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Abstract: In this paper, we study a viscoelastic wave equations of ihehKoff type

U’ — () <M(|\Dxu|\%)ﬂxu—/0t gt —s)Axu(s)ds> = auln |u[¥ Q)

defined in any spaces dimension. It is well known that fromaa<lof nonlinearities the logarithmic nonlinearity is wigtished by
several interesting physical properties. We use weighpades to establish the long-time behavior of solution1df Furthermore,
under convenient hypotheses @and the initial data, the local-in-time existence of salntis established.
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1 Introduction Eq. (1) is equipped by the following initial data.
u(0,%) = Uo(x) € #(R"),U (0.) = us(X) € LA(R"), (2)

In this paper, we consider the wave equation with where the Welghted Spacsg is given in Definition1 and

logarithmic nonlinearity 0, where  the density functionp(x) > 0,9x € R", (¢(x))* = p(x)
x e Rt >0,n>2ka>0 andM is a positveCl  satisfies
function satisfying fors > 0,my > O,_ml >0,y > 1, pIR" SR, p(x) eCW(R”) 3)
M(s) = mg+ms’ and the scalar functiog(s) (so-called L
relaxation kernel) is assumed to satisfy (A1). with y € (0,1) and p € LR") N L"(R"), where

It is well known that from a class of nonlinearities, the s= %—éﬁr

logarithmic nonlinearity is distinguished by several This kind of systems appears in the models of nonlinear
interesting physical properties. In recent years, these haKirchhoff-type. It is a generalization of a model
been a growing interest in the viscoelastic wave equationintroduced by Kirchhoff13] in the casen = 1 this type of

its properties and variants of the problem can be found improblem describes a small amplitude vibration of an
[3], [14], [21], [22], [23], [25], [27] and [28]. elastic string. The original equation is:

The model here considered are well known ones and refer
to materials with memory as they are termed in the wide
literature which is concerned about their physical,
mechanical behavior and the many interesting analytical
problems. The physical characteristic property of suchwhere 0< x < L and t > O,u(x;t) is the lateral
materials is that their behavior depends on time not onlydisplacement at the space coordinatend the timet, p
through the present time but also through their pastthe mass densityy the cross-section arelthe length Py
history. the initial axial tensiony the resistance moduluk, the

Eh (Lt
phu + Tuy = (PO+Z/() |ux(x,t)|2ds> U+ f, (4)
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Young modulus and the external force (for example the (A2) There exists a positive functidth € C1(R*) such
action of gravity). that

For the decay rate ifR", we quote essentially the results gt)+H(gt))<0,t>0 H(0)=0 (8)

of (1], [10], [11], [12], [20]. In [11] authors showed that, andH is linear or strictly increasing and strictly convex
for compactly supported initial data and for an -2 nction on(0,r],1>r.

exponentially decaying relaxation function, the decay of (A3) Accordir’197to results ind0], we have

the energy of solution of a linear Cauchy probléhy, (2) 1- W that th ists 0| h such
With p(x) — LM = 1a - 0 is polynomial. The that:ecandeduce at there exigts- O large enough suc

finite-speed propagation is used to compensate for the

lack of Poincare’s inequality. In the cabe=1,a=0, in ) ; 0 o

[10], author looked into a linear Cauchy viscoelastic im_—g/(s) cannotbe positive, so_ lim-g/(s) = 0. Then

problem with density. His study included the exponential ¢t,) > 0 and

and polynomial rates, where he used the spaces weighted , .

by density to compensate for the lack of Poincare’s;m"jlx{g(s’)’_g (8)} <min{r, H'(r),Ho(r)},. - ©)

inequality. The same problem treated il0[ was  WhereHo(t) = H(D(t)) provided thatD is a posmveG

considered in 12, where they consider a Cauchy function, withD(0) = 0, for whichHg is strictly increasing

problem for a viscoelastic wave equation. Under suitableand strictly conveC? function on(0,r] and

conditions on the initial data and the relaxation function, +e ,

they prove a polynomial decay result of solutions. g(s)Ho(—g'(s))ds < +eo.

Conditions used, on the relaxation functignand its ] . . .

derivativeg’ are different from the usual ones. 2)vt € [0.u]: As g is nonincreasingg(0) > 0 and
The problem {),(2) without source, for the case 9(t1) >0 theng(t)>0and

p(x) =1,M =1, in a bounded domaif2 C R",(n > 1) g(0) >g(t) >g(t1) > 0.

with a smooth boundaryd)Q2 and g is a poSitive  Therefore, sinc is a positive continuous function, then

nonincreasing function was considered 0] where

they established an explicit and general decay rate resuf < H(9(t)) <b

1)Vt >t We haveHILm g(s) = 0, which implies that

for relaxation functions satisfying: for some positive constangésandb. Consequently,
g <-HEW).t20, HO=0  (§ IW=-HEb)<-kgb), k>0
which gives

for a positive functionH € CY(R*) andH is linear or /
strictly increasing and strictly conveg€? function on g(t) < —kg(t),k>0 _ _ (10)
(0,r],1 > r. This improves the conditions considered in ~ 2- LetHg be the convex conjugate éfy in the sense

[1] on the relaxation functions of Young (see?], pages 61-64), then

gt < —x(gt), x(0)=x'(0)=0 6) H5(S) =s(Hg) *(s) —Hol[(H)) X(9)], s€ (0,Hy(r))
wherey is a non-negative function, strictly increasing and and satisfies the following Young's inequality

strictly convex on(0, k], ko > 0. AB<H{(A) +Ho(B), Ac(0,Hy(r)),Be (0,r]. (11)

The goal of the present paper is to establish the existenc ny i : n
of solution to the probleml)-(2). We obtain also, a fast E;]it?gr?;e}ﬂﬁt% S diggggc?s th?oclosutrﬁedﬁ(IR;](zrm

decay results. [ul%/@ny = Jan|Oxul?dx It is defined in the next

definition
2 Material, Assumptions and technical Definition 1([23]). We define the function spaces of our
lemmas problem and its norm as follows:

The constants used throughout this paper are positive ¢ (R") = {f € LPVIA(R) 1 Oxf € (LZ(Rn))n} (12)
generic constants which may be different in various ] ) )

occurrences also the functions considered are all rea@nd that# is embedded continuously ifV"-2). .
valued, hereu’ = du(t)/dt and u” = d2u(t)/dt2. For The space g(R”) to be the closure of &(R") functions

simplicity reason, we taka= 1 with respect to the inner product
We recall and make use the following hypothesis on the
functiong as: (f:N)iz @) = /Rnpfhdx
(A1) We assume that the functign RT — R™ is of
classC! satisfying: For 1 < g< o, if f is a measurable function oR", we
define
my—-g=1>0, g(0)=go>0 ) Il </ e )1/q 13)
9 mny — p X . 13
whereg = [ g(t)dt. Lo (R") RN
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RemarkThe spacd-;,zJ (R™) is a separable Hilbert space.

The following technical Lemmas will play an important
role in the sequel.

Lemma 1[4] (Lemma 1.1) For any two functions g €
CY(R) and @ € [0,1] we have

t
v t)/g(t—s)v
0

—V(9)|*ds

t
%/ (t —9)M(t) — v(s)2ds
0
1
~ g

and

t
[ att-9v0 - v

< () et 0as) (/|g 92wt (s>2ds>

The next Lemma can be easily shown (sk4,[[15]).

2

Lemma 2Let p satisfies 8), then for any ue 77 (R")
1ull g @ny < TP lLsgrn) I OxUll2(en)

; _ 2n 2n
with s= m,zgqg =

Now, using lemma2, we give the following Lemma
concerning Logarithmic Sobolev inequality.

Lemma 3(see [7], [18], [24]) Let u € 27 (R") be any
function and g,c, > 0 be any numbers. Then

2 [ PPN (0 Iz,

IIPHLz
m

Jdx+n(1+cy)lull?,

<¢ 183

Definition 2.By the weak solution oflj over [0,T] we
mean a function

ueC([0,T],2#(R")NC([0, T],L3(R")NCA([0, T],. 2~ 1(R"))

with U € L2([0, T], .2 (R")), such that ¢0) = uo, u'(0)
ug and for allve 2.t € [0, T],

/p(x)uln|u|kvdx

Rn

_ / p(X)U"vdx+ M([|Teu]2) / Oeulyvdx
RN RN

t
- /R n /0 g(t — 9)Txu(s)dsTyvdx

Multiplying the equation) by p(x)u/, and integrating by
parts oveR", we have the energy ofat timet is given by

t
3 (1125 + (mo— [ ae)ds) I0nui3

+(goDxu —/ p(x)u2In|u|kdx)

E(t) =

(y+1)
|| IILz T o (y+ 7 I0eull3 (14)
and the following energy functional law holds:
l 1 ! 1 2
E'(t) = 5(¢/ o Dx) (1) — 500 Cxu(®) 3.7 > 0. (15)

which means that, our energy is uniformly bounded and
decreasing along the trajectories. The following notation
will be used throughout this paper

(go Oxu)(t /gt—r [|[Oxu(t) — Dxu(r)||§dr, (16)

foru(t) € 22(R"),t > 0.

3 Global existence in time

According to logarithmic Sobolev inequality and similar to
the proofin (], [6], [ 7], [24], [26]), we have the following
result.

Theorem 1(Local existence) Letglx) € 7' (R"), u1(x) €

LZ(IR{“) be given. Then, under hypotheéisl), (A2) and
(3) the problem {) has a unique local solution
ueC([0,T],2#(R")NCY([0, T, L5 (R")
Now, we introduce two functionals
) = 1(( —/t (9)ds) [I0xu3+ (go Oxu)
=5 Mo 0 g xU||2 + (9o Lx
—/ o( xu2In|u|kdx)
(y+1)
AW+ s Il (17)
and
t
1©) = (mo— [ o(s)as) D+ (g D
my 2(y+1
_/Rnp(x)u2|n|u|kdx+ 2(y+1)|\mxu”2<y+> (18)
Then,
1 K. 2
I =510+ Zlul% (19)

As in ([9]) to establish the corresponding method of
potential wells which is related to the logarithmic
nonlinear term, we introduce the stable set as follows:

W = {ue 2 (R":1(t) > 0,J(t) < d} U{0} (20)
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RemarkWe notice that the mountain pass ledegivenin 4 Decay estimates

(20) defined by v i o] A o .
. We apply the multiplier techniques to obtain usefu

= mf{ueﬁ Ril)”?o}po (Hw}, (21) estimates and prepare some functionals associated with

the nature of our problem to introduce an appropriate

Also, by introducing the so called "Nehari manifold” Lyapunov functions. For this purpose, we introduce the

A ={ue A(R")\{0}:1(t) =0} functionals

Similar to results in29], it is readily seen that the potential ga(t) :/ p(X)uudx, (25)
depthd is also characterized by R"

d=inf (). (2 Lemma6Under the hypothesis (Al) and (A2), th
This characterization af shows that functionaly, satisfies, along the solution df)((2)
dist(0,.47) = min [[uf 5 (gn) @3) < iy e miowE - LV gonw

By the fact that15), we will prove the invariance of the set
W. That is if for sometp > 0 if u(to) € W, thenu(t) € W,

vt > to, let us beginning by giving the existence Lemma of proof From 25), integrate oveR", we have
the potential depth. (Se@&][Lemma 2.4)

Lemma 4d is positive constant.

1
+[ (o 2 ol 1) + kil (mlulZy ~ gnu+en) | 17

wit) :/]R p(x) \U’Izdx+/ p(x)ud’dx

Lemma5let u e #(R") and B = ezl+c) jf =L ( OOV I+ M i) ud ”/gt S)Au (5X>ds>d
0< IIUIIfg < B, then i(t) > 0; if I (t) = O, [[u]|3 # O, then + [, POouPin ulix
RN
lullz, > B. < g iy + I EY 13
ProofBy (A1), (t18) and Lemma, we have m ‘np<x>uz<|n(Hl\j‘tlllz2 ) +ln\IUHfz)dx
L:
I(t) = — s)ds) ||Oxu|3 Oyu ¢ ’
® (mo /og() )” a2+ (9o Bx) +/ Dxu/g(tfs)(Dxus)fDxu(t))dsdx
m
- /np(x)uzln |ul*dx+ 2 il) T 3 We have by using the Logarithmic Sobolev inequality in
R 4 ul Lemma3 and generalized version of Poincare’s inequality
u : 4 L .
> 110U 2—k/ 2 In 2 \dx in Lemm& Usmg Young’s inequality and Lemma for
= Bl R"p( ) JullZ ) 6 = 1/2, we obtain
0
1 (ke
> (1= 5202, ) D3+ 2kn(+co)ull?, B0 < g -l Ol (2l = 1) Il
2" 'L 2 Ls )
k [
- |<||u||f2 |n||u||f2 +Kllull nHUHLz
2
Choosinge; such that > kCZ||p|\|_2,then +a|\Dxu||2+ / </ g(t—s)|Oxu(s) Dxu(t)|ds> dx
16)> K(3n(1+e) — I ul% ) Jul?, k(L ),

Therefore, if 0< [u|?, < B, then I(t) > 0; if
0

1) ke
, ) i < 1% + mul D3 + (0 + S22~ 1) 03
[(t) =0,]ul|5# 0, we haveB < ||u||le) then,||u||le) >

(1—|) 2
Theorem 2(Global Existence) Let +T(go Cha) + k(ln H“”Lf, -
w(x) € HAR"u(x) € LR and  Then

0 < E(0) < d,I(0) > 0. Then, under hypothesis

(A1),(A2) and conditions 3), the problem I) has a Yi(t) < Wy +mu | Ocull,

lobal solution in time. 1
g + [(w e P22 ~1) +Klol 2 (1 ul?; - §n<1+c1>)] I0u.

1 2
én(1+cl))|\u|\l_%.

2p+1) (14;” (go D)

ProofFrom the definition of energy for solution and by
(15), we have The existence of the memory term forces us to make
1, 0 1, second modification of the associate energy functional.
§||u ||L5 +3(t) < §||U1||L5 +J(0), Vte[0,Tmay (24) Set

whereTmaxis the maximal existence time of solutionwf -~ e
Then, by the definition of the stable set and using Lemma Yalt) = — Rnp(x)u /o g(t —s)(u(t) — u(s))dsdx (26)
5 we haveu e W, Vt € [0, Tmay)

(@© 2016 NSP
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Lemma 7Under the hypothesis (Al) and (A2),
functional y», satisfies, along the solution of)((2), for
anyo € (0,mp)

C > Nn(l+c) 5
030 < o+ k(o 52+l - "5 ) ol

C
ey Ol 6o (14 (ko -+ DIpIIZ2) (go )

~collplfa(d oD + (o [ alods) ;.

ProofExploiting Eq. (), (26) to get

t
— [ poou” [ att=s)(utt) -
t
— u’/ g (t—s)(u(t) —u(s))dsdx
RN 0
t
S CCLE
:/ M(|\Du||§)DXu/tg(t—s)(Dxu(t)—Dxu(s))dsdx
RN 0
t
- [ pouiniu’ [ gt -s)ut) -
RN 0
t
_/R” (/o g(t—s)Dxu(s,x)ds> X
</tg(t—s)(Dxu —Ohus ds) dx

u(s))dsdx

u(s))dsdx

/g (t—s —u(s))dsdx
- /0 CRE
By (A1), we have
= (mo—/otg(s)ds> X
/ Dxu/tg(t—s)(DXu(t)— Oxu(s))dsdx
RN 0

* o </t9(t—3)(Dxu(t) — Dxu(s))ds>2dx

oy | Du 5+
—/ p(x)uln|u|k/tg(t—s)(u(t)—u(s))dsdx
RN 0
t
u’/ g (t—s)(u(t) —u(s))dsdx

/ 9(S)ds|u |7 +c(go D) 1)

the By Holder’s and Young'’s inequalities and LemrBawe

estimate

u(s))dsdx

_ - u//otg/(t—s)(u(t)_
= (/RnP(X)Iu/Fdx) v
(/]Rnp(x)‘/Otg/(t_s)(u(t)_u(s))ds‘z)l/z

< 0|13, +co| /0t ~gf(t—s)(u(t)~ u(9))ds
(o o ().

[t -
0

(go Oxu)(t).

and by Lemm& and Lemma3 and conditions in Lemma
5, we have

t
_/Rnp(x)ln|UIku/ g(t—s)(u(t) -

<k IRnp(x)(m(”'”'2 ) +Inuli% Jux

[ot-sw) -

<k(Infuiz, -

oo

<k(Infuz, -

2

2
Lp

2 2
< o|VlIE —collpllz

and
/ p(U
Rn

2 2
< oV, +colpli%

u(s))dsdx

u(s))dsdx

u(s))dsdx

(”Cl))n ulP,

—u(s))ds{ ’

k
n(l+cy)
. )||p|\ﬁz|\mxu|\%

[or-sc

n(l+cy
S ’)Hpnfznmxun%

—Ou(s d#

C2
ol

p

<k(a§r +InJul, -
+Cak HPIILz(QODxU)

Using Young’s and Poincare’s inequalities and Lenina
for 6 =1/2, we obtain

C2 2 N(1+cy) 2
030 < |o-+ k(052 +mully - "5 ) ol

+omy|Dyul 3V
+Ca(1+(k—+1)|\P||fz)(goDxU)—CaIIPHEz(g’ODXU)
(o [ aoas) 1
Now, let us define
L(t) = &E(t) + ¢n(t) + Eaun(t) (27)
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for &1,&2 > 1. We need the next Lemma, which means ProofBy (15) and (A3), we have for all > t;

that there is equivalent between the Lyapunov and energy/ /t1 (t—9)0
gt — xU(
Rn

functions, that is fog1, & > 1, we have — Oxu(s)|*dsdx

BiL(t) < E(t) < BoL(t) //gt— )| Oxu(t) — Oxu(s)|2dsdx
Rn

holds for two positive constanfg andfs.
< —cE'(t)

Lemma 8For &1,&, > 1, we have Now, we deﬁne

L(t) ~ E(t). / Ho(—g(9))(go O,u)(t)ds (29)
ProofBy (27) we have

L) — GE®)] < [¢a(t)] + E2lye(t)] ol 2
< /R” |p(x)udf| dx I(t) = 8 Ho(—9 (5))/Rn9(5)||]xu(t)—Dxu(t—s)| dxds

t
+Ez/ /gt_ O—u ))d%dx < 2/ Ho(—g’(s))g(s)/Rn|Dxu(t)|2+|Dxu(t—s)|2dxds

Thanks to Holder and Young's inequalities, we have by < CE(O Ho g'(9)g(s)ds< 1. (30)
using Lemma&

Since [y Ho(—g/(s))g(s)ds < -+, from (15) we have

We define agaln a new functiona(t) related withl (t) as

o lpout]ax MO = [ Ho(-g/9)d(9) [, a(9)Dutt)— Dt -9 Peds
< ( |u|2dx) 12 (/ P |2dx> 12 From (/Al)-(AS) and , we get
Ho(—g'(s))d(s) < Ho(H(g(s)))a(s) = D(9(9))9(s) < ko-
< % </Rnp(x)|u|2dx> i > </Rnp(x)|u/|2dx) for some posittive constakg. Then, for allt > t;
_ Q2
< o2 + cli || Dl 0% o || 919) [, ) B9 s
t
and < ko [ 9(9) [ 1502+ Dt —s)Pdxds
1
1, 1t
[ |(p0?v) (p(x)z JA g(t—s)(u(t)—u(s))ds) dx < _cE(0) /t:g’(s)ds
Y2 < cE(0)g(ty)
/12 = 1
= (/np(x)“" dx) 8 < min{r,H(r),Ho(r)}. (31)
1/2 Using the properties ofHg (strictly convex in
(/ ‘/ gt —s)(u(t) —u(s ds{ dX) (0,r],Ho(0) = 0), then forx € (0,r], 0 € [0, 1]
2 Ho(6x) < 8Ho(X).
—HUHL2+2H/ g(t —s)(u(t) —u( ))d# 2 Using hypothesis in (A3), 30, (3) and Jensen's
inequality leads to
Sz + 5P go [xu). 1t
314163+ 3 el = 15 [ 10 HolHe - (9)Ha(-g (9)d(5) »
Then,
L) — &E®)] < cE(). /a6 leu ~ Ot - 9 Pdxds
Therefore, we can choogg so that I()/ Ho[l(t)Ho’l(—g’(s))]Ho(—g’(s))g’(s)><
L(t) ~E(t). (28) St — Dot — ) 2dxd
(s)|Oxu(t) — Oxu(t — s)|[“dxds
Lemma 9For allt >t; > 0, we have /R"g |1 (t) ( )
-1 / ! !
/tt(go DXU)(S)dSS Hal(_ tt HO(_g/(S))g/(S) ~ > HO(W by l(t)HO (_g (S))Ho(—g (S))g (S) X
1 1
2
/l‘g g(S)|DXU(t)—Dxu(t—3)|2dXdS). /]Rng(s)|DXu(t)_DXu(t_S)| dXdS)
n t
where h introduced in 9). > Ho (/ﬁ /Rng(s)lﬂxu(w —Oxu(t - 5)|2dXdS>
(@© 2016 NSP
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which implies Using Lemma$), we obtain
t -1
/ ng(s)|DXu(t)—Dxu(t—s)|2dxds§ H()_l(/\ (t)). F/(t) < —CE(t)—I—CHO (A(t)), forall t>t.
t; JR!

Our next main result reads as follows.

Theorem 3Let (Up,uy) € 2#(R") x L5(R") and suppose

that (Al)- (A2) hold. Then there eX|st positive constants B
0p, a1, 02,03 such that the energy of solution given by 1(t) =

(2),(2) satisfies,

E(t) < azH; (it +ap), forall t>0

)

where
1
Ha(t) = /t (sHy(ct0s))1ds

ProofFrom (15), results of Lemmé& and Lemma?, we
have

L'(t) = &E'(t) + Wi(t) + S5 (t)
< (151—ca|\p||fzsz><g/oDxu>+Mo<goDxu>
— My |uf]I%5 — Mz Ot -+ (€2 + Lyma | O3

where

C
Mo = (&Co(1-+ (kg + 1) PII%) +

M1 = (Ez ( Otlg(s)ds— 0) - 1) ,

Mz = %519('[1)— [( kcszan_ )

1
+KllI% (InflulZ, = 5n(1+c) )|

o)

andt; was introduced in (A3). We choogeso small that
& > 2cg|\p||fzfz. Whenceo is fixed, we can choose

& [a+k( o2 +Injlul?; -

tl -1
&> ( [ g(sids- o)

andé; large enough so thal, > 0, which yields

L'(t) < Mo(go Oyu) + (v+1)

vt > .

(c&2+ Lymy|Oxul 3 — cE'(1),

Now we setF(t) = L(t) + cE(t), which is equivalent to
E(t). Then, we get for some> 2(c&, + 1)(y+ 1)

F/'(t) =L'(t) +cE(t) (32)
< —cE(t) +C/R” /ttg(t —5)|Oyu(t) — Oxu(s)|*dsdx
forall t>t. '

Now, we will following the steps in ¢§0]) and using the
fact thatE’ < 0,0 < Hy,0 < Hg on (0,r] to define the
functional

HS <ao%> F(t)+cEt), ap<r0<c,

whereF,; (t) ~ E(t) and
Fi(0 = aog 18 (cogor ) FO
+ H (ao%) F'(t)+cE(t)

< —CE(t)H6 <Go%>

E®)

+c Hy (ao ) Ho 2(A (1)) +cE'(t).

E(0)
Let Hj given in (A3) and using Young’s inequalityl {)
with A = H} (ao%) B=HyX(A(t)), to get
EQ®) E®)
/ < _ / * /
Fl(t) > CE(t)HO (aOE(O)) +CH0 (HO (ao (0)
+ CA(t)+CcE(t)
EQ®) E®) EQ®)
< — ! 7 =y E®
< —cE(t)Hg (aOE(O)) +Ca°E(0) Ho aOE(O)
— C'E'(t) +cE'(t).
Choosingag, c,c/, such that for alt > t; we have
EM®) v (. EV)
< —_ 7 _ 7
Fl( ) kE(O) 0 Qo E(O)
_ EQ®)
- -4 ()
whereH,(t) = tHj(aot). Using the strict convexity ol
on (0,r], to find thatH;,H, are strict positives orf0, 1],
then

R(t) = rklEF(lo()t) ~E(t), T€(0,1) (33)
and
R(t) < —tkoH2(R(t)), ko € (0,+00),t >ty

Then, a simple integration and a suitable choice pield,
R(t) <H;Y(ait+a2), a1,00 € (0,40),t >ty

here Hy(t) = j;le’l(s)ds From @33), for a positive
constantrz, we have

E(t) < asH Yot +az), ai,a2 € (0,+),t >ty
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The fact that; is strictly decreasing functiond@,1] and ~ Lemma 10For any ve C* (0, T,H(R")) we have
due to properties dfl,, we have

This completes the proof of Theore3n

lim Hy (t) = +oo. —/Rna(t)/otg(t—S)AV(S)\/(t)dsdx
t—0

Then = %%a( t) (goAl/Zv) (t)

E(t) < asH; (ot +az), forall t>o0. B %% a(t)/otg(s) ! Al/zv(t)lzdxd%

o Al/2y / ‘Al/z dxds

goAl/Z) +;a’ /g ds/ ’Al/z ‘dxds

The coupled systems of wave equations abound in th@roof.lts not hard to see
world. One reason is that nature is full of those physical t
phenomenos. Another reason is that systems are often / a(t) [ g(t—s)Av(s)V (t)dsdx
used to model a large class of engineering sciences, where /R" 0
propagation and transmission of informations or material _ a(t)/tg(t —s)/ Al/Z\/(t)Al/ZV(S)dXdS
are involved. 0 RN
1- It will be also interesting to consider, derived from t
(1), and study the questions of asymptotic behavior of the = / 9

related coupled system t
Ta(t) / gt—s / AV (£)AY2(t)dxds
0 RN

5 Concluding comments

Law (ge
Lo

9) /R AR (1) [Al2y(s) - A1) dxdis

|-2 _
ﬂuéijzmum)lﬁ(p A(ur+ [§g1(s)ur(t —s,x)ds) Consequently,
(|ua2L|J' |:1u|ﬁ)|k+(p JA (U2 + 3 92(9)ua(t — 5, X)) /at/‘gt_sAvs\/(t)dsdx
— i 2
(u2(0,),u2(0,%)) = (u10(X), Uz0(X)) € (' (RM))?, _ 1 B Y 12, 2
(0. %), U5 (0,X)) = (Upz(x), Uza(x)) € (Lh(R™)?, 20 / ot dt/ AR~ A2t dxds

where our weak coupling is given by the logarithmic +a(t)/ 9(s) (dtz ’Al/z ’ dx) ds
nonlinearities terms foa # 0,1,n > 2 andA is a linear, L
selfadjoint operator im?(R"). which implies,
2. Let us remark that, it is similar to study the question
of existence and decay of solution of the same problem Rna(t)/ gt — S)AV(s)V (t)dsdx
with the presence of weak-viscoelasticity in the form
aft /gt— / ‘Al/z — AY2y(t ‘ dxd%

(16" 246+ 900 (us-+ () fo@a(S)us(t — 50l iff t
= aupIn |u ¥ t S a(t)/ g(s)/ AY2y(1)) dxd%
(5 ) (£ 060A e+ 02 fogeualt— .3 L e )
=au Injuz|®, - Iy 1/2 _al/2
(U3(0.X),15(0.X) = (Usol¥).tra() € (7 (R +3a(0 [[d(t-9) [ A9 - Ao dxds
/ / _ n 2
(13(0.%), (0. X)) = (una(¥), Ua(x)) € (L, (B")2, Laott) v faxas
where we should need additional, conditions @nas
t 2
follows ) +:—2La’(t) / gt —s) / AY/2y(s) — AL2u(t)|"dxds
1—ai(t)/ gi(t)dt >k >o,/ gi(t)dt < oo, ai(t) > O,
0 0 ——or /g ds/ ’Al/z ‘ dxds
im —C0 g (34)  This completes the proof
SO P proot.
where
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