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Abstract: In this paper, we classify rational plane septic curves.édwer, new examples and a complete list of rational irrddeci
projective plane curves of type (7,4,1) are given. Furtfeeanwe proved that such curves are transformable into eblnmeans of
Cremona transformations.
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1 Introduction singularitiesv andi = 1 (C) = Ypesingc) (P — 1), where

rp is the number of the branches®fat the singular point
Throughout this paper, we denote ¢ = P?(C) the P € C. It is known that a cusp is aunibranch singular
projective plane over the field of the complex numbers.point, i.e., rp = 1. In caserp > 2, Saleem in @],
Let C c P? be a plane curve of degred. The introduced the notion of the system of the multiplicity
classification of plane algebraic curves for a given degreessequences of the branches of the cu@et P which
d is one of the classical and interesting problems inexplains after how many times of blowing ups®fat P
algebraic geometry. For curveés C P? there is a very the branches separate from each other.
important geometric invariant associated to these curves All rational plane curves of typgd,d —2) with
which ic called the genus & can be computed as (see multibranched singular points are classified by Sakai and

for instant [L] page 614 or2] page 222): Saleem in 7]. In [8], they generalized the results with
Tono to plane curves of typ@,d — 2) with any genus. It
~(d-1)(d-2) mp (Mmp—1) turns out that still the answer of Matsuka and Sakai’s
o 2 _Pesch:) 2 ’ conjectured in 9], is affirmative. As a generalization of

these results, the following question arrises: Is any
rational plane curve of typéd,d — 3) is transformable

curveC including the infinitelv near point of the poiift into a line k_)y a Cremona transfo_rmatlop? Flenner and
urvet. inciuding INANASLY po! POl Zaidenberg in 10,11], and Fenske in]2] discussed and

andmp denotes the multiplicity oP € C. In fact, g plays . ; .
a very important role in the problem of classification of answered afflrmatlvely the cuspidal case. To study the
ase for all rational plne curves of tygd,d — 3), there

algebraic curves. For example, plane algebraic curves arg o \ .
called rational curves whep= 0. In caseg — 1, 2,C are are many dIfICU|t'IeS. Ing], the author give a list, but not
called elliptic and hyperelliptic curves, respectivelysg, ~ cOmPIete, for rational pine curves of type,d —3,1). In

by the genus formula, we easily see that, the lines and th&iS Paper, we answer the question for some classes of

conics have no singular points and an irreducible cubic ational plane curves of typeg, 4, 1).

has at most one double point. Curves of degrbess, 5,

6 and 7 are called quartic, quintic, sextic and septic

curves, respectively. Some of these types of curves whos@ Quadratic Cremona Transformation

singular points are only cusps and with small degrees are

classified by Yoshihara ir8[4,5]. In this paper, we focus In this section, we give a tool to construct curve germs

on irreducible rational projective plane septic curves. with one branch and two branches which we will use in
As a convension, we use the notati¢d, v,1) for this paper. Letx,y,z) € P? be homogeneous coordinates.

curves of degreed, maximal multiplicity of the  Sakaiand Tono in]3] defined the (degenerate) quadratic

where Sing¢C) is the set of all singular point® of the
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Cremona transformation Table 1: Deferer_lt type_s of the_sys_tems of the multiplicity
b (X,Y,2) — (xy. y2 X(z— cx)) for ¢ € C. The inverse sequences of a singularity of multiplicity 4.
Of thIS’ t}’ansforma:{ior; iﬁ_l(x y Z) _ (XZ Xy yz—|— sz) Numbergfbranche Numberofllangentline SAE;SI?Z\;;lh(ilg)ulli‘plic;t)gsequences

C ) - Y ’ . . (42).(43),i=23
By a suitable change of coordinates, we can set the tw 2 L O }{00]{060].{00].-23
lines| andt such that : x=0,t:y =0 and the points 2 2 05} {07} {@%} {@™7] rizos23

O, A andB have the coordinat€3= (0,0,1), A= (1,0,c)
andB = (0,1,0). We remark that the base pointsdaf are
O, A and the infinitely near point dD which corresponds
to the direction ofl and the base points gf;* areO,B
and the infinitely near point o® which corresponds to
the direction of, (see also10]).
Now, successive compositions of the quadrati

Cremona transformationsg = ¢¢ o --- o ¢ for

3 Main results

In this section, we construct some classes of rational
cPlane curves of typ€7,4,1). We show that these curves
are transformable into a line by using suitable Cremona

Ci,...,Ck € C can be written as transformations
kil Definition 2Let SindC) = {P1,P;,...,Ps} be the set of all
01Xy, 2) = [ XL Xy Yz + zzck+2_ixiyk+1—i the singular points on the rational plane curve The
= collection of the systems of the multiplicity sequences of C

at the points Pis called the numerical data of C and is
Let (C,P) C ((CZ,P) be a plane curve germ, where \ritten asDataC) = [m,, (C),m,, (C),...,m, (C)].
P € C is a singular point. We obtain the minimal
embedded resolution of the singularii@, P), by means Our result is written in the following theorem.

. T .
of a sequenc?i)of blowing-up§ — Xi_1,i =1,2,....K. " Theorem 1LetC be a rational plane curve of ty§& 4, 1).
over P. Let C C X be the strict (also called proper) | et p pe the singularites with the maximal multiplicity

transform ofC in X andE is the exceptional divisor of s P ;
the whole resolution. Hence, the total transformGCoin ;2?:’.% etl)tlaég)a?]rdes(?lassmed (up to projective equivalent)

X¢ is a simple normal crossing (SNC) divisor
D = E +CWM as in the following diagram:

.
e — clk-D) — — c@ — c=cO Table 2: P is a unibranched singular point (cusp)
wherek is a finite positive integer. EE‘SS 'Dgtis a unibranched singular point (usp)
L ; . 4C) No. [ DatgC)

In caserp = 1, let m be the multiplicity ofC"" atPR, 1@, @, 0 18 | [422). 22, 22). ()]
where R is the infinitely near point of® on Cl). We > @0 0 19 [ 420, 3. 0]
define the multiplicity sequenceof (C,P) to be 2 e
m(©) = (Memy..  m),  where | | @0 2 | Jaz). 32, @ O
Mo > My > ... > my = 1. We write (my) for the sequence | 4 | [43. 3. ()] 21 | [429). @ @, {®?]]

a-times 5 (4,3), @z] 22 (4,23), (i)z]
(Mm,~.,m,1,1). We understand that whea = 0, then 6 (4,2,), (3). {(i) <2>H 23 | [(4.23), (22), {(i) (})}]
(mo) =1 - 7 @2, {07 |2 |42 32 @)

In caserp = 1, we recall the definition ofhe system s 4.2,) {(z)(z)(l)H 2% | (42,3, O }
of the multiplicity sequences of PC, (see B, 7] for more 5 (4’22)’ (3)1 {1(2)1(1)}} s (4‘;)’ B ) ](-]; ]
details). 2 2 W 8 192 \Wa

2 1 1
Definition 1The systems of the multiplicity sequences of a 10 | |@2), {(1)2(11)}} 27 | |[(429). (f)’ (1)5}
bibranched singular point are defined as follows: 11| [(422). (32). (1) 28 | [4.25). ()] |
12 | [42), (). (), 29 | [(4,24), (3.2), (3)
Mo my, Mpi1,Mpi2,..., My

m(4,4) :{<mz.o> (wi) n\z,z+1,n\z.z+z,...,n\z,:}’ 13 | |(42). (32), (?] 30 | |(4,24), (22). (fﬂ i
where the brackets mean that the germs go through the sami¢slyfinear points of 4 (4.2), (32), (1)3] st (4,2), (2), {(1) (1)}}
P andm () = (Mo,M1,..., mg) are the multiplicity sequences of the branches 15 (4,22), (3), (%)4} 32 (4,24), {@ @) H
(.P).i = 1,2,0f the germ(C.P). 16 | |42). 22, {H®}] || 38 | [4.20). )]

Since we deal with curves of typég,4,1), we have 7 | [42). {H*}]

the following Lemma.

Lemma 1llLet C be a rational plane septic curve and
P € C be a unibranched or a bibranched singular point
with multiplicity 4. Then, the system of the multiplicity
sequences of P are divided into the types as in Table
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Table 3: P is a bibranched singular point with two tangent lines

Class Il ¢ is a bibranched singular poir“ Class IIT (Pis a bibranched singular poir]
with two coincide tangent lines) with two different tangent lines)

No. | DatgC) No. | DataC)

1 R0} @), @) NI

2 160} @) @.0] 2 13,3 0

2 {00} @2. 0] 3 0 @2 @)

2 T{e0} c2. 62 s {635} @ @

5 | {G0.) . @] 5 |08} @2

6 | {00} 2] s [ [[0™] @ @]

7 1 [[0@.} 32 6] 7 [0} @2

8 | [[O0s) @ s | [[0%F] @)

o [{BDs) @ ) o [H{e%} e @]

0 | {Gds} 32 )] w [ [} @)

u [{eH:) c2.2.0] [[u|[{d%} o 0]

22 | {B)D.} 32, )] 22 | 3. @)

13 | {1} 3 @) 13 | [0 @. 0]

u | {30} @.@ 1 0. @2, @)

15 | [{G)Ds)- 32 5 [ [{O7]. G, 22)]

16 | [{BDs} @. @] 1 | {7} @2, @]

17 [ [{® D} @) 7 [ {97} 32,62

18 | {ODs} @ (2] 18 | {O®]]

10 [ {BDs} )] 1 [[®™] )

20 [ [0} @.0)] 20 [ [} @)

2 | {36} @ 2 | [O®}. @. @]

2 | {00} ® @) 2 | [[§9]. @)

23 [[{BB)} 62, @) 23 [ {®7} 3 0

24 [ 10D} @) @)] a | 199, 62, @)

s [ [[00] @) s [ [[Q%] c2. @
26 | [}, @)

t suchthat -C=30+3Bandt-C=40+2A A=P
We find thatP’ = A; + Ay, with multiplicity sequence
my, =my, = (1), B = Bwith mg = (33) and0’ =
with my = (4).

2.[Class(2)] We start with the quartic curv€ with
DatgC) = [(3)]. We choose the linglsandt such that
|.C=4Bandt-C=3P+A, AP We see thaB
= B with mg = (4,3) andP’ = O with my = (33).

3.[Class(3)] In this case we begin with the quartic curve
C with DataC) = [(22), (2)]. We choose the linek
andt such that -C=4B andt-C=3P+A A#P.
We see thaB = B with mg = (4,2,) andP’ = O with

Mo = (32,2).

4.[Class(4)] We start with the quartic curv€ with
DatgC) = [(23)]. We choose the linek andt such
thatl -C = 4B andt-C = 3P+ A, A# P. We see that
B =B with my = (4,23) and P = O with
my = (32).

5.[Class(5)] We begin with the quartic curv€ with
DatgC) = [(22), (2)]. We choose the lines andt
suchthat -C=4B andt-C =3P+ A, A#P. We see
that B = B with mg = (4,2;) and P’ = O with

Mo = (32).

4 Construction

In this section, we construct some of the curves in the

Tables in Theorem 1 by using suitable Cremona
transformations. The other curves can be constructed in

Remark 1Rational plane curves of typ&,4), 1 =0, are
classified in12] as follows:

the same manner. By suitable changing of coordinates, we
may assume that

:x=0,t:y=00=(0,0,1),

A= (1,0,c) andB = (0,1,0). In what follows, Applying
Class DatéC) dc: (X,Y,2) — (Xy,y?,X(z— cx)) for ¢ € C, we construct
1) [14),33)] the curveC’ from the curveC, whereC' is the strict
(2) [(4,3),(32)] transform ofC via ¢.. We infere that to construcat most
(3) [(4 23),(32)] of the curves here, we may use curves as initial curves,
(4) [(4,22),(32,2)] but, these initial curves with given data are neither fixed
(5) | [(4,22),(32),(2)] nor unique (seeqd], §4.2 for more details).
By app|y|ng a suitable quadratic Cremona :l..[ClaSSl7 No.8 :] We begin with the smooth cubic

transformations, we give a construction of cuspidal
rational plane sextic curves. By a suitable change of
coordinates, we set the two linésandt and the points
O,A andB as follows:| : x=0,t:y=0,0=(0,0,1),

A= (1,0,c) andB = (0,1,0). In what follows, Applying

dc, we construct the curv@’ from the curveC, whereC’

is the strict transform of via ¢c.

As a technique for choosing the initial curv@svith a
specific Datal), we apply the inverse of a suitable
quadratic Cremona transformations. These initial curves
with given data are neither fixed nor unique (sék §4.2
for more details).

1.[Class(1)] We begin with the sextic curv€ with
DataC) = {(32), (3), (i)} . We choose two lineband

curve C. We choose two lined andt such thgt
|.C=3Bandt-C=2P+A, A#P. We find thatP
= O with multiplicity sequencemy = (2;),and

B' = B with my {@) (})} Again, we apply a
suitable Cremona transformations on the strict
trnsformC’ of the curveC.We choose the two linds
andt such that -C = 20+ 3B andt-C = 40+ A. We
find that O” = O with multiplicity sequence

Mo = (4,27) ,andB” = B with mg = {@2@}
2.[Classl, No.12 :] We begin with the cuspidal cubic

curveC. We choose two linesandt such that -C =

2B+ Sandt-C = 2P+ A, A+ P. We find thatP’ = O

with muItlpI|C|ty sequencany = (2;),andB' =S =

B with my ( ). Again, we apply a suitable Cremona
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transformations on the strict trnsfor@i of the curve
C.We choose the two linesandt such thatl -C =
20+ 3B’ andt-C =40+ A. We find that0” = O with
multiplicity sequencemy = (4,2;) ,and B” = B with
2
3.[Classll, 2N0.16 :] We use the quintic curv€ with

DataC) = [(22),(22),(22)] as an initial curve We
choose two line$ andt such that -C =20+ 2R+ S
andt-C = 40+ A. By applying quadratic Cremona
transformation, we ge’O' = O with multiplicity
sequencemy = (4,2;),and R = S = B with

ms = { (%)@ }.
4.[Classl, N0.20 :] We start with the quartic curvé
with DataC) = [(2) .(2), (})] . We choose two linek

and t such that | - C = 40 and
t-C=0+2P+A AP We find thatP’ = O with
multiplicity sequencemy = (23),and O = B with
mg = (2). Again, we apply a suitable Cremona
transformations on the strict trnsfor@i of the curve
C.We choose the two lined and t such that
|.C=20+3B andt-C =40-+A. We find thatO”
= O with multiplicity sequencemy = (4,23),and
B” = B with mg = (3,2).

5.[Classl, No.23 :] We begin with the quartic curnv@
with DatgC) = [(2),(22)]. We choose two linesand
t such that | -C = 30 + B and
t-C=0+2P+A AP We find thatP’ = O with
multiplicity sequencemy = (23),and 0’ = B’ = B
with mg = (}). Again, we apply a suitable Cremona
transformations on the strict trnsfor@i of the curve
C.We choose the two lined and t such that
|.C=20+3B andt-C =40+A. We find thatO”
= O with multiplicity sequencemy = (4,23),and

B" = Bwithmg = { (3) (}) }

6.[Classl, N0.32 :] We use the quintic curv€ with
DataC) = [(24),(22)] as an initial curveWe choose
two lines| andt such thatl -C =20+ 2R+ S and
t-C =40+ A By applying quadratic Cremona
transformation, we ge’O' = O with multiplicity
sequencemy = (4,24),and R = S = B with

2\ (2

_n‘b — (1) ( 2) .

7.[Classl, N0.33 :] We use the unicuspidal quintic

curveC as an initial curveWe choose two linesand
t such that -C =20+ 2R+ Sandt-C =40+ A. By

applying quadratic Cremona transformation, we get

O = O with multiplicity sequencen, = (4,2),and
R =S =Bwithmg = (3).

8.[Classll, No.8 :] We begin with the smooth cubic
curve C. We choose two lined andt such thgt
[.C=3Bandt-C=2P+A, A# P. We find thatP
= O with multiplicity sequencemy = (1)3,and
B’ = B with my = (3). Again, we apply a suitable
Cremona transformations on the strict trnsfa@mof
the curveC.We choose the two lindsandt such that

| .C=20+3B andt-C = 40+ A. We find thatO”
= O with multiplicity sequencen, = {(g) (%)3} .and
B” = B with mg = (37).
9.[Classll, No.10 :] In this case,we begin with the

quartic curveC with DatgC) = [(22) , (})} . We
choose two lined andt such thatl -C =40 and
t-C=0+2P+A, A#P We find thatP = O with
multiplicity sequencemy = (7)5.and O’ = B with
mg = (2). Again, we apply a suitable Cremona
transformations on the strict trnsfor@f of the curve
C.We choose the two lined and t such that
| .C =20+3B andt-C =40-+A. We find thatO”
= O with multiplicity sequencen, = {(g) (%)3} .and
B” = B with mg = (3,2).

10.[Classll, No.15 :] We start with the quartic curv@
with the tacnode@)g We choose two lines andt
suchthat-C=40andt-C=0+2P+A A#P. We
find that P = O with multiplicity sequence
My = (7)g,and O’ = B with mg = (2). Again, we
apply a suitable Cremona transformations on the strict
trnsformC’ of the curveC.We choose the two linés
andt such that -C =20+ 3Bandt-C =40+ A. We
find that O’ = O with multiplicity sequence

mo = { () (1)} -andB" = B with mg = (3,2).
11.[Classll, No.24 :] We begin with the quintic curvé
with DatgC) = [(3),(22), (2)]. We choose two linek
andt such that -C = 20+ 3Randt-C =30+P+A.
We find thatP’ = O' = O with multiplicity sequence

mo = {(f) (})},andR/ = B with mg = (37).
12.[Classll, No.25 ;] We begin with the quartic curnve
with DataC) = (7). We choose two linesandt such

thatl -C = 4Randt -C = 3P+ A. We find thatP’ = O
with multiplicity sequencen, = (3;) ,andR’ = B with

m={3®}

13.[ClasslIl, No.1:] We start with the quartic curvé
with DataC) = [(3)]. We choose two linelsandt such
thatl -C = 25+ 2Randt -C = 3P+ A. We find thatP’
= O with multiplicity sequenceny = (33) ,andR =
S =Bwith mg = (3).

14.[Classlll, No.8 :] In this case ,we start with the
quartic curve C with DataC) = [(2),(22)]. We
choose two line$ andt such that - C = 2S+ 2R and
t-C=3P+A We find thatP’ = O with multiplicity
sequence my = (3z),and R = S = B with
mo={() %))

15.[ClasdIl, No.15 :] We begin with the quartic cun@
with DatgC) = [(2),(22)]. We choose two linesand
t such that -C = 3S+ Randt-C = 3P+ A. We find
thatP" = O with multiplicity sequencen, = (3z) ,and
R =S =Bwithmg = {(f) <2)}

16.[ClasdIl, N0.16 :] We begin with the quartic cun@
with three simple cusp3Ve choose two linek andt
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sych that -C = 3S+ Randt-C =3P+ A. We find that
P = O with multiplicity sequencen, = (32,2) ,and
R =S =Bwithmg = {(f) &)

17.[Classlll, No0.22 :] We use the unicuspidal quartic

curve C. We choose two lined and t such that
| .C=3S+Randt-C=3P+A We find thatP =O

with  multiplicity sequence my = (3z),and Recently, he is a lecturer
R =S =Bwithmg = {(f) ®) } _ in Mathematics department,
18.[Classlll, No.25 ] We use the quintic curv@ with Faculty of Science, Sohag

DataC) = [(3,2),(22)]. We choose two linesandt ~ University. His research interests are in the areas of
such thal -C = O+3S+Randt-C=30+2A We algebraic geometry and algebra especially in plane curves
find that O = O with multiplicity sequence Singularities and Weierstrass points. He has published
mo = (3,2) A — A with my = (2),andR = S = B research articles in reputed international journals of
- e 3 - ’ mathematical and engineering sciences. He is referee and
with mg = {(1) (3.2) - editor of mathematical journals.
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