γlClbtMRcr

(39)

and with transversality conditions

MSl (t f )=MIlt (t f )=MIcr(t f )=MClbt = .... =MIv(t f )= 0,
(40)

Hence, we obtain (see Lenhart and Workman (2007))

u∗1 =
Sl [β ∗

c +βl Ip][MIlt
−MSl

]+β ∗
l Icr [MClbt

−MIcr ]+λ ∗Sp[MIv −MSv ]

2A

u∗2 =
β ∗

c Ilt [MClbt
−MIlt

]+β ∗
c Sl MIcr −πMEc [Icr +θClbt ]

2B

u∗3 =
ρcIlt [MIlt

−MRlt
]

2C

u∗4 =
σcIcr [MIcr −MRcr ]

2D

u∗5 =
γlClbt [MClbt

−MRlbt
]+ γl εlClbtMRlt

+(1− εl )γlClbtMRcr

2E

(41)

By standard control arguments involving the bounds on the
controls, we conclude

u∗i =















0 If ξ ∗
i ≤ 0

ξ ∗
i If 0 < ξ ∗

i < 1

1 If ξ ∗
i ≥ 1

for i ∈ 1,2,3,4,5 and where

ξ ∗
1 =

Sl [β ∗
c +βl Ip][MIlt

−MSl
]+β ∗

l Icr [MClbt
−MIcr ]+λ ∗Sp[MIv −MSv ]

2A

ξ ∗
2 =

β ∗
c Ilt [MClbt

−MIlt
]+β ∗

c Sl MIcr −πMEc [Icr +θClbt ]

2B
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ξ ∗
3 =

ρcIlt [MIlt −MRlt ]

2C

ξ ∗
4 =

σcIcr[MIcr −MRcr ]

2D

ξ ∗
5 =

γlClbt [MClbt −MRlbt ]+ γlεlClbtMRlt +(1− εl)γlClbtMRcr

2E
Next, we discuss the numerical solutions of the optimality
system and the corresponding results of varying the
optimal controls u1,u2,u3,u4 and u5, the parameter
choices, and the interpretations from various cases.

10 Numerical Simulations

In order to illustrate the results of the foregoing analysis,
numerical simulations of the co-infection model are
carried out, using parameter values given in Table (2). For
the purpose of illustration, some parameter values are
assumed. Find below in Table (2) the parameter
descriptions and values used in the numerical simulation
of the co-infection model.

10.1 Prevention (u1) and treatment (u3) of
trypanosomiasis only

The trypanosomiasis prevention controlu1 and the
trypanosomiasis treatment controlu3 are used to optimize
the objective functionJ while we set the other controls
(u2,u4 and u5) relating to cryptosporidiosis to zero. We
observed in Figure13 a significant difference in the
number of trypanosomiasis infected humansIlt in the
controlled cases compare to the cases without control.
The positive effect of this strategy onIv is shown in
Figure14, where the number of infected vectorIv cases is
seen to be significantly controlled. The result in the
depicted Figure16 clearly suggest that this strategy is not
very efficient and effective in the control of the number of
cryptosporidiosis infected humansIcr and similarly,
impact of the cryptosporidiosis controlled cases resulted
in the lower microbes population in the environmentEc as
shown in Figure 17. While the population of the
co-infected humansClbt shown in Figure 15 show
significant difference between the cases without control
and the controlled cases. The control profile revealed that
the control on preventionu1 on trypanosomiasis should
be maintained at maximum for 15 days before gradually
decreasing to zero, while the control on treatment of
trypanosomiasisu3 would only require control efforts of
7%18.

10.2 Prevention (u2) and treatment (u4) of
cryptosporidiosis only

The cryptosporidiosis prevention controlu2 and the
cryptosporidiosis treatment controlu4 are used to

optimize the objective functionJ while we set the other
controls (u1,u3 and u5) relating to trypanosomiasis to
zero. We observed in Figure19 a continuous rise in the
number of trypanosomiasis infected humansIlt cases.
This may be connected to the absence of interventions
against trypanosomiasis in this strategy. The negative
effect of this strategy is also shown in Figure22, where
the number of infected vectorIv cases is seen to be on the
increase after 50 days. The result in the depicted Figure
20 clearly suggest that this strategy is very efficient and
effective in the control of the number of cryptosporidiosis
infected humansIcr and similarly, the positive impact of
the cryptosporidiosis controlled cases resulted in the
significant control of the Microbes population in the
environment Ec as shown in Figure23. While the
population of the co-infected humansClbt shown in
Figure 21 show significant difference between the cases
without control and the controlled cases. The control
profile revealed that the control on treatmentu4 on
cryptosporidiosis should be at maximum till the end of
the intervention, while the control on preventionu2 rises
from 15% up to 55% before gradually decreasing to zero
at the end of intervention24.

10.3 Trypanosomiasis and cryptosporidiosis
prevention (u1 and u2) only

The trypanosomiasis and cryptosporidiosis prevention
controlsu1 and the controlu2 are used to optimize the
objective functionJ while we set the other controls(u3,u4
andu5) to zero. That is, preventions only mechanisms are
optimized without treatments. We observed in Figure25
that the number of trypanosomiasis infected humansIlt
was significantly controlled before it start rising again at
the final time. This may be connected to the fact that
treatment of infected individuals is neglected and as a
result the disease persists in the community. This effect is
also observed in Figure28 in the control of number of
infected vectorsIv. While in Figure26 the impact of this
strategy in controlling the cryptosporidiosis infected
individuals Icr yielded positive results because the
prevention strategy worked effectively in the control of
cryptosporidiosis infected individuals. The effect of this
strategy also impact positively on other population clases
as shown clearly in Figure27, 29. This strategy suggest
that optimal preventive strategies against trypanosomiasis
and cryptosporidiosis in a community while adequate
treatment regime is not put in place at the same time
would not be an effective approach to controlling
co-infection at the final time. The control profile revealed
that the control on preventionu2 on cryptosporidiosis
rises to maximum of 90% before decreasing gradually to
zero at the end final time, while the control on prevention
u1 rises to 30% before gradually decreasing to zero at the
end of intervention30.
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10.4 Trypanosomiasis and cryptosporidiosis
treatment (u3 and u4) only

The trypanosomiasis and cryptosporidiosis treatment
controls u3 and u4 are used to optimize the objective
functionJ while we set the other interventions, that is the
preventive measures(u1,u2 andu5) to zero. That is, only
the treatment mechanisms are optimized without
preventions. We observed in Figure31 that the number of
trypanosomiasis infected humansIlt was significantly
controlled before it start rising again at the final time.
This may be connected to the fact that preventions are
neglected and as a result the disease persists in the
community. This effect is also observed in Figure34 in
the control of number of infected vectorsIv. While in
Figure 32 the impact of this strategy in controlling the
cryptosporidiosis infected individualsIcr yielded positive
results because the treatment strategy worked effectively
in the control of both cryptosporidiosis and
trypanosomiasis individuals. The effect of this strategy
also impact positively on other population clases as
shown clearly in Figure33, 35. This strategy suggest that
optimal treatment strategies against trypanosomiasis and
cryptosporidiosis in a community while adequate
preventive regime is not put in place at the same time
would also be an effective approach to controlling
co-infection. The control profile revealed that the control
on treatment u4 on cryptosporidiosis should be at
maximum till the end of the intervention, while the
control on treatmentu3 rises 30% before gradually
decreasing to zero at the end of intervention36.

10.5 Trypanosomiasis and cryptosporidiosis
preventions with treatment (u1,u2,u3,u4,u5)

In this strategy all the control mechanism
(u1,u2,u3,u4,u5) are used to optimize the objective
functionJ. That is, both the preventions and treatments of
trypanosomiasis and cryptosporidiosis are optimized. We
observed in Figure37 that the number of trypanosomiasis
infected humansIlt is effectively controlled. The impact
of this strategy is also shown in Figure40, where the
number of infected vectorsIv is significantly reduced to
zero at the end of the intervention period. The result
shown in Figure38 clearly suggest that this strategy is
also very efficient and effective in controlling the number
of cryptosporidiosis infected humansIcr and leading also
to effective control of the Microbes populationEc as
shown in Figure 41. The population of the
trypanosomiasis-cryptosporidiosis co-infected humans
Clbt shown in Figure39 show significant difference
between the cases without control and the controlled
cases. This strategy suggests that optimal prevention and
treatment regime against both trypanosomiasis and
cryptosporidiosis in a community would be a very
effective approach to effectively control both diseases at

the final intervention time. The control profile revealed
that the control on cryptosporidiosis treatmentu4 should
be at maximum till the end of the intervention, while
prevention controlu2 on cryptosporidiosis rises to 50%
before gradually decreasing to zero at the end of
intervention. Also, this strategy suggests that little control
efforts would be required on trypanosomiasis for both
diseases to be effectively controlled42.

11 Concluding remarks

In this paper, we formulated and analysed a deterministic
model for the transmission of trypanosomiasis and
cryptosporidiosis co-infection that includes use of
preventions, treatments of infectives and also performed
optimal control analysis of the model. The model was
rigorously analysed to gain insights into its qualitative
dynamics. We obtained the following results:

1. The trypanosomiasis only model has a locally-stable
disease free equilibrium whenever the associated
reproduction number is less than unity. Also, the
model has a unique endemic equilibrium whenever
R lt

0 > 1.
2. The cryptosporidiosis model has a locally-stable

disease free equilibrium whenever the associated
reproduction number is less than unity and exhibits
the phenomenon of backward bifurcation, which
suggests a case where stable disease-free equilibrium
co-exists with a stable endemic equilibrium whenever
the basic reproductive number is less than unity.

3.The co-infection model has a locally-stable disease
free equilibrium whenever the associated reproduction
number is less than unity.

4.From the sensitivity analysis, the trypanosomiasis
reproductive numberR lt

0 is more sensitive toδ (death
due to insecticides) and crypto parameters whenever
Rcr

0 > 1 (crypto reproductive number). While the
cryptosporidiosis reproductive numberRcr

0 is less
sensitive to trypanosomiasis parameters whenever
R lt

0 > 1 (trypanosomiasis reproductive number). This
is an indication that crypto infection may be
associated with an increased risk of trypanosomiasis,
while trypanosomiasis infection is not associated with
an increased risk for crypto.

5.Focusing only on trypanosomiasis intervention
strategies (optimal preventions and treatments) while
cryptosporidiosis is not under control would lead to
effective control of co-infection at the end of the
intervention. As clearly shown in Figure13- 17,
where the number of cryptosporidiosis infected
individuals and microbes are lower under control
compared to cases without control. This is an
indication that cryptosporidiosis infection may be
associated with an increased risk of trypanosomiasis.

6.That optimal efforts on cryptosporidiosis intervention
strategies (optimal preventions and treatments) while
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trypanosomiasis is not under control would only
result in effective control of cryptosporidiosis only
while trypanosomiasis still persist. This is shown in
Figure19-23, where the number of cryptosporidiosis
infected individuals are effectively controlled at the
final time. This suggests that trypanosomiasis
infection is not associated with an increased risk for
cryptosporidiosis.

7.Whenever there is co-existence of trypanosomiasis
and cryptosporidiosis in the community, our model
suggests the incorporation of cryptosporidiosis
control measures with the trypanosomiasis
intervention strategies for effective trypanosomiasis
control.

8.However, the cost may be unbearable to farmers in
areas of extreme poverty, most especially the rural
poor and some disadvantaged urban populations to
combine therapies, it is suggested that policy markers
or Government should provide necessary support in
this regard.
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Fig. 13: Simulations of the trypanosomiasis-
cryptosporidiosis model showing the effect of
trypanosomiasis prevention and treatment only on
transmission
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Fig. 14: Simulations of the trypanosomiasis-
cryptosporidiosis model showing the effect of
trypanosomiasis prevention and treatment only on
transmission
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Fig. 15: Simulations of the trypanosomiasis-
cryptosporidiosis model showing the effect of
trypanosomiasis prevention and treatment only on
transmission
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Fig. 16: Simulations of the trypanosomiasis-
cryptosporidiosis model showing the effect of
trypanosomiasis prevention and treatment only on
transmission
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Fig. 17: Simulations of the trypanosomiasis-
cryptosporidiosis model showing the effect of
trypanosomiasis prevention and treatment only on
transmission
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Fig. 18: Simulations of the trypanosomiasis-
cryptosporidiosis model showing the effect of
trypanosomiasis prevention and treatment only on
transmission
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Fig. 19: Simulations of the trypanosomiasis-
cryptosporidiosis model showing the effect of
cryptosporidiosis prevention and treatment only on
transmission
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Fig. 20: Simulations of the trypanosomiasis-
cryptosporidiosis model showing the effect of
cryptosporidiosis prevention and treatment only on
transmission
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Fig. 21: Simulations of the trypanosomiasis-
cryptosporidiosis model showing the effect of
cryptosporidiosis prevention and treatment only on
transmission
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Fig. 22: Simulations of the trypanosomiasis-
cryptosporidiosis model showing the effect of
cryptosporidiosis prevention and treatment only on
transmission
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Fig. 23: Simulations of the trypanosomiasis-
cryptosporidiosis model showing the effect of
cryptosporidiosis prevention and treatment only on
transmission
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Fig. 24: Simulations of the trypanosomiasis-
cryptosporidiosis model showing the effect of
cryptosporidiosis prevention and treatment only on
transmission

0 20 40 60 80 100 120
0

0.05

0.1

0.15

Time (days)

T
ry

p
a

n
o

so
m

ia
si

s 
In

fe
ct

e
d

 I
n

d
iv

id
u

a
ls

 (
x1

0
0

0
)

 

 
u

1
 = u

2
 = u

3
 =u

4
 =u

5
=0

u
1
 ≠ 0, u

2
 ≠ 0, u

3
 = 0, u

4
 = 0, u

5
 = 0

(a)

Fig. 25: Simulations of the trypanosomiasis-
cryptosporidiosis model showing the effect of
trypanosomiasis and cryptosporidiosis prevention only on
transmission
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Fig. 26: Simulations of the trypanosomiasis-
cryptosporidiosis model showing the effect of
trypanosomiasis and cryptosporidiosis prevention only on
transmission
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Fig. 27: Simulations of the trypanosomiasis-
cryptosporidiosis model showing the effect of
trypanosomiasis and cryptosporidiosis prevention only on
transmission

c© 2016 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


2156 K. O. Okosun et. al: Co-dynamics of trypanosomiasis-cryptosporidiosis

0 20 40 60 80 100 120

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Time (days)

In
fe

ct
e

d
 V

e
ct

o
rs

 (
x1

0
0

0
)

 

 
u

1
 = u

2
 = u

3
 =u

4
 =u

5
=0

u
1
 ≠ 0, u

2
 ≠ 0, u

3
 = 0, u

4
 = 0, u

5
 = 0

(a)

Fig. 28: Simulations of the trypanosomiasis-
cryptosporidiosis model showing the effect of
trypanosomiasis and cryptosporidiosis prevention only on
transmission
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Fig. 29: Simulations of the trypanosomiasis-
cryptosporidiosis model showing the effect of
trypanosomiasis and cryptosporidiosis prevention only on
transmission

0 20 40 60 80 100 120
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Time (days)

C
o

n
tr

o
l p

ro
fil

e

 

 

u
1
 ≠ 0

u
2
 = 0

u
3
 ≠ 0

u
4
 = 0

u
5
 = 0

(a)

Fig. 30: Simulations of the trypanosomiasis-
cryptosporidiosis model showing the effect of
trypanosomiasis and cryptosporidiosis prevention only on
transmission
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Fig. 31: Simulations of the trypanosomiasis-
cryptosporidiosis model showing the effect of
trypanosomiasis and cryptosporidiosis treatment only
on transmission
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Fig. 32: Simulations of the trypanosomiasis-
cryptosporidiosis model showing the effect of
trypanosomiasis and cryptosporidiosis treatment only
on transmission
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Fig. 33: Simulations of the trypanosomiasis-
cryptosporidiosis model showing the effect of
trypanosomiasis and cryptosporidiosis treatment only
on transmission
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Fig. 34: Simulations of the trypanosomiasis-
cryptosporidiosis model showing the effect of
trypanosomiasis and cryptosporidiosis treatment only
on transmission
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Fig. 35: Simulations of the trypanosomiasis-
cryptosporidiosis model showing the effect of
trypanosomiasis and cryptosporidiosis treatment only
on transmission
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Fig. 36: Simulations of the trypanosomiasis-
cryptosporidiosis model showing the effect of
trypanosomiasis and cryptosporidiosis treatment only
on transmission
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Fig. 37: Simulations of the trypanosomiasis-
cryptosporidiosis model showing the effect of
trypanosomiasis and cryptosporidiosis prevention with
treatments on transmission
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Fig. 38: Simulations of the trypanosomiasis-
cryptosporidiosis model showing the effect of
trypanosomiasis and cryptosporidiosis prevention with
treatments on transmission
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Fig. 39: Simulations of the trypanosomiasis-
cryptosporidiosis model showing the effect of
trypanosomiasis and cryptosporidiosis prevention with
treatments on transmission
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Fig. 40: Simulations of the trypanosomiasis-
cryptosporidiosis model showing the effect of
trypanosomiasis and cryptosporidiosis prevention with
treatments on transmission
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Fig. 41: Simulations of the trypanosomiasis-
cryptosporidiosis model showing the effect of
trypanosomiasis and cryptosporidiosis prevention with
treatments on transmission
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Fig. 42: Simulations of the trypanosomiasis-
cryptosporidiosis model showing the effect of
trypanosomiasis and cryptosporidiosis prevention with
treatments on transmission
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