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Abstract: In this paper, we classify rational plane septic curves. Moreover, new examples and a complete list of rational irreducible
projective plane curves of type (7,4,1) are given. Furthermore, we proved that such curves are transformable into a lineby means of
Cremona transformations.

Keywords: Rational curves, Septic curves, Singularities of plane curves.

1 Introduction

Throughout this paper, we denote byP2 = P2(C) the
projective plane over the field of the complex numbers.
Let C ⊂ P2 be a plane curve of degreed. The
classification of plane algebraic curves for a given degree
d is one of the classical and interesting problems in
algebraic geometry. For curvesC ⊂ P2 there is a very
important geometric invariant associated to these curves
which ic called the genus ofC can be computed as (see
for instant [1] page 614 or [2] page 222):

g=
(d−1)(d−2)

2
− ∑

P∈Sing(C)

mP (mP−1)
2

,

where Sing(C) is the set of all singular pointsP of the
curveC including the infinitely near point of the pointP
andmP denotes the multiplicity ofP ∈C. In fact,g plays
a very important role in the problem of classification of
algebraic curves. For example, plane algebraic curves are
called rational curves wheng= 0. In caseg= 1, 2,C are
called elliptic and hyperelliptic curves, respectively. Also,
by the genus formula, we easily see that, the lines and the
conics have no singular points and an irreducible cubic
has at most one double point. Curves of degreesd = 4, 5,
6 and 7 are called quartic, quintic, sextic and septic
curves, respectively. Some of these types of curves whose
singular points are only cusps and with small degrees are
classified by Yoshihara in [3,4,5]. In this paper, we focus
on irreducible rational projective plane septic curves.

As a convension, we use the notation(d,ν, ι) for
curves of degreed, maximal multiplicity of the

singularitiesν and ι = ι(C) = ∑P∈Sing(C)(rP − 1), where
rP is the number of the branches ofC at the singular point
P ∈ C. It is known that a cusp is aunibranch singular
point, i.e., rP = 1. In case rP ≥ 2, Saleem in [6],
introduced the notion of the system of the multiplicity
sequences of the branches of the curveC at P which
explains after how many times of blowing ups ofC at P
the branches separate from each other.

All rational plane curves of type(d,d − 2) with
multibranched singular points are classified by Sakai and
Saleem in [7]. In [8], they generalized the results with
Tono to plane curves of type(d,d−2) with any genus. It
turns out that still the answer of Matsuka and Sakai’s
conjectured in [9], is affirmative. As a generalization of
these results, the following question arrises: Is any
rational plane curve of type(d,d − 3) is transformable
into a line by a Cremona transformation? Flenner and
Zaidenberg in [10,11], and Fenske in [12] discussed and
answered affirmatively the cuspidal case. To study the
case for all rational plne curves of type(d,d− 3), there
are many dificulties. In [6], the author give a list, but not
complete, for rational plne curves of type(d,d−3,1). In
this paper, we answer the question for some classes of
rational plane curves of types(7,4,1).

2 Quadratic Cremona Transformation

In this section, we give a tool to construct curve germs
with one branch and two branches which we will use in
this paper. Let(x,y,z) ∈ P2 be homogeneous coordinates.
Sakai and Tono in [13] defined the (degenerate) quadratic
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Cremona transformation
ϕc : (x,y,z) −→ (xy,y2

,x(z− cx)) for c ∈ C. The inverse
of this transformation isϕ−1

c (x,y,z) = (x2
,xy,yz+ cx2).

By a suitable change of coordinates, we can set the two
lines l and t such thatl : x = 0, t : y = 0 and the points
O,A andB have the coordinatesO= (0,0,1), A= (1,0,c)
andB= (0,1,0). We remark that the base points ofϕc are
O,A and the infinitely near point ofO which corresponds
to the direction ofl and the base points ofϕ−1

c areO,B
and the infinitely near point ofO which corresponds to
the direction oft, (see also [10]).

Now, successive compositions of the quadratic
Cremona transformationsϕ = ϕck ◦ · · · ◦ ϕck for
c1, . . . ,ck ∈C can be written as

ϕ−1(x,y,z) =

(

xk+1
,xky,ykz+

k+1

∑
i=2

ck+2−ix
iyk+1−i

)

.

Let (C,P) ⊂
(
C2

,P
)

be a plane curve germ, where
P ∈ C is a singular point. We obtain the minimal
embedded resolution of the singularity(C,P), by means

of a sequence of blowing-upsXi
πi−→ Xi−1, i = 1,2, . . . ,k,

over P. Let C(i) ⊂ Xi be the strict (also called proper)
transform ofC in Xi andE is the exceptional divisor of
the whole resolution. Hence, the total transform ofC in
Xk is a simple normal crossing (SNC) divisor
D = E+C(k) as in the following diagram:

Xk
∪

C(k)

πk−→

−→

Xk−1
∪

C(k−1)

πk−1
−→

−→

· · ·

· · ·

π2−→

−→

X1
∪

C(1)

π1−→

−→

U
∪

C=C(0)

wherek is a finite positive integer.
In caserP = 1, let mi be the multiplicity ofC(i) at Pi ,

where Pi is the infinitely near point ofP on C(i)
. We

define the multiplicity sequence of (C,P) to be
mP (C) = (m0,m1, ..., mk), where
m0 ≥ m1 ≥ . . . ≥ mk = 1. We write(ma) for the sequence

(

a-times
︷ ︸︸ ︷
m, ...,m,1,1). We understand that whena = 0, then
(m0) = 1.

In caserP = 1, we recall the definition ofthe system
of the multiplicity sequences of P∈C, (see [6,7] for more
details).

Definition 1The systems of the multiplicity sequences of a
bibranched singular point are defined as follows:

mP (ζ1,ζ2) =

{(
m1,0

m2,0

)

. . .

(
m1,ρ

m2,ρ

)
m1,ρ+1,m1,ρ+2, . . . ,m1,s1
m2,ρ+1,m2,ρ+2, . . . ,m2,s2

}

,

where the brackets mean that the germs go through the same infinitely near points of

P and mP (ζi ) = (mi,0,mi,1, ..., mi,si ) are the multiplicity sequences of the branches

(ζi ,P) , i = 1,2,of the germ(C,P).

Since we deal with curves of types(7,4,1), we have
the following Lemma.

Lemma 1Let C be a rational plane septic curve and
P ∈ C be a unibranched or a bibranched singular point
with multiplicity 4. Then, the system of the multiplicity
sequences of P are divided into the types as in Table1:

Table 1: Deferent types of the systems of the multiplicity
sequences of a singularity of multiplicity 4.

Number of branches Number of tangent lines System of the multiplicity sequences
1 1 (4) , (4,2i) , (4,3) , i = 2,3.

2 1
{(2

2

)(1
1

)

i

}

,

{(3
1

)(1
1

)

i

}

,

{(2
2

)(2
1

)}

,

{(3
1

)(2
1

)}

, i = 2,3.

2 2
{(2

2

) 2i
2j

}

,

{(3
1

) 2
}

,

{(3
1

) 3i

}

,

{(3
1

) (32,2)
}

, i, j = 0,1,2,3

3 Main results

In this section, we construct some classes of rational
plane curves of type(7,4,1) . We show that these curves
are transformable into a line by using suitable Cremona
transformations.

Definition 2Let Sing(C) = {P1,P2, . . . ,Ps} be the set of all
the singular points on the rational plane curve C. The
collection of the systems of the multiplicity sequences of C
at the points Pi is called the numerical data of C and is
written asData(C) = [mp1

(C),mp2
(C), . . . ,mps

(C)].

Our result is written in the following theorem.

Theorem 1Let C be a rational plane curve of type(7,4,1).
Let P be the singularites with the maximal multiplicity4.
Then,Data(C) are classified (up to projective equivalent)
as in Tables2 and3:

Table 2: P is a unibranched singular point (cusp)
Class I (P is a unibranched singular point (cusp)
No. Data(C) No. Data(C)

1
[

(4), (32),
(2

1

)]

18
[

(4,22), (22), (22),
(2

1

)]

2
[

(4), (3),
(2

1

)

2

]

19
[

(4,23), (3),
(2

1

)]

3
[

(4),
(2

1

)

3

]

20
[

(4,23), (3,2), (2),
(1

1

)]

4
[

(4,3), (3),
(2

1

)]

21
[

(4,23), (2), (2),
{(2

1

) (2)
}]

5
[

(4,3),
(2

1

)

2

]

22
[

(4,23),
(2

1

)

2

]

6
[

(4,22), (3),
{(2

1

) (2)
}]

23
[

(4,23), (22),
{(2

1

)(1
1

)}]

7
[

(4,22),
{(2

1

)(2
1

) (2)
}]

24
[

(4,23), (3,2),
(1

1

)

2

]

8
[

(4,22),
{(2

1

)(2
1

)(1
1

)}]

25
[

(4,23), (3),
(1

1

)

3

]

9
[

(4,22), (3),
{(2

1

)(1
1

)}]

26
[

(4,23), (22),
(1

1

)

4

]

10
[

(4,22),
{(2

1

)

2

(1
1

)}]

27
[

(4,23), (2),
(1

1

)

5

]

11
[

(4,22), (32),
(1

1

)]

28
[

(4,23),
(1

1

)

6

]

12
[

(4,22), (2),
(2

1

)

2

]

29
[

(4,24), (3,2),
(1

1

)]

13
[

(4,22), (3,2),
(2

1

)]

30
[

(4,24), (22),
(2

1

)]

14
[

(4,22), (3,2),
(1

1

)

3

]

31
[

(4,24), (2),
{(2

1

)(1
1

)}]

15
[

(4,22), (3),
(1

1

)

4

]

32
[

(4,24),
{(2

1

) (22)
}]

16
[

(4,22), (22),
{(2

1

) (22)
}]

33
[

(4,26),
(2

1

)]

17
[

(4,22),
{(2

1

) (24)
}]
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Table 3: P is a bibranched singular point with two tangent lines
Class II (P is a bibranched singular point Class III (P is a bibranched singular point

with two coincide tangent lines) with two different tangent lines)
No. Data(C) No. Data(C)

1
[{(2

2

)(1
1

)}

, (32), (22)
]

1
[(2

2

)
, (33)

]

2
[{(2

2

)(1
1

)}

, (32), (2), (2)
]

2
[(2

2

)
, (32), (3)

]

3
[{(2

2

)(1
1

)}

, (32,2), (2)
]

3
[(2

2

)
, (32,2), (22)

]

4
[{(2

2

)(1
1

)}

, (3,2), (3,2)
]

4
[{(2

2

) (2)
(2)

}

, (32), (2)
]

5
[{(2

2

)(1
1

)

2

}

, (32), (2)
]

5
[{(2

2

) (2)
(2)

}

, (32,2)
]

6
[{(2

2

)(1
1

)

2

}

, (32,2)
]

6
[{(2

2

) (22)
}

, (32), (2)
]

7
[{(2

2

)(1
1

)

2

}

, (3,2), (3)
]

7
[{(2

2

) (22)
}

, (32,2)
]

8
[{(2

2

)(1
1

)

3

}

, (32)
]

8
[{(2

2

) (22)
(2)

}

, (32)
]

9
[{(2

2

)(1
1

)

3

}

, (3), (3)
]

9
[{(2

2

) (22)
(2)

}

, (3), (3)
]

10
[{(2

2

)(1
1

)

3

}

, (3,2), (22)
]

10
[{(2

2

) (23)
}

, (32)
]

11
[{(2

2

)(1
1

)

3

}

, (3,2), (2), (2)
]

11
[{(2

2

) (23)
}

, (3), (3)
]

12
[{(2

2

)(1
1

)

4

}

, (3,2), (2)
]

12
[(3

1

)
, (33)

]

13
[{(2

2

)(1
1

)

4

}

, (3), (22)
]

13
[(3

1

)
, (32), (3)

]

14
[{(2

2

)(1
1

)

5

}

, (3), (2)
]

14
[(3

1

)
, (32,2), (22)

]

15
[{(2

2

)(1
1

)

5

}

, (3,2)
]

15
[{(3

1

) (2)
}

, (32), (22)
]

16
[{(2

2

)(1
1

)

5

}

, (3), (2)
]

16
[{(3

1

) (2)
}

, (32,2), (2)
]

17
[{(2

2

)(1
1

)

6

}

, (3)
]

17
[{(3

1

) (2)
}

, (3,2), (3,2)
]

18
[{(2

2

)(1
1

)

6

}

, (2), (22)
]

18
[{(3

1

) (33)
}]

19
[{(2

2

)(1
1

)

6

}

, (23)
]

19
[{(3

1

) (32)
}

, (3)
]

20
[{(2

2

)(2
1

)}

, (3), (3)
]

20
[{(3

1

) (32)
}

, (23)
]

21
[{(2

2

)(2
1

)}

, (32)
]

21
[{(3

1

) (32)
}

, (22), (2)
]

22
[{(2

2

)(2
1

)}

, (3), (23)
]

22
[{(3

1

) (3)
}

, (32)
]

23
[{(2

2

)(2
1

)}

, (3,2), (22)
]

23
[{(3

1

) (3)
}

, (3), (3)
]

24
[{(3

1

)(1
1

)}

, (32), (22)
]

24
[{(3

1

) (3)
}

, (3,2), (22)
]

25
[{(3

1

)(2
1

)}

, (32)
]

25
[{(3

1

) (3,2)
}

, (3,2), (2)
]

26
[{(3

1

) (32,2)
}

, (22)
]

Remark 1Rational plane curves of type(7,4), ι = 0, are
classified in[12] as follows:

Class Data(C)
(1) [(4),(33)]
(2) [(4,3),(32)]
(3) [(4,23),(32)]
(4) [(4,22),(32,2)]
(5) [(4,22),(32),(2)]

By applying a suitable quadratic Cremona
transformations, we give a construction of cuspidal
rational plane sextic curves. By a suitable change of
coordinates, we set the two linesl and t and the points
O,A and B as follows: l : x = 0, t : y = 0, O = (0,0,1),
A = (1,0,c) andB = (0,1,0). In what follows, Applying
ϕc, we construct the curveC′ from the curveC, whereC′

is the strict transform ofC via ϕc.

As a technique for choosing the initial curvesC with a
specific Data(C), we apply the inverse of a suitable
quadratic Cremona transformations. These initial curves
with given data are neither fixed nor unique (see [6], §4.2
for more details).

1.[Class(1)] We begin with the sextic curveC with

Data(C) =
[

(32),(3) ,
(1

1

)]

. We choose two linesl and

t such thatl ·C= 3O+3B andt ·C= 4O+2A, A= P.
We find thatP

′
= A1+A2, with multiplicity sequence

mA1
= mA1

= (1), B
′
= B with mB = (33) andO′ = O

with mO′ = (4).
2.[Class(2)] We start with the quartic curveC with

Data(C) = [(3)]. We choose the linesl andt such that
l ·C = 4B and t ·C = 3P+A, A 6= P. We see thatB

′

= B with mB′ = (4,3) andP′ = O with mO = (32).
3.[Class(3)] In this case we begin with the quartic curve

C with Data(C) = [(22), (2)]. We choose the linesl
and t such thatl ·C = 4B andt ·C = 3P+A, A 6= P.
We see thatB

′
= B with mB′ = (4,22) andP′ = O with

mO = (32,2).

4.[Class(4)] We start with the quartic curveC with
Data(C) = [(23)]. We choose the linesl and t such
that l ·C = 4B andt ·C = 3P+A, A 6= P. We see that
B

′
= B with mB′ = (4,23) and P′ = O with

mO = (32) .
5.[Class(5)] We begin with the quartic curveC with

Data(C) = [(22), (2)]. We choose the linesl and t
such thatl ·C = 4B andt ·C = 3P+A, A 6= P. We see
that B

′
= B with mB′ = (4,22) and P′ = O with

mO = (32) .

4 Construction

In this section, we construct some of the curves in the
Tables in Theorem 1 by using suitable Cremona
transformations. The other curves can be constructed in
the same manner. By suitable changing of coordinates, we
may assume thatl : x = 0, t : y = 0, O = (0,0,1),
A = (1,0,c) andB = (0,1,0). In what follows, Applying
ϕc : (x,y,z) −→ (xy,y2

,x(z− cx)) for c∈ C, we construct
the curveC′ from the curveC, where C′ is the strict
transform ofC via ϕc. We infere that to construcat most
of the curves here, we may use curves as initial curves,
but, these initial curves with given data are neither fixed
nor unique (see [6], §4.2 for more details).

1.[Class I , No.8 :] We begin with the smooth cubic
curve C. We choose two linesl and t such that
l ·C = 3B andt ·C = 2P+A, A 6= P. We find thatP

′

= O with multiplicity sequencemP′ = (22) ,and

B′ = B with mB′ =
{(2

1

)(1
1

)}

. Again, we apply a

suitable Cremona transformations on the strict
trnsformC′ of the curveC.We choose the two linesl
andt such thatl ·C= 2O+3B′ andt ·C= 4O+A. We
find that O′′ = O with multiplicity sequence

mO = (4,22) ,andB′′ = B with mB =
{(2

1

)

2

(1
1

)}

.

2.[ClassI , No.12 :] We begin with the cuspidal cubic
curveC. We choose two linesl andt such thatl ·C =
2B+Sandt ·C = 2P+A, A 6= P. We find thatP

′
= O

with multiplicity sequencemP′ = (22) ,andB′ = S′ =
B with mB′ =

(2
1

)
. Again, we apply a suitable Cremona

c© 2016 NSP
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transformations on the strict trnsformC′ of the curve
C.We choose the two linesl and t such thatl ·C =
2O+3B′ andt ·C= 4O+A. We find thatO′′ = O with
multiplicity sequencemO = (4,22) ,and B′′ = B with
mB =

(2
1

)

2.
3.[ClassI , No.16 :] We use the quintic curveC with

Data(C) = [(22) ,(22) ,(22)] as an initial curve. We
choose two linesl andt such thatl ·C = 2O+2R+S
and t ·C = 4O+A. By applying quadratic Cremona
transformation, we getO

′
= O with multiplicity

sequence mO = (4,22) ,and R′ = S′ = B with

mB =
{(2

1

)
(22)
}

.

4.[ClassI , No.20 :] We start with the quartic curveC

with Data(C) =
[

(2) ,(2) ,
(1

1

)]

. We choose two linesl

and t such that l · C = 4O and
t ·C = O+ 2P+A,A 6= P. We find thatP

′
= O with

multiplicity sequencemP′ = (23) ,and O
′
= B with

mB = (2). Again, we apply a suitable Cremona
transformations on the strict trnsformC′ of the curve
C.We choose the two linesl and t such that
l ·C = 2O+ 3B and t ·C = 4O+A. We find thatO′′

= O with multiplicity sequencemO = (4,23) ,and
B′′ = B with mB = (3,2).

5.[ClassI , No.23 :] We begin with the quartic curveC
with Data(C) = [(2) ,(22)] . We choose two linesl and
t such that l · C = 3O + B and
t ·C = O+ 2P+A,A 6= P. We find thatP

′
= O with

multiplicity sequencemP′ = (23) ,and O′ = B′ = B
with mB =

(1
1

)
. Again, we apply a suitable Cremona

transformations on the strict trnsformC′ of the curve
C.We choose the two linesl and t such that
l ·C = 2O+ 3B and t ·C = 4O+A. We find thatO′′

= O with multiplicity sequencemO = (4,23) ,and

B′′ = B with mB =
{(2

1

)(1
1

)}

.

6.[ClassI , No.32 :] We use the quintic curveC with
Data(C) = [(24) ,(22)] as an initial curve. We choose
two lines l and t such thatl ·C = 2O+ 2R+ S and
t · C = 4O + A. By applying quadratic Cremona
transformation, we getO

′
= O with multiplicity

sequence mO = (4,24) ,and R′ = S′ = B with

mB =
{(2

1

)
(22)
}

.

7.[Class I , No.33 :] We use the unicuspidal quintic
curveC as an initial curve. We choose two linesl and
t such thatl ·C = 2O+2R+Sandt ·C = 4O+A. By
applying quadratic Cremona transformation, we get
O

′
= O with multiplicity sequencemO = (4,26) ,and

R′ = S′ = B with mB =
(2

1

)
.

8.[ClassII , No.8 :] We begin with the smooth cubic
curve C. We choose two linesl and t such that
l ·C = 3B andt ·C = 2P+A, A 6= P. We find thatP

′

= O with multiplicity sequencemP′ =
(1

1

)

3,and
B′ = B with mB′ = (3). Again, we apply a suitable
Cremona transformations on the strict trnsformC′ of
the curveC.We choose the two linesl andt such that

l ·C = 2O+3B′ andt ·C = 4O+A. We find thatO′′

= O with multiplicity sequencemO =
{(2

2

)(1
1

)

3

}

,and

B′′ = B with mB = (32).
9.[Class II , No.10 :] In this case,we begin with the

quartic curveC with Data(C) =
[

(22) ,
(1

1

)]

. We

choose two linesl and t such thatl ·C = 4O and
t ·C = O+2P+A, A 6= P. We find thatP

′
= O with

multiplicity sequencemP′ =
(1

1

)

3,and O′ = B with
mB = (2). Again, we apply a suitable Cremona
transformations on the strict trnsformC′ of the curve
C.We choose the two linesl and t such that
l ·C = 2O+ 3B and t ·C = 4O+A. We find thatO′′

= O with multiplicity sequencemO =
{(2

2

)(1
1

)

3

}

,and

B′′ = B with mB = (3,2).
10.[ClassII , No.15 :] We start with the quartic curveC

with the tacnode
(1

1

)

3. We choose two linesl and t
such thatl ·C= 4O andt ·C= O+2P+A, A 6= P. We
find that P

′
= O with multiplicity sequence

mP′ =
(1

1

)

5,and O′ = B with mB = (2). Again, we
apply a suitable Cremona transformations on the strict
trnsformC′ of the curveC.We choose the two linesl
andt such thatl ·C= 2O+3B andt ·C= 4O+A. We
find that O′′ = O with multiplicity sequence

mO =
{(2

2

)(1
1

)

5

}

,andB′′ = B with mB = (3,2).

11.[ClassII , No.24 :] We begin with the quintic curveC
with Data(C) = [(3) ,(22) ,(2)] . We choose two linesl
andt such thatl ·C= 2O+3Randt ·C= 3O+P+A.
We find thatP

′
= O

′
= O with multiplicity sequence

mO =
{(3

1

)(1
1

)}

,andR′ = B with mB = (32).

12.[ClassII , No.25 :] We begin with the quartic curveC
with Data(C) =

(2
1

)
. We choose two linesl andt such

that l ·C= 4R andt ·C= 3P+A. We find thatP
′
= O

with multiplicity sequencemO = (32) ,andR′ = B with

mB =
{(3

1

)(2
1

)}

.

13.[ClassIII , No.1 :] We start with the quartic curveC
with Data(C) = [(3)] . We choose two linesl andt such
that l ·C= 2S+2Randt ·C= 3P+A. We find thatP

′

= O with multiplicity sequencemP′ = (33) ,andR′ =

S′ = B with mB =
(2

2

)
.

14.[Class III , No.8 :] In this case ,we start with the
quartic curve C with Data(C) = [(2) ,(22)] . We
choose two linesl andt such thatl ·C = 2S+2R and
t ·C = 3P+A. We find thatP

′
= O with multiplicity

sequence mO = (32) ,and R′ = S′ = B with

mB =
{(2

2

) (22)
(2)

}

.

15.[ClassIII , No.15 :] We begin with the quartic curveC
with Data(C) = [(2) ,(22)] . We choose two linesl and
t such thatl ·C = 3S+R andt ·C = 3P+A. We find
thatP

′
= O with multiplicity sequencemO = (32) ,and

R′ = S′ = B with mB =
{(3

1

)
(2)
}

.

16.[ClassIII , No.16 :] We begin with the quartic curveC
with three simple cusps. We choose two linesl andt

c© 2016 NSP
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such thatl ·C= 3S+Randt ·C= 3P+A. We find that
P

′
= O with multiplicity sequencemO = (32,2) ,and

R′ = S′ = B with mB =
{(3

1

)
(2)
}

.

17.[ClassIII , No.22 :] We use the unicuspidal quartic
curve C. We choose two linesl and t such that
l ·C = 3S+R andt ·C = 3P+A. We find thatP

′
= O

with multiplicity sequence mO = (32) ,and

R′ = S′ = B with mB =
{(3

1

)
(3)
}

.

18.[ClassIII , No.25 :] We use the quintic curveC with
Data(C) = [(3,2) ,(22)] . We choose two linesl andt
such thatl ·C = O+ 3S+R andt ·C = 3O+ 2A. We
find that O

′
= O with multiplicity sequence

mO = (3,2) ,A
′
= A with mA = (2) ,andR′ = S′ = B

with mB =
{(3

1

)
(3,2)

}

.
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Beiträge Alg. Geometrie,40, No. 2, 309-329, (1999).

[13] F. Sakai and K. Tono:Rational cuspidal curves of type
(d,d−2) with one or two cusps. Osaka J. Math.,37,
504-415, (2000).

Mohammed A. Saleem
has got Ph. D. degree from
Saitama University, Japan
2004 in the field of Algebraic
Geometry. He returned
to Japan again in the period
2005-2007 as a JSPS Fellow.
Recently, he is a lecturer
in Mathematics department,
Faculty of Science, Sohag

University. His research interests are in the areas of
algebraic geometry and algebra especially in plane curves
singularities and Weierstrass points. He has published
research articles in reputed international journals of
mathematical and engineering sciences. He is referee and
editor of mathematical journals.

c© 2016 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp

	Introduction
	Quadratic Cremona Transformation
	Main results
	Construction

