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Abstract: In this paper, we study a viscoelastic wave equations of the Kirchhoff type

u′′−φ(x)
(

M(‖∇xu‖2
2)∆xu−

∫ t

0
g(t −s)∆xu(s)ds

)

= auln |u|k (1)

defined in any spaces dimension. It is well known that from a class of nonlinearities the logarithmic nonlinearity is distinguished by
several interesting physical properties. We use weighted spaces to establish the long-time behavior of solution of (1). Furthermore,
under convenient hypotheses ong and the initial data, the local-in-time existence of solution is established.
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1 Introduction

In this paper, we consider the wave equation with
logarithmic nonlinearity (1), where
x ∈ R

n, t > 0,n ≥ 2,k,a > 0 and M is a positiveC1

function satisfying for s ≥ 0,m0 > 0,m1 ≥ 0,γ ≥ 1,
M(s) = m0+m1sγ and the scalar functiong(s) (so-called
relaxation kernel) is assumed to satisfy (A1).
It is well known that from a class of nonlinearities, the
logarithmic nonlinearity is distinguished by several
interesting physical properties. In recent years, there has
been a growing interest in the viscoelastic wave equation,
its properties and variants of the problem can be found in
[3], [14], [21], [22], [23], [25], [27] and [28].
The model here considered are well known ones and refer
to materials with memory as they are termed in the wide
literature which is concerned about their physical,
mechanical behavior and the many interesting analytical
problems. The physical characteristic property of such
materials is that their behavior depends on time not only
through the present time but also through their past
history.

Eq. (1) is equipped by the following initial data.

u(0,x) = u0(x) ∈ H (Rn),u′ (0,x) = u1(x) ∈ L2
ρ(R

n), (2)

where the weighted spacesH is given in Definition1 and
the density functionφ(x) > 0,∀x ∈ R

n,(φ(x))−1 = ρ(x)
satisfies

ρ : Rn →R
∗
+, ρ(x) ∈C0,γ̃ (Rn) (3)

with γ̃ ∈ (0,1) and ρ ∈ Ls(Rn) ∩ L∞(Rn), where
s= 2n

2n−qn+2q.
This kind of systems appears in the models of nonlinear
Kirchhoff-type. It is a generalization of a model
introduced by Kirchhoff [13] in the casen= 1 this type of
problem describes a small amplitude vibration of an
elastic string. The original equation is:

ρhutt + τut =

(

P0+
Eh
2L

∫ L

0
|ux(x, t)|

2ds

)

uxx+ f , (4)

where 0≤ x ≤ L and t > 0,u(x, t) is the lateral
displacement at the space coordinatex and the timet,ρ
the mass density,h the cross-section area,L the length,P0
the initial axial tension,τ the resistance modulus,E the
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Young modulus andf the external force (for example the
action of gravity).
For the decay rate inRn, we quote essentially the results
of [1], [10], [11], [12], [20]. In [11], authors showed that,
for compactly supported initial data and for an
exponentially decaying relaxation function, the decay of
the energy of solution of a linear Cauchy problem(1),(2)
with ρ(x) = 1,M ≡ 1,a = 0 is polynomial. The
finite-speed propagation is used to compensate for the
lack of Poincare’s inequality. In the caseM ≡ 1,a= 0, in
[10], author looked into a linear Cauchy viscoelastic
problem with density. His study included the exponential
and polynomial rates, where he used the spaces weighted
by density to compensate for the lack of Poincare’s
inequality. The same problem treated in [10], was
considered in [12], where they consider a Cauchy
problem for a viscoelastic wave equation. Under suitable
conditions on the initial data and the relaxation function,
they prove a polynomial decay result of solutions.
Conditions used, on the relaxation functiong and its
derivativeg′ are different from the usual ones.

The problem (1),(2) without source, for the case
ρ(x) = 1,M ≡ 1, in a bounded domainΩ ⊂ R

n,(n ≥ 1)
with a smooth boundary∂Ω and g is a positive
nonincreasing function was considered in [20], where
they established an explicit and general decay rate result
for relaxation functions satisfying:

g′(t)≤−H(g(t)), t ≥ 0, H(0) = 0 (5)

for a positive functionH ∈ C1(R+) and H is linear or
strictly increasing and strictly convexC2 function on
(0, r],1 > r. This improves the conditions considered in
[1] on the relaxation functions

g′(t)≤−χ(g(t)), χ(0) = χ ′(0) = 0 (6)

whereχ is a non-negative function, strictly increasing and
strictly convex on(0,k0],k0 > 0.
The goal of the present paper is to establish the existence
of solution to the problem (1)-(2). We obtain also, a fast
decay results.

2 Material, Assumptions and technical
lemmas

The constantsc used throughout this paper are positive
generic constants which may be different in various
occurrences also the functions considered are all real
valued, hereu′ = du(t)/dt and u′′ = d2u(t)/dt2. For
simplicity reason, we takea= 1
We recall and make use the following hypothesis on the
functiong as:

(A1) We assume that the functiong : R+ −→ R
+ is of

classC1 satisfying:

m0−g= l > 0, g(0) = g0 > 0 (7)

whereg=
∫ ∞

0 g(t)dt.

(A2) There exists a positive functionH ∈C1(R+) such
that

g′(t)+H(g(t))≤ 0, t ≥ 0, H(0) = 0 (8)

andH is linear or strictly increasing and strictly convex
C2 function on(0, r],1> r.

(A3) According to results in [20], we have
1- We can deduce that there existst1 > 0 large enough such
that:

1) ∀t ≥ t1: We have lim
s→+∞

g(s) = 0, which implies that

lim
s→+∞

−g′(s) cannot be positive, so lim
s→+∞

−g′(s) = 0. Then

g(t1)> 0 and

max{g(s),−g′(s)}< min{r,H(r),H0(r)}, (9)

whereH0(t) = H(D(t)) provided thatD is a positiveC1

function, withD(0) = 0, for whichH0 is strictly increasing
and strictly convexC2 function on(0, r] and
∫ +∞

0
g(s)H0(−g′(s))ds<+∞.

2) ∀t ∈ [0, t1]: As g is nonincreasing,g(0) > 0 and
g(t1)> 0 theng(t)> 0 and

g(0)≥ g(t)≥ g(t1)> 0.

Therefore, sinceH is a positive continuous function, then

a≤ H(g(t))≤ b

for some positive constantsa andb. Consequently,

g′(t)≤−H(g(t))≤−kg(t), k> 0

which gives

g′(t)≤−kg(t),k> 0 (10)

2- Let H∗
0 be the convex conjugate ofH0 in the sense

of Young (see [2], pages 61-64), then

H∗
0(s) = s(H ′

0)
−1(s)−H0[(H

′
0)

−1(s)], s∈ (0,H ′
0(r))

and satisfies the following Young’s inequality

AB≤ H∗
0(A)+H0(B), A∈ (0,H ′

0(r)),B∈ (0, r]. (11)

The spaceH (Rn) is defined as the closure ofC∞
0 (R

n)
functions with respect to the norm
‖u‖2

H (Rn) =
∫

Rn |∇xu|2dx. It is defined in the next
definition

Definition 1([23]). We define the function spaces of our
problem and its norm as follows:

H (Rn) =
{

f ∈ L2n/(n−2)(Rn) : ∇x f ∈ (L2(Rn))n
}

(12)

and thatH is embedded continuously in L2n/(n−2).
The space L2ρ(R

n) to be the closure of C∞0 (R
n) functions

with respect to the inner product

( f ,h)L2
ρ (Rn) =

∫

Rn
ρ f hdx.

For 1 < q < ∞, if f is a measurable function onRn, we
define

‖ f‖Lq
ρ (Rn) =

(

∫

Rn
ρ | f |qdx

)1/q

. (13)
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Remark.The spaceL2
ρ(R

n) is a separable Hilbert space.

The following technical Lemmas will play an important
role in the sequel.

Lemma 1.[4] (Lemma 1.1) For any two functions g, v ∈
C1(R) andθ ∈ [0,1] we have

v′(t)

t
∫

0

g(t − s)v(s)ds= −
1
2

d
dt

t
∫

0

g(t − s)|v(t)− v(s)|2ds

+
1
2

d
dt





t
∫

0

g(s)ds



 |v(t)|2

+
1
2

t
∫

0

g′(t − s)|v(t)− v(s)|2ds

−
1
2

g(t)|v(t)|2.

and
∣

∣

∣

∣

∫ t

0
g(t −s)(v(t)−v(s))ds

∣

∣

∣

∣

2

≤

(

∫ t

0
|g(s)|2(1−θ)ds

)





t
∫

0

|g(t −s)|2θ |v(t)−v(s)|2ds





The next Lemma can be easily shown (see [14], [15]).

Lemma 2.Let ρ satisfies (3), then for any u∈ H (Rn)

‖u‖Lq
ρ(Rn) ≤ ‖ρ‖Ls(Rn)‖∇xu‖L2(Rn)

with s= 2n
2n−qn+2q,2≤ q≤ 2n

n−2

Now, using lemma2, we give the following Lemma
concerning Logarithmic Sobolev inequality.

Lemma 3.(see [7], [ 18], [ 24]) Let u ∈ H (Rn) be any
function and c1,c2 > 0 be any numbers. Then

2
∫

Rn
ρ(x)|u|2 ln

( |u|

‖u‖2
L2

ρ

)

dx+n(1+ c1)‖u‖2
L2

ρ

≤ c2
‖ρ‖2

L2

π
‖∇xu‖

2
2

Definition 2.By the weak solution of (1) over [0,T] we
mean a function

u∈C([0,T],H (Rn))∩C1([0,T],L2
ρ (R

n))∩C2([0,T],H −1(Rn))

with u′ ∈ L2([0,T],H (Rn)), such that u(0) = u0,u′(0) =
u1 and for all v∈ H , t ∈ [0,T],
∫

Rn
ρ(x)uln |u|kvdx

=

∫

Rn
ρ(x)u′′vdx+M(‖∇xu‖

2
2)

∫

Rn
∇xu∇xvdx

−
∫

Rn

∫ t

0
g(t − s)∇xu(s)ds∇xvdx

Multiplying the equation (1) by ρ(x)u′, and integrating by
parts overRn, we have the energy ofu at timet is given by

E(t) =
1
2

(

‖u′‖2
L2

ρ
+
(

m0−

∫ t

0
g(s)ds

)

‖∇xu‖
2
2

+(g◦∇xu)−
∫

Rn
ρ(x)u2 ln |u|kdx

)

+
k
4
‖u‖2

L2
ρ
+

m1

2(γ +1)
‖∇xu‖

2(γ+1)
2 (14)

and the following energy functional law holds:

E′(t) =
1
2
(g′ ◦∇xu)(t)−

1
2

g(t)‖∇xu(t)‖
2
2,∀t ≥ 0. (15)

which means that, our energy is uniformly bounded and
decreasing along the trajectories. The following notation
will be used throughout this paper

(g◦∇xu)(t) =
∫ t

0
g(t− τ)‖∇xu(t)−∇xu(τ)‖2

2dτ, (16)

for u(t) ∈ H (Rn), t ≥ 0.

3 Global existence in time

According to logarithmic Sobolev inequality and similar to
the proof in ([5], [6], [7], [24], [26]), we have the following
result.

Theorem 1.(Local existence) Let u0(x) ∈H (Rn),u1(x) ∈
L2

ρ(R
n) be given. Then, under hypothesis(A1),(A2) and

(3), the problem (1) has a unique local solution

u∈C([0,T],H (Rn))∩C1([0,T],L2
ρ(R

n))

Now, we introduce two functionals

J(t) =
1
2

((

m0−
∫ t

0
g(s)ds

)

‖∇xu‖
2
2+(g◦∇xu)

−

∫

Rn
ρ(x)u2 ln |u|kdx

)

+
k
4
‖u‖2

L2
ρ
+

m1

2(γ +1)
‖∇xu‖

2(γ+1)
2 (17)

and

I(t) =
(

m0−

∫ t

0
g(s)ds

)

‖∇xu‖
2
2+(g◦∇xu)

−

∫

Rn
ρ(x)u2 ln |u|kdx+

m1

2(γ +1)
‖∇xu‖

2(γ+1)
2 (18)

Then,

J(t) =
1
2

I(t)+
k
4
‖u‖2

L2
ρ

(19)

As in ([9]) to establish the corresponding method of
potential wells which is related to the logarithmic
nonlinear term, we introduce the stable set as follows:

W = {u∈ H (Rn) : I(t)> 0,J(t)< d}∪{0} (20)
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Remark.We notice that the mountain pass leveld given in
(20) defined by

d = inf{ sup
u∈H (Rn)\{0}µ≥0

J(µu)}, (21)

Also, by introducing the so called ”Nehari manifold”

N = {u∈ H (Rn)\{0} : I (t) = 0}

Similar to results in [29], it is readily seen that the potential
depthd is also characterized by

d = inf
u∈N

J(t). (22)

This characterization ofd shows that
dist(0,N ) = min

u∈N

‖u‖
H (Rn) (23)

By the fact that (15), we will prove the invariance of the set
W. That is if for somet0 > 0 if u(t0) ∈W, thenu(t) ∈W,
∀t ≥ t0, let us beginning by giving the existence Lemma of
the potential depth. (See [7] Lemma 2.4)

Lemma 4.d is positive constant.

Lemma 5.Let u ∈ H (Rn) and β = e
1
2n(1+c1). if

0 < ‖u‖2
L2

ρ
< β , then I(t) > 0; if I (t) = 0,‖u‖2

2 6= 0, then

‖u‖2
L2

ρ
> β .

Proof.By (A1), (18) and Lemma3, we have

I(t) =
(

m0−
∫ t

0
g(s)ds

)

‖∇xu‖
2
2+(g◦∇xu)

−
∫

Rn
ρ(x)u2 ln |u|kdx+

m1

2(γ +1)
‖∇xu‖

2(γ+1)
2

≥ l‖∇xu‖
2
2− k

∫

Rn
ρ(x)u2

(

ln
|u|

‖u‖2
L2

ρ

+ ln‖u‖2
L2

ρ

)

dx

≥

(

l −
kc2

2π
‖ρ‖2

L2
ρ

)

‖∇xu‖
2
2+

1
2

kn(1+ c1)‖u‖2
L2

ρ

− k‖u‖2
L2

ρ
ln‖u‖2

L2
ρ

Choosingc2 such thatl > kc2
2π ‖ρ‖2

L2
ρ
, then

I(t)≥ k
(1

2
n(1+ c1)− ln‖u‖2

L2
ρ

)

‖u‖2
L2

ρ

Therefore, if 0< ‖u‖2
L2

ρ
< β , then I(t) > 0; if

I(t) = 0,‖u‖2
2 6= 0, we haveβ < ‖u‖2

L2
ρ

then,‖u‖2
L2

ρ
> β .

Theorem 2.(Global Existence) Let
u0(x) ∈ H (Rn),u1(x) ∈ L2

ρ(R
n) and

0 < E(0) < d, I(0) > 0. Then, under hypothesis
(A1),(A2) and conditions (3), the problem (1) has a
global solution in time.

Proof.From the definition of energy for solution and by
(15), we have
1
2
‖u′‖2

L2
ρ
+ J(t)≤

1
2
‖u1‖

2
L2

ρ
+ J(0), ∀t ∈ [0,Tmax) (24)

whereTmax is the maximal existence time of solution ofu.
Then, by the definition of the stable set and using Lemma
5, we haveu∈W, ∀t ∈ [0,Tmax)

4 Decay estimates

We apply the multiplier techniques to obtain useful
estimates and prepare some functionals associated with
the nature of our problem to introduce an appropriate
Lyapunov functions. For this purpose, we introduce the
functionals

ψ1(t) =
∫

Rn
ρ(x)uu′dx, (25)

Lemma 6.Under the hypothesis (A1) and (A2), the
functionalψ1 satisfies, along the solution of (1),(2)

ψ ′
1(t)≤ ‖u′‖2

L2ρ
+m1‖∇xu‖

2(γ+1)
2 +

(1− l)
4σ

(g◦∇xu)

+

[

(

σ +
kc2

2π
‖ρ‖2

L2 − l
)

+k‖ρ‖2
L2

(

ln‖u‖2
L2ρ

−
1
2

n(1+c1)
)

]

‖∇u‖2
2.

Proof.From (25), integrate overRn, we have

ψ ′
1(t) =

∫

Rn
ρ(x)|u′|2dx+

∫

Rn
ρ(x)uu′′dx

=

∫

Rn

(

ρ(x)|u′|2+M(‖∇xu‖
2
2)u∆xu−u

∫ t

0
g(t−s)∆xu(s,x)ds

)

dx

+

∫

Rn
ρ(x)u2 ln |u|kdx

≤ ‖u′‖2
L2ρ (Rn)

+m1‖∇xu‖
2(γ+1)
2 − l‖∇xu‖2

2

+k
∫

Rn
ρ(x)u2

(

ln
( |u|

‖u‖2
L2ρ

)

+ ln‖u‖2
L2ρ

)

dx

+

∫

Rn
∇xu

∫ t

0
g(t −s)(∇xu(s)−∇xu(t))dsdx.

We have by using the Logarithmic Sobolev inequality in
Lemma3 and generalized version of Poincare’s inequality
in Lemma2 Using Young’s inequality and Lemma1 for
θ = 1/2, we obtain

ψ ′
1(t)≤ ‖u′‖2

L2
ρ
+m1‖∇xu‖

2(γ+1)
2 +

(kc2

2π
‖ρ‖2

L2 − l
)

‖∇xu‖
2
2

+k‖u‖2
L2

ρ
ln‖u‖2

L2
ρ

+σ‖∇xu‖
2
2+

1
4σ

∫

Rn

(

∫ t

0
g(t− s)|∇xu(s)−∇xu(t)|ds

)2

dx

−
1
2

kn(1+ c1)‖u‖2
L2

ρ

≤ ‖u′‖2
L2

ρ
+m1‖∇xu‖

2(γ+1)
2 +

(

σ +
kc2

2π
‖ρ‖2

L2 − l
)

‖∇xu‖
2
2

+
(1− l)

4σ
(g◦∇xu)+ k

(

ln‖u‖2
L2

ρ
−

1
2

n(1+ c1)
)

‖u‖2
L2

ρ
.

Then

ψ ′
1(t)≤ ‖u′‖2

L2ρ
+m1‖∇xu‖

2(γ+1)
2 +

(1− l)
4σ

(g◦∇xu)

+

[

(

σ +
kc2

2π
‖ρ‖2

L2 − l
)

+k‖ρ‖2
L2

(

ln‖u‖2
L2ρ

−
1
2

n(1+c1)
)

]

‖∇u‖2
2.

The existence of the memory term forces us to make
second modification of the associate energy functional.
Set

ψ2(t) =−

∫

Rn
ρ(x)u′

∫ t

0
g(t − s)(u(t)−u(s))dsdx. (26)

c© 2016 NSP
Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci.10, No. 6, 2163-2172 (2016) /www.naturalspublishing.com/Journals.asp 2167

Lemma 7.Under the hypothesis (A1) and (A2), the
functional ψ2 satisfies, along the solution of (1),(2), for
anyσ ∈ (0,m0)

ψ ′
2(t)≤

[

σ + k
(

σ
c2

2π
+ ln‖u‖2

L2
ρ
−

n(1+ c1)

2

)

]

‖∇xu‖
2
2

+cm1‖∇xu‖
2(γ+1)
2 + cσ (1+(k

c2

2π
+1)‖ρ‖2

L2)(g◦∇xu)

−cσ‖ρ‖2
L2(g

′ ◦∇xu)+

(

σ −

∫ t

0
g(s)ds

)

‖u′‖2
L2

ρ
.

Proof.Exploiting Eq. (1), (26) to get

ψ ′
2(t) =−

∫

Rn
ρ(x)u′′

∫ t

0
g(t − s)(u(t)−u(s))dsdx

−

∫

Rn
ρ(x)u′

∫ t

0
g′(t − s)(u(t)−u(s))dsdx

−

∫ t

0
g(s)ds‖u′‖2

L2
ρ

=

∫

Rn
M(‖∇u‖2

2)∇xu
∫ t

0
g(t − s)(∇xu(t)−∇xu(s))dsdx

−

∫

Rn
ρ(x)uln |u|k

∫ t

0
g(t − s)(u(t)−u(s))dsdx

−
∫

Rn

(

∫ t

0
g(t − s)∇xu(s,x)ds

)

×

(

∫ t

0
g(t− s)(∇xu(t)−∇xu(s))ds

)

dx

−

∫

Rn
ρ(x)u′

∫ t

0
g′(t − s)(u(t)−u(s))dsdx

−

∫ t

0
g(s)ds‖u′‖2

L2
ρ

By (A1), we have

ψ ′
2(t) =

(

m0−
∫ t

0
g(s)ds

)

×

∫

Rn
∇xu

∫ t

0
g(t − s)(∇xu(t)−∇xu(s))dsdx

+

∫

Rn

(

∫ t

0
g(t − s)(∇xu(t)−∇xu(s))ds

)2

dx

+cm1‖∇xu‖
2(γ+1)
2

−
∫

Rn
ρ(x)uln |u|k

∫ t

0
g(t − s)(u(t)−u(s))dsdx

−

∫

Rn
ρ(x)u′

∫ t

0
g′(t − s)(u(t)−u(s))dsdx

−

∫ t

0
g(s)ds‖u′‖2

L2
ρ
+ c(g◦∇xu)(t).

By Holder’s and Young’s inequalities and Lemma2, we
estimate

−

∫

Rn
ρ(x)u′

∫ t

0
g′(t − s)(u(t)−u(s))dsdx

≤

(

∫

Rn
ρ(x)|u′|2dx

)1/2

×

(

∫

Rn
ρ(x)

∣

∣

∣

∫ t

0
g′(t − s)(u(t)−u(s))ds

∣

∣

∣

2
)1/2

≤ σ‖u′‖2
L2

ρ
+ cσ

∥

∥

∥

∫ t

0
−g′(t − s)(u(t)−u(s))ds

∥

∥

∥

2

L2
ρ

≤ σ‖u′‖2
L2

ρ
− cσ‖ρ‖2

L2(g
′ ◦∇xu)(t).

and
∫

Rn
ρ(x)u′

∫ t

0
g(t − s)(u(t)−u(s))dsdx

≤ σ‖u′‖2
L2

ρ
+ cσ‖ρ‖2

L2(g◦∇xu)(t).

and by Lemma2 and Lemma3 and conditions in Lemma
5, we have

−

∫

Rn
ρ(x) ln |u|ku

∫ t

0
g(t − s)(u(t)−u(s))dsdx

≤ k
∫

Rn
ρ(x)

(

ln
( |u|

‖u‖2
L2

ρ

)

+ ln‖u‖2
L2

ρ

)

u×

∫ t

0
g(t − s)(u(t)−u(s))dsdx

≤ k
(

ln‖u‖2
L2

ρ
−

n(1+ c1)

2

)

‖u‖2
L2

ρ

+k
c2

2π

∥

∥

∥u
∫ t

0
g(t− s)(u(t)−u(s))ds

∥

∥

∥

2

L2
ρ

≤ k
(

ln‖u‖2
L2

ρ
−

n(1+ c1)

2

)

‖ρ‖2
L2‖∇xu‖

2
2

+k
c2

2π
‖ρ‖2

L2

∥

∥

∥
∇u

∫ t

0
g(t − s)(∇u(t)−∇u(s))ds

∥

∥

∥

2

L2
ρ

≤ k
(

σ
c2

2π
+ ln‖u‖2

L2
ρ
−

n(1+ c1)

2

)

‖ρ‖2
L2‖∇xu‖

2
2

+cσ k
c2

2π
‖ρ‖2

L2(g◦∇xu).

Using Young’s and Poincare’s inequalities and Lemma1
for θ = 1/2, we obtain

ψ ′
2(t)≤

[

σ + k
(

σ
c2

2π
+ ln‖u‖2

L2
ρ
−

n(1+ c1)

2

)

]

‖∇xu‖
2
2

+cm1‖∇xu‖
2(γ+1)
2

+cσ (1+(k
c2

2π
+1)‖ρ‖2

L2)(g◦∇xu)− cσ‖ρ‖2
L2(g

′ ◦∇xu)

+

(

σ −

∫ t

0
g(s)ds

)

‖u′‖2
L2

ρ
.

Now, let us define

L(t) = ξ1E(t)+ψ1(t)+ ξ2ψ2(t) (27)
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for ξ1,ξ2 > 1. We need the next Lemma, which means
that there is equivalent between the Lyapunov and energy
functions, that is forξ1,ξ2 > 1, we have

β1L(t)≤ E(t)≤ β2L(t)

holds for two positive constantsβ1 andβ2.

Lemma 8.For ξ1,ξ2 > 1, we have

L(t)∼ E(t).

Proof.By (27) we have

|L(t)− ξ1E(t)| ≤ |ψ1(t)|+ ξ2|ψ2(t)|

≤
∫

Rn

∣

∣ρ(x)uu′
∣

∣dx

+ξ2

∫

Rn

∣

∣

∣

∣

ρ(x)u′
∫ t

0
g(t− s)(u(t)−u(s))ds

∣

∣

∣

∣

dx.

Thanks to Holder and Young’s inequalities, we have by
using Lemma2
∫

Rn

∣

∣ρ(x)uu′
∣

∣dx

≤

(

∫

Rn
ρ(x)|u|2dx

)1/2(∫

Rn
ρ(x)|u′|2dx

)1/2

≤
1
2

(

∫

Rn
ρ(x)|u|2dx

)

+
1
2

(

∫

Rn
ρ(x)|u′|2dx

)

≤ c‖u′‖2
L2

ρ
+ c‖ρ‖2

L2‖∇xu‖
2
2

and
∫

Rn

∣

∣

∣

∣

(

ρ(x)
1
2 u′

)

(

ρ(x)
1
2

∫ t

0
g(t − s)(u(t)−u(s))ds

)∣

∣

∣

∣

dx

≤

(

∫

Rn
ρ(x)|u′|2dx

)1/2

×

(

∫

Rn
ρ(x)

∣

∣

∣

∫ t

0
g(t− s)(u(t)−u(s))ds

∣

∣

∣

2
dx

)1/2

≤
1
2
‖u′‖2

L2
ρ
+

1
2

∥

∥

∥

∫ t

0
g(t − s)(u(t)−u(s))ds

∥

∥

∥

2

L2
ρ

≤
1
2
‖u′‖2

L2
ρ
+

1
2
‖ρ‖2

L2(g◦∇xu).

Then,

|L(t)− ξ1E(t)| ≤ cE(t).

Therefore, we can chooseξ1 so that

L(t)∼ E(t). (28)

Lemma 9.For all t ≥ t1 > 0, we have
∫ t

t1
(g◦∇xu)(s)ds≤ H−1

0

(

−

∫ t

t1
H0(−g′(s))g′(s)×

∫

Rn
g(s)|∇xu(t)−∇xu(t − s)|2dxds

)

.

where H0 introduced in (9).

Proof.By (15) and (A3), we have for allt ≥ t1
∫

Rn

∫ t1

0
g(t − s)|∇xu(t)−∇xu(s)|

2dsdx

≤−
1
k

∫

Rn

∫ t1

0
g(t − s)|∇xu(t)−∇xu(s)|

2dsdx

≤−cE′(t).

Now, we define

I(t) =
∫ t

t1
H0(−g′(s))(g◦∇xu)(t)ds. (29)

Since
∫ +∞

0 H0(−g′(s))g(s)ds<+∞, from (15) we have

I(t) =
∫ t

t1
H0(−g′(s))

∫

Rn
g(s)|∇xu(t)−∇xu(t − s)|2dxds

≤ 2
∫ t

t1
H0(−g′(s))g(s)

∫

Rn
|∇xu(t)|

2+ |∇xu(t − s)|2dxds

≤ cE(0)
∫ t

t1
H0(−g′(s))g(s)ds< 1. (30)

We define again a new functionalλ (t) related withI(t) as

λ (t) =−
∫ t

t1
H0(−g′(s))g′(s)

∫

Rn
g(s)|∇xu(t)−∇xu(t −s)|2dxds.

From (A1)-(A3) and , we get

H0(−g′(s))g(s)≤ H0(H(g(s)))g(s) = D(g(s))g(s)≤ k0.

for some positive constantk0. Then, for allt ≥ t1

λ (t) ≤ −k0

∫ t

t1
g′(s)

∫

Rn
|∇xu(t)−∇xu(t− s)|2dxds

≤ −k0

∫ t

t1
g′(s)

∫

Rn
|∇xu(t)|

2+ |∇xu(t − s)|2dxds

≤ −cE(0)
∫ t

t1
g′(s)ds

≤ cE(0)g(t1)

< min{r,H(r),H0(r)}. (31)

Using the properties of H0 (strictly convex in
(0, r],H0(0) = 0), then forx∈ (0, r],θ ∈ [0,1]

H0(θx)≤ θH0(x).

Using hypothesis in (A3), (30), (31) and Jensen’s
inequality leads to

λ (t) =
1

I(t)

∫ t

t1
I(t)H0[H

−1
0 (−g′(s))]H0(−g′(s))g′(s)×

∫

Rn
g(s)|∇xu(t)−∇xu(t − s)|2dxds

≥
1

I(t)

∫ t

t1
H0[I(t)H

−1
0 (−g′(s))]H0(−g′(s))g′(s)×

∫

Rn
g(s)|∇xu(t)−∇xu(t − s)|2dxds

≥ H0

( 1
I(t)

∫ t

t1
I(t)H−1

0 (−g′(s))H0(−g′(s))g′(s)×
∫

Rn
g(s)|∇xu(t)−∇xu(t − s)|2dxds

)

≥ H0

(

∫ t

t1

∫

Rn
g(s)|∇xu(t)−∇xu(t − s)|2dxds

)
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which implies
∫ t

t1

∫

Rn
g(s)|∇xu(t)−∇xu(t − s)|2dxds≤ H−1

0 (λ (t)).

Our next main result reads as follows.

Theorem 3.Let (u0,u1) ∈ H (Rn)×L2
ρ(R

n) and suppose
that (A1)- (A2) hold. Then there exist positive constants
α0,α1,α2,α3 such that the energy of solution given by
(1),(2) satisfies,

E(t)≤ α3H−1
1 (α1t +α2), for all t ≥ 0,

where

H1(t) =
∫ 1

t
(sH′

0(α0s))−1ds

Proof.From (15), results of Lemma6 and Lemma7, we
have

L′(t) = ξ1E′(t)+ψ ′
1(t)+ ξ2ψ ′

2(t)

≤ (
1
2

ξ1− cσ‖ρ‖2
L2ξ2)(g

′ ◦∇xu)+M0(g◦∇xu)

− M1‖u′‖2
L2

ρ
−M2‖∇xu‖

2
2+(cξ2+1)m1‖∇xu‖

2(γ+1)
2

where

M0 =
(

ξ2cσ (1+(k
c2

2π
+1)‖ρ‖2

L2)+
(1− l)

4σ

)

> 0,

M1 =

(

ξ2

(

∫ t1

0
g(s)ds−σ

)

−1

)

,

M2 =
1
2

ξ1g(t1)−
[(

σ +
kc2

2π
‖ρ‖2

L2 − l
)

+k‖ρ‖2
L2

(

ln‖u‖2
L2

ρ
−

1
2

n(1+ c1)
)]

−ξ2

[

σ + k
(

σ
c2

2π
+ ln‖u‖2

L2
ρ
−

n(1+ c1)

2

)

]

andt1 was introduced in (A3). We chooseσ so small that
ξ1 > 2cσ‖ρ‖2

L2ξ2. Whenceσ is fixed, we can choose

ξ2 >

(

∫ t1

0
g(s)ds−σ

)−1

andξ1 large enough so thatM2 > 0, which yields

L′(t)≤ M0(g◦∇xu)+ (cξ2+1)m1‖∇xu‖
2(γ+1)
2 − cE′(t),

∀t ≥ t1.

Now we setF(t) = L(t) + cE(t), which is equivalent to
E(t). Then, we get for somec> 2(cξ2+1)(γ +1)

F ′(t) = L′(t)+ cE′(t) (32)

≤−cE(t)+ c
∫

Rn

∫ t

t1
g(t − s)|∇xu(t)−∇xu(s)|

2dsdx,

for all t ≥ t1.

Using Lemma(9), we obtain

F ′(t) ≤ −cE(t)+ cH−1
0 (λ (t)), for all t ≥ t1.

Now, we will following the steps in ([20]) and using the
fact that E′ ≤ 0,0 < H ′

0,0 < H ′′
0 on (0, r] to define the

functional

F1(t) = H ′
0

(

α0
E(t)
E(0)

)

F(t)+ cE(t), α0 < r,0< c,

whereF1(t)∼ E(t) and

F ′
1(t) = α0

E′(t)
E(0)

H ′′
0

(

α0
E(t)
E(0)

)

F(t)

+ H ′
0

(

α0
E(t)
E(0)

)

F ′(t)+ cE′(t)

≤ −cE(t)H ′
0

(

α0
E(t)
E(0)

)

+c H′
0

(

α0
E(t)
E(0)

)

H−1
0 (λ (t))+ cE′(t).

Let H∗
0 given in (A3) and using Young’s inequality (11)

with A= H ′
0

(

α0
E(t)
E(0)

)

,B= H−1
0 (λ (t)), to get

F ′
1(t) ≤ −cE(t)H ′

0

(

α0
E(t)
E(0)

)

+ cH∗
0

(

H ′
0

(

α0
E(t)
E(0)

))

+ cλ (t)+ cE′(t)

≤ −cE(t)H ′
0

(

α0
E(t)
E(0)

)

+ cα0
E(t)
E(0)

H ′
0

(

α0
E(t)
E(0)

)

− c′E′(t)+ cE′(t).

Choosingα0,c,c′, such that for allt ≥ t1 we have

F ′
1(t) ≤ −k

E(t)
E(0)

H ′
0

(

α0
E(t)
E(0)

)

= −kH2

(

E(t)
E(0)

)

,

whereH2(t) = tH ′
0(α0t). Using the strict convexity ofH0

on (0, r], to find thatH ′
2,H2 are strict positives on(0,1],

then

R(t) = τ
k1F1(t)
E(0)

∼ E(t), τ ∈ (0,1) (33)

and

R′(t)≤−τk0H2(R(t)), k0 ∈ (0,+∞), t ≥ t1.

Then, a simple integration and a suitable choice ofτ yield,

R(t)≤ H−1
1 (α1t +α2), α1,α2 ∈ (0,+∞), t ≥ t1.

here H1(t) =
∫ 1
t H−1

2 (s)ds. From (33), for a positive
constantα3, we have

E(t)≤ α3H−1
1 (α1t +α2), α1,α2 ∈ (0,+∞), t ≥ t1.
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The fact thatH1 is strictly decreasing function on(0,1] and
due to properties ofH2, we have

lim
t→0

H1(t) = +∞.

Then

E(t)≤ α3H−1
1 (α1t +α2), for all t ≥ 0.

This completes the proof of Theorem3.

5 Concluding comments

The coupled systems of wave equations abound in the
world. One reason is that nature is full of those physical
phenomenos. Another reason is that systems are often
used to model a large class of engineering sciences, where
propagation and transmission of informations or material
are involved.

1- It will be also interesting to consider, derived from
(1), and study the questions of asymptotic behavior of the
related coupled system































(

|u′1|
l−2u′1

)′
+φ(x)A

(

u1+
∫ t
0 g1(s)u1(t − s,x)ds

)

= au2 ln |u1|
k,

(

|u′2|
l−2u′2

)′
+φ(x)A

(

u2+
∫ t
0 g2(s)u2(t − s,x)ds

)

= au1 ln |u2|
k,

(u1(0,x),u2(0,x)) = (u10(x),u20(x)) ∈ (H (Rn))2,
(u′1(0,x),u

′
2(0,x)) = (u11(x),u21(x)) ∈ (Ll

ρ (R
n))2,

where our weak coupling is given by the logarithmic
nonlinearities terms fora 6= 0, l ,n ≥ 2 andA is a linear,
selfadjoint operator inL2(Rn).

2. Let us remark that, it is similar to study the question
of existence and decay of solution of the same problem
with the presence of weak-viscoelasticity in the form































(

|u′1|
l−2u′1

)′
+φ(x)A

(

u1+α1(t)
∫ t

0 g1(s)u1(t − s,x)ds
)

= au2 ln |u1|
k,

(

|u′2|
l−2u′2

)′
+φ(x)A

(

u2+α2(t)
∫ t

0 g2(s)u2(t − s,x)ds
)

= au1 ln |u2|
k,

(u1(0,x),u2(0,x)) = (u10(x),u20(x)) ∈ (H (Rn))2,
(u′1(0,x),u

′
2(0,x)) = (u11(x),u21(x)) ∈ (Ll

ρ(R
n))2,

where we should need additional, conditions onα as
follows

1−αi(t)
∫ t

0
gi(t)dt ≥ ki > 0,

∫ ∞

0
gi(t)dt <+∞,αi(t)> 0,

lim
t→+∞

−α ′(t)
α(t)ξ (t)

= 0 (34)

where

α(t) = min{α1(t),α2(t)}, ∀t ≥ 0.

Which will be our next works. For the reader we shall
develop here the next important technical Lemma.

Lemma 10.For any v∈C1
(

0,T,H1(Rn)
)

we have

−

∫

Rn
α(t)

∫ t

0
g(t − s)Av(s)v′(t)dsdx

=
1
2

d
dt

α(t)
(

g◦A1/2v
)

(t)

−
1
2

d
dt

[

α(t)
∫ t

0
g(s)

∫

Rn

∣

∣

∣A1/2v(t)
∣

∣

∣

2
dxds

]

−
1
2

α(t)
(

g′ ◦A1/2v
)

(t)+
1
2

α(t)g(t)
∫

Rn

∣

∣

∣A1/2v(t)
∣

∣

∣

2
dxds

−
1
2

α ′(t)
(

g◦A1/2v
)

(t)+
1
2

α ′(t)
∫ t

0
g(s)ds

∫

Rn

∣

∣

∣A1/2v(t)
∣

∣

∣

2
dxds.

Proof.It’s not hard to see
∫

Rn
α(t)

∫ t

0
g(t− s)Av(s)v′(t)dsdx

= α(t)
∫ t

0
g(t − s)

∫

Rn
A1/2v′(t)A1/2v(s)dxds

= α(t)
∫ t

0
g(t − s)

∫

Rn
A1/2v′(t)

[

A1/2v(s)−A1/2v(t)
]

dxds

+α(t)
∫ t

0
g(t − s)

∫

Rn
A1/2v′(t)A1/2v(t)dxds.

Consequently,
∫

Rn
α(t)

∫ t

0
g(t− s)Av(s)v′(t)dsdx

= −
1
2

α(t)
∫ t

0
g(t − s)

d
dt

∫

Rn

∣

∣

∣A1/2v(s)−A1/2v(t)
∣

∣

∣

2
dxds

+α(t)
∫ t

0
g(s)

(

d
dt

1
2

∫

Rn

∣

∣

∣A1/2v(t)
∣

∣

∣

2
dx

)

ds

which implies,
∫

Rn
α(t)

∫ t

0
g(t− s)Av(s)v′(t)dsdx

= −
1
2

d
dt

[

α(t)
∫ t

0
g(t − s)

∫

Rn

∣

∣

∣A1/2v(s)−A1/2v(t)
∣

∣

∣

2
dxds

]

+
1
2

d
dt

[

α(t)
∫ t

0
g(s)

∫

Rn

∣

∣

∣A1/2v(t)
∣

∣

∣

2
dxds

]

+
1
2

α(t)
∫ t

0
g′(t − s)

∫

Rn

∣

∣

∣A1/2v(s)−A1/2v(t)
∣

∣

∣

2
dxds

−
1
2

α(t)g(t)
∫

Rn

∣

∣

∣A1/2v(t)
∣

∣

∣

2
dxds.

+
1
2

α ′(t)
∫ t

0
g(t − s)

∫

Rn

∣

∣

∣A1/2v(s)−A1/2v(t)
∣

∣

∣

2
dxds

−
1
2

α ′(t)
∫ s

0
g(s)ds

∫

Rn

∣

∣

∣A1/2v(t)
∣

∣

∣

2
dxds.

This completes the proof.
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