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Abstract: The change in ambient temperature plays a key role in body thermoregulation. The use of protective layer (clothes) has not
only ethical values but also acts as a shield to combat with the severe environmental conditions. A mathematical model onbioheat
transfer has been formulated with appropriate diffusing and matching conditions at the dermal layers and the protective layer. The
finite difference scheme has been employed to solve the modeland the conditions for the thermal stability of tissue temperatures were
illustrated using MATLAB and FlexPDE software’s. The results obtained are applicable to a wide range of problems to maintain body
core temperature irrespective of the outside temperature.
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1 Introduction

The metabolic and cellular processes in human body
converts energy provided by the food into work and heat.
To maintain the constant balance of temperature within
the body and at the surface of the skin, an amount of heat
is dissipated through skin to the outside environment. The
thermoreceptors and hypothalamus are responsible for the
homeostasis of the body through vasodilation,
vasoconstriction, shivering, perspiration etc. Since, the
body is usually covered with the protective layer by
means of clothes, it influences the heat transfer from the
skin, acting as an insulating layer or absorbant of
moisture or heat exchanger. In human body diffusion has
a vital role in many important processes like oxygen
transfer, drug diffusion, homeostasis etc. Diffusion
through multilayers is again an important process as the
human body is made up of different materials with
multiple properties. It has many applications in other
branches of engineering [9,10,11], geological profiles [7]
etc. Henry [1] developed one of the theories of coupled
heat and moisture transfer through clothing considering
accumulation effects. A steady-state model was studied

by Ogniewicz and Tien [2] by incorporating the
convective and diffusive transport mechanisms along with
phase change due to condensation and evaporation. Heat
transfer in biological systems is relevent in many
diagnostic and therapeutic applications that involve
changes in temperature. For example, in hyperthermia,
the temperature in tissue may rise to 420C − 430C.
Khanday and his co-workers [13,14,15,16,17,18] also
studied the diffusion of heat and mass in the biological
tissues particularly in dermal regions and human head.
Some recent works in this area have been studied by
Khanday et al [17] through Variational Finite Element
Methods. They studied the fluid distribution pattern in
human dermal layers by taking into account similar type
of mass diffusion equation. Investigation of thermal
properties of skin ( [5,6,8,12]) leading to thermal injuries
are usually studied through the classical equation of
Pennes’ bioheat equation [3]. The most recent work using
an explicit form of finite difference method for estimating
the temperature variation in human dermal regions has
been studied by Khanday and Fida [18]. The present
paper studies the temperature distribution in multilayered
skin with protective layer. A finite difference scheme with
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a suitable boundary and interface conditions is used for
predicting the temperature pattern inside the skin tissue
layers. Also the role of protective layer as a heat
exchanger between the skin and the surroundings has
been studied.

The advantage of using Pennes’ bioheat equation is
that it accounts for the ability of tissue to remove heat by
both passive conduction (diffusion) and perfusion of
tissue by blood. The bioheat equation used in this study is
given by

ρc
∂U
∂ t

= div(kgradU)− cbw(U −Tb)+Qm +P (1)

whereρ , c, k are the density, specific heat and thermal
conductivity of tissue respectively,Tb is arterial blood
temperature,t is time,cb is the specific heat of blood,w is
the perfusion rate per unit volume of the blood,Qm is the
metabolic heat generation per unit volume andP is a
protective layer of clothes at the surface of the skin.
The heat balance at the clothing layer can be described by

Ccl
dTcl

dt
= Q (2)

whereQ = Q1+Q2−Q3−Q4−Q5+Q6, Ccl = mclqcl is
the heat capacity of the garments (mcl is the mass of
clothes andqcl is the specific heat capacity of the
garments) and
Q1 = Heat transfer from the skin to the clothes through convection.

Q2 = Heat transfer from the skin to the clothes through evaporation.

Q3 = Heat loss through convection with the surrounding environment.

Q4 = Heat loss through conduction with the surrounding environment.

Q5 = Heat loss through evaporation with the surrounding environment.

Q6 = Heat gain due to solar radiation.

2 Method

Due to complex structure of the dermal layers, the heat
distribution models in these layers are spatially varied and
highly heterogeneous. The analytical solution to the
equation-(1) together with equation-(2) is cumbersome.
Therefore, the numerical solution based on finite
difference approximations has been taken into account at
the appropriate situations.
First we re-write equation-(1) as

∂U
∂ t

= D
∂ 2U
∂x2 −αU +β (3)

whereD =
k

ρc
, α =

cbw
ρc

andβ =
Qm +P+ cbwTb

ρc

Now, usingU =V +
β
α

, equation-(3) reduces to

∂V
∂ t

= D
∂ 2V
∂x2 −αV (4)

Finally making the transformation,V = Te−αt , equation-
(4) reduces to the following standard form

∂T
∂ t

= D
∂ 2T
∂x2 (5)

The layerwise heat transfer through different dermal and
insulating layers having different physiological properties,
based on equation-(5) is given by

∂Ti

∂ t
= D

∂ 2Ti

∂x2 ; i = 1,2,3,4 (6)

where Ti is the concentration of diffusing substance in
layeri at timet, Di is the diffusivity of layeri.
The humans and other mammals are warm blooded
animals, therefore, the core temperature is maintained by
the thermoregulatory system upto large extent even in
extreme environmental conditions. Moreover, the clothes
are used for insulation to combat with the external climate
interference to the thermal stability of the tissues. Thus
the boundary conditions associated with the model are

T = 370C for the internal core

∂T
∂ t

= 0 for outer temperature surrounding the clothes







(7)
Due to the roughness of the materials in contact at the
interfaces, the use of appropriate continuity conditions of
the diffusing material are given by equations (8)-(10).

Ti(xi, t) = Ti+1(xi, t) (8)

ki
∂Ti

∂x
= ki+1

∂Ti+1

∂x
(9)

where,ki = ρiciDi.
The more general matching condition at the interfaces is
given as

ki
∂Ti

∂x
= Hi(Ti+1−Ti)

ki+1
∂Ti+1

∂x
= Hi(Ti+1−Ti)











(10)

whereHi is the heat transfer coefficient. IfHi is sufficiently
large, then the contact between the layers is perfect for the
smooth flow of the diffusing material.

3 Numerical Solution

To study the heat distribution in human dermal regions
through three layers as shown in Figure-1, we consider
the size of three layers as

Subcutaneous Tissue(L0 ≤ x ≤ L1) of lengthl1
Dermis(L1 ≤ x ≤ L2) of lengthl2 and

Epidermis(L2 ≤ x ≤ L3) of lengthl3
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Fig. 1: Domain of study with different layers and the
boundary conditions.

Fig. 2: Mesh of the domain of study for obtaining solution of
the problem through FEM.

The two dimensional mesh of the domain generated using
FlexPDE sotware [22] is given in Figure-2.
On employing central difference method, Taylor series
method and the geometry of the dermal regions described
in Figure-1, the following set of equations corresponding

to each layer is given by

∂ 2Tj−1

∂x2 ≃
h0Tb− − (h0+ h1)Tj−1+ h1Tj−2

h0h1(h0+ h1)

∂ 2Tj+1

∂x2 ≃
h0Tb+ − (h2+ h0)Tj+1+ h2Tj+2

h0h2(h0+ h2)

∂ 2Tk−1

∂x2 ≃
h0Tc− − (h3+ h0)Tk−1+ h3Tk−2

h0h3(h0+ h3)

∂ 2Tk+1

∂x2 ≃
h0Tc+ − (h4+ h0)Tk+1+ h4Tk+2

h0h4(h0+ h4)























































(11)

We now find the values of different nodal point
temperatures shown in Figure-1 with the help of Taylor
series as follows:

Tj−1 ≃ Tb− − h1
∂Tb−

∂x
+

h2
1

2

∂T 2
b−

∂x2

Tj−2 ≃ Tb− − (h1+ h0)
∂Tb−

∂x
+

(h1+ h0)
2

2

∂T 2
b−

∂x2

Tj+1 ≃ Tb+ − h2
∂Tb+

∂x
+

h2
2

2

∂T 2
b−

∂x2

Tj+2 ≃ Tb+ − (h2+ h0)
∂Tb+

∂x
+

(h2+ h0)
2

2

∂T 2
b+

∂x2

Tk−1 ≃ Tc− − h3
∂Tc−

∂x
+

h2
3

2

∂T 2
c−

∂x2

Tk−2 ≃ Tc− − (h3+ h0)
∂Tc−

∂x
+

(h3+ h0)
2

2

∂T 2
c−

∂x2

Tk+1 ≃ Tc+ − h4
∂Tc+

∂x
+

h2
4

2

∂T 2
c+

∂x2

Tk+2 ≃ Tc+ − (h4+ h0)
∂Tc+

∂x
+

(h4+ h0)
2

2

∂T 2
c+

∂x2



























































































































(12)

On solving the above system of equations along with
the matching conditions given in equation-(10), the values
of the unknownsTb− , Tb+ , Tc− andTc+ obtained are given
by the following equations:
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Tb− =
1

Ωi

{

[

−((h0+h2)(h2Hi + ki+1)+h2ki+1)h
2
1ki

]

Tj−2

+
[

((h0+h2)(h2Hi + ki+1)+h2ki+1)(h0+h1)
2ki

]

Tj−1

+
[

h1(h0+h1)(h0+h2)
2Hiki+1

]

+
[

−h1h2
2(h0+h1)Hiki+1

]

Tj+2

}



































(13)

Tb+ =
1

Ωi

{

[

−h2
1h2(h0+h2)Hiki

]

Tj−2+
[

h2(h0+h1)
2(h0+h2)Hiki

]

Tj−1

+
[

((h0+h1)(h1Hi + ki)+h1ki)(h0+h2)
2ki+1

]

Tj+1

+[−((h0+h1)(h1Hi + ki)+h1ki+1)Tj+2]
}

Tc− =
1
∆i

{

[

−((h0+h4)(h4Hi + ki+1)+h3ki+1)h
2
3ki

]

Tj−2

+
[

((h0+h4)(h4Hi + ki+1)+h3ki+1)(h0+h3)
2ki

]

Tj−1

+
[

h1(h0+h3)(h0+h4)
2Hiki+1

]

+
[

−h3h2
4(h0+h3)Hiki+1

]

Tj+2

}

Tc+ =
1
∆i

{

[

−h2
3h4(h0+h4)Hiki

]

Tj−2+
[

h4(h0+h3)
2(h0+h4)Hiki

]

Tj−1

+
[

((h0+h3)(h3Hi + ki)+h3ki)(h0+h4)
2ki+1

]

Tj+1

+[−((h0+h3)(h3Hi + ki)+h1ki+1)Tj+2]
}































































































































(14)

Ωi = ho

{

[(ho +2h3)(ho +h4)h4ki +(ho +h3)(ho +2h4)h3ki+1]Hi

+(ho +2h3)(ho +2h4)kiki+1

}

∆i = ho

{

[(ho +2h1)(ho +h2)h2ki +(ho +h1)(ho +2h2)h1ki+1]Hi

+(ho +2h1)(ho +2h2)kiki+1

}

The mixed boundary condition atL3, given by
equation-(15), is included in the finite difference scheme
by adding a fictitious pointTn+1 at a distanceh0 to the
right of boundary atL3 with the help of equation-(16)

∂T
∂ t

=−h(T −Ta) (15)

whereTa is the ambient temperature.

∂Tn

∂ t
=

1

h2
0

{

2Tn−1−2Tn
(

h2
0+1

)

}

(16)

4 Analytical Solution

To solve equation-(6), the model consisting of bio-heat
equation given in equation-(1) and boundary, matching
and interface conditions given in (7), (8), (10) and (11),
we invoke variables separable technique.
Define the solution of equation-(6) in the form
Ti(x, t) = Ui(x) +Vi(x, t); i = 1, 2, 3, whereUi(x) is the

steady state solution andVi(x, t) is the transient part of
solution with initial conditionTi(x,0) = fi(x) = 0.
Therefore, the solution is given by

Ti(x, t) =Ui(x)+
∞

∑
k=1

αke−λ 2
k tXi,k(x) (17)

The steady state solutionsU1(x), U2(x) and U3(x)
corresponding to the three layers shown in Figure-1 are
given by

U1(x) = 37−
37k3x

k1

U2(x) = 37−
37k2H1 [k1H1(x− x1)+N1k2]

k1H1

U3(x) = 37−
37[k1H1H2k2(x− x2)+ k2k3H2N1+ k1k3H1N2]

k2k3H1H2































(18)

where,N1 = l1H1+ k1 andN2 = l2H2+ k2.
Also

αk =

3
∑

i=1
ρici

xi
∫

xi−1

gi(x)Xi,k(x)dx

3
∑

i=1
ρici

xi
∫

xi−1

X2
i,k(x)dx

(19)

wheregi(x) = fi(x)−wi(x), i = 1, 2, 3. and

Xi,k(x) = Ji,ksin(
λk

di
(x− xi−1))+Ki,kcos(

λk

di
(x− xi−1))

(20)
whereJ1,k = 1 , K1,k = 0 and

J2,k =
k1
√

D2√
D1k2

cos(λk
l1√
D1

)

K2,k =
k1λk√
D1H1

cos(λk
l1√
D1

)+ sin(λk
l1√
D1

)

J3,k =
k2
√

D3√
D2k3

[

J2,kcos(λk
l2√
D2

)−K2,msin(
λkl2√

D2
)

]

K3,k =J2,k

[

sin(λk
l2√
D2

)+
k2λk√
D2H2

cs(
λkl2√

D2
)

]

+K2,k

[

cos(λk
l2√
D2

)−
k2λk√
D2H2

sin(
λkl2√

D2
)

]

The eigenvaluesλk, are defined by the following equation

J3,k

[

λk√
D3

cos(λk
l3√
D3

)

]

−K3,k

[

λk√
D3

sin(λk
l2√
D3

)

]

= 0

(21)

4.1 Numerical Computation

To know the efficiency of the finite difference method
used in this study, we substituted the relevant values of
the parameters given in Table-1. The step length in the
spatial discretization is taken as∆x = 0.01 at which the
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Table 1: Physiological parameters and their numerical values.

Parameter Unit Value

Thickness of subcutaneous tissue(l1)[5] µm 1800

Thickness of Dermis(l2)[5] µm 2000

Thickness of epidermis(l3)[5] µm 80
Thermal conductivity of subcutaneous tissue(k1)

[5] Wm−1 0C−1 0.19

Thermal conductivity of dermis(k2)
[5] Wm−1 0C−1 0.45

Thermal conductivity of epidermis(k3)
[5] Wm−1 0C−1 0.23

Heat transfer coefficient(h)[4] Cal.s−1m−2 0C−1 0.70
Specific heat of subcutaneous tissue(c1)

[5] Jkg−1 0C−1 2675

Specific heat of dermis(c2)
[5] Jkg−1 0C−1 3300

Specific heat of epidermis(c1)
[5] Jkg−1 0C−1 3590

Density of subcutaneous tissue(ρ1)
[5] Jkgm−3 1000

Density of dermis(ρ2)
[5] Jkgm−3 1200

Density of epidermis(ρ3)
[5] Jkgm−3 1200

Diffusivity of subcutaneous tissue(D1)
[23] m2min−1 204×10−9

Diffusivity of dermis(D2)
[23] m2min−1 203×10−9

Diffusivity of epidermis(D3)
[23] m2min−1 2×10−9

running time of the program is 0.4 seconds. Figure-3
gives a 3-dimensional view of the temperature profile
through the defined layers which have been plotted using
FlexPDE software [22]. Figures-5, 6 and 7 respectively
show the behaviour in the temperature profiles at different
ambient temperatures across the layers of the skin when
the protective layer allows the exchange of heat from the
skin surface with the surroundings. Moreover, the
behaviour of temperature variation at some located points
in the domain at different ambient temperatures are shown
by the Figures-8, 9, 10. At H1 = H2 = 0.5, the graphs in
the Figure-12, show jumps at the interfaces as expected.
By increasing the value of the transfer coefficientsHi in
the matching condition defined by the pair of equations in
equation-(11), the resulting temperature profiles and its
surface have been illustrated in Figure-11. The graphs in
the Figure-11 clearly show negligible jumps at the
interfaces which demonstrates that the matching
conditions given by equation-(11) are a more general
form of the heat flux continuity equation given by
equation-(10). At smaller times the matching condition
gives more accurate results than using equation-(10).

5 Discussion and Conclusion

The basic Pennes’ bio-heat equation has been suitably
reformulated in which the role of protective layer at the
skin surface is incorporated. The appropriate interface,
matching and boundary conditions have been suitably
defined to form a boundary value problem. The model has
been transformed into the standard heat transfer model
with the help of certain transformations. The solution
obtained to the transformed equation-(6) is then

Fig. 3: Temperature profile across the four layers when
the heat exchanges through the protective layers when the
ambient temperature is250C, H1 = 0.6 and H2 = 0.8.

substituted back to get the solution of the original model
equation-(1). The variation of temperature profiles across
the defined layers in presence of different protective
layers of clothes at various climatic conditions were
calculated at the nodal points of the layered skin with the
help of Taylor series and finite difference method.

The finite difference method discussed in this paper
has been compared with the the analytical solution of
equation-(6) described by equation-(17). The series in
equation-(17) is truncated atk = 40. Equation-(17) is then
plotted using MATLAB software along with the
numerical solution computed through the system of
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Fig. 4: 3-D view of the temperature profile variation across
the layers.

Fig. 5: Variation of temperature with distance through the
four layers when the heat exchanges through the protective
layers at the ambient temperature of100C and H1 = H2 = 20.

Fig. 6: Variation of temperature with distance through the
four layers when the heat exchanges through the protective
layers at the ambient temperature of200C and H1 = H2 = 20.

Fig. 7: Variation of temperature with distance through the
four layers when the heat exchanges through the protective
layers at the ambient temperature of370C and H1 = H2 = 20.

Fig. 8: Variation of temperature at different locations (shown
on the right side of the graph) of the four layers when the
heat exchanges through the protective layer at the ambient
temperature of 100C, seconds andH1 = H2 = 20.

Fig. 9: Variation of temperature at different locations (shown
on the right side of the graph) of the four layers when the
heat exchanges through the protective layers at the ambient
temperature of 200C and H1 = H2 = 20.
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Fig. 10: Variation of temperature at different locations
(shown on the right side of the graph) of the four layers
when the heat exchanges through the protective layers at the
ambient temperature of250C and H1 = H2 = 20.

Fig. 11: Temperature variation and its surface across the four
layers of the domain of study whenH1 = H2 = 50.

Fig. 12: Temperature variation across the four layers of the
domain of study whenH1 = 0.5, H2 = 0.5.

equations in (18),(13),(14) and the results were illustrated
in Figure-13. The graphs clearly show the efficiency of
the finite difference technique invoked in the paper.

Fig. 13: Comparison of exact, FDM and FlexPDE solutions
across the four layers of the domain of study at different times
( in seconds) andH1 = H2 = 0.5.

Fig. 14: Temperature variation across the four layers when
the temperature outside the protective layer of clothes
(Briefs, trousers, suit Jacket ) is150C.

Fig. 15: Temperature variation across the four layers when
the temperature outside the protective layer of clothes
(Briefs, Shirt, Trouser) is 450C.
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Fig. 16: Temperature variation across the four layers when
the temperature outside the protective layer of clothes
(Briefs, Two Trousers, Shirt, Jacket) is−100C.

5.1 Role of Clothes

The sensible heat transfer from the skin surface to the
clothing layer (Q7) can be obtained using [24]

Q7 =
1

Ia + Icl
Acl(Tskin −Tcl) (22)

whereTskin is the temperature at the skin surface,Ia is the
insulation of air, Icl = ∑

i
Iclu,i is the total effective

insulation provided by the number of garments worn and
Acl is the area of the body covered by the clothes. The
unit of insulation is taken asclo (1 clo = 0.155m2K/W ).
The average value of mass and insulation of different
garments are listed in Table-2. The insulation of the
clothing layer and the air in between skin surface and
worn clothes may be effected by the air velocity and
tissue movement. So,Acl = Askin. fcl with fcl = 1+0.31Icl
[24]. The clothes play a vital role in maintaining a
suitable temperature at the skin surface. For this purpose,
we took different protecting clothes listed in table-1 at
different atmospheric temperatures and plotted their
graphs as shown in Figures-14, 15, 16. It is clear from the
graphs that the clothing layer maintains a suitable
temperature at the skin surface irrespective of the outside
temperature.

Finite difference schemes are helpful in exploring

Table 2: Mass and insulation coefficients of some garments
[24]

Garment Mass(Kg) Iclu(clo)

Briefs 0.065 0.04
Shirt 0.196 0.28
Trousers 0.459 0.24
Socks 0.049 0.03
Suit Jacket 0.652 0.04

various research problems pertaining to the materials

diffusing through the different layers having different
physiological properties. The finite difference schemes
are applicable to a wide range of problems involving
multiple layers [5,19,20,21] where numerical integration
techniques are often used. The technique of using the
finite difference scheme, outlined in this paper, is very
easy to implement for obtaining good approximating
results to certain degree of accepted errors. The analytical
and numerical results obtained in this study have a
capability to be applicable to many practical bioheat
transfer problems than a few existing analytical solutions.
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