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Abstract: The concentration distribution around growing nitrogen gas bubble in the blood and other bio tissues of divers who ascend
to surface too quickly is obtained by Mohammadein and Mohamed model (2010)[3] for variant and constant ambient pressurethrough
the decompression process. In this paper, the growing of gasbubbles and concentration distribution under the effect ofinjection process
with convective acceleration are studied as a modification of Mohammadein and Mohamed model (zero injection)[3]. The growth of
gas bubble is affected ascent rate, tissue diffusivity, initial concentration difference, surface tension and void fraction. Mohammadein
and Mohamed model (2010) is obtained as a special case from the present model. Results showed that the injection process affects the
systemic blood circulation and acceleration the growth of gas bubbles the bio tissues. The study warns the divers to takeany kind of
injection during the dive process to avoid the incidence of decompression sickness(DCS).
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1 Introduction

Decompression sickness(DCS) is a dangerous and
occasionally lethal condition caused by nitrogen gas
bubbles that form in the blood and other tissue of divers
who surface too quickly or people who flight for long
distances from the earth(aviators or astronauts). The
decompression process of a diver is the reduction in
ambient pressure occurs by the diver during ascent, and
also the process of elimination of dissolved inert gases
from the diver’s body, which occurs both during the
actual ascent, during pauses in the ascent known as
decompression stops, and after surfacing, unit either the
gas concentration reach equilibrium, or another dive is
stated.

The same decompression sickness(DCS) can be
occurred when aviators or astronauts are exposed to
low-pressure environments, in this case
P∞ = Pamb = 101.325kPa (the sea level pressure).The
normal and critical gas bubbles in a bio tissue throughout
a relation of its radius as a function of time, while

previous authors presented a numerical or an implicit
solution for the problem such as [1,2] and [5,6,7,8,9,10,
11,12,13] The growth problem is discussed for unsteady
flow in tissue by Mohammadein and Mohamed [5]; which
based on the three region model. Moreover, the
concentration distribution around a stationary growing
gas bubble in a bio tissue is obtained analytically for two
main stages.

Strinivasan et al [8] have solved the problem in the
case of quasi-static pressure. Mohammadein and
Mohamed [5] solved the problem when the effect of
changing in concentration with the time takes place. The
growth stages can be repeated sequentially , while the
diver ascent quickly to a lower-pressure sea level and
dives horizontally, and so on until he reaches the sea level
pressure (1 atm).

The effort is devoted to study the three-region
model(gas bubble, thin boundary layer and well-stirred
finite bio tissue). Mohmadein and Mohamed model(zero
injection) [5] is extended to observe the effects of
injection process in the bio tissues during ascent of divers.
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The growth of gas bubbles and concentration distribution
are obtained during the decompression of variable and
constant ambient pressure under the effect of injection
process for some physical parameters. The extended
method of combination variables [8] is used for solving
the current problem.

2 Analysis

A single gas bubble as given by Fig.2 is considered to
grow inside bio tissue between two finite boundariesR0
and Rm under the injection process. The growth is
affected by some parameters such as pressure difference
between bubble pressurePg(R(t), t) and the ambient
pressurePamb(t) surface tension of the mixtureσ inside a
bio tissue at the bubble boundary, concentration
distribution difference between the two phases and other
physical parameters.

Fig. 1: On the left, in the initial phase of the decompression, an
arterial bubble enters a tissue capillary net. It exchangesgas with
the surrounding tissues and starts growing. If it reaches a critical
radius, it might block the blood supply and cause ischemia. On
the right, in the last phase of the decompression, a bubble has
grown to a large volume using dissolved gas available in the
surrounding tissue. Its mechanical action might cause pain.

Fig. 2: The problem sketch

The growth of gas bubble as in Fig.2 has been studied
on the basis of the following assumptions:
- Gases are considered to be ideal.
- The bubble is assumed to have a spherical geometry.
- Gas density distribution inside the bubble is assumed to
be uniform.

- The growth affected by suction process in bio tissue.

The mathematical model describing the current
problem consists of four main equations(mass, diffusion,
fick’s and concentration equation)

2.1 Mass balance equation

The rate of gas uptake by a bio tissue is the amount
carried by the blood per unit time less than flux into the
gas bubble .assuming equilibration of a bio tissue gas
with venous blood gas. thus, the mass equation has the
form

αTVT
d pT

dt
= αbVT Q(Pa −PT )−

1
ℜT

d
dt
(PgVg) (1)

2.2 Pressure balance equation

The relation between pressure inside and outside gas
bubble under the effects of surface tension at the
gas-liquid interface and neglecting tissue viscoelastic
effects, becomes

Pg = Pamb +
2σ
R

(2)

wherePamb(t) = P0α̇t.

2.3 Fick’s equation

The molar flux of gas through the bubble surface equals the
rate of change of molar concentration of gas in the bubble,
then of change of molar concentration of gas in the bubble,
then

1
ℜT

d
dt

(

4
3

πR3Pg

)

=

4πR2DT

(

∂C
∂T

)

r=R

(3)

2.4 Diffusion equation

Diffusion Equation with injection process and convection
term is described as follow

∂c
∂ t

+
εR2R

r2 =

DT

(

∂ 2C
∂ r2 +

2
r

∂c
∂ r

)

+
bDT

r
∂c
∂ r

.

(4)

where

b =

{

1 in jection process
0 zero in jection process (5)
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To solve the diffusion equation, we use the combined
variables by assuming that

C(r, t) =C(s). (6)

Where

r =
s f (t)

β
. (7)

Wherer = R thens = β andR = f (t).
Based on the above assumptions then equation (5)
becomes

[

−s2 f
β r

+
ε f f 2

r2

s
r

]

dC
ds

=

DT

[

s2

r2

d2C
dt2 +

2s
r2

dC
ds

]

+
bDT s

r2

dC
ds

.

(8)

By using equation (6) we can get

f f ′ =
DT β 2

(

−s+ sβ 2

s2

)





(

d2C
ds2

)

(

dC
ds

) +

(

2+ b
s

)



= D2
T µ . (9)

The separation constant in the formD2
T , where µ is a

constant, divides equation (9) into two ordinary
differential equation to be solved

f f ′ = D2
T µ . (10)

And

d
ds

ln

(

dC
ds

)

=

µDT

β 2

[

−s+
β 3

s2

]

−
(2+ b)

s
.

(11)

Integrating equation (10), and using the initial conditions
at t = t0,R = R0, thus

R =
√

2µDT (t − t0)+R2
0. (12)

And by integrating equation (11), we obtain

dC
ds

=

k

s(2+b)
exp

(

−µDT

β 2

(

s2

2
+

εβ 3

s

))

.

(13)

To evaluate the constantk the boundary Condition (6), by
using of equation (7) is modified to be

∂C
∂ r

|r=R =
R2Ṗamb +4σR+3ṖambRṘ

3RℜTDT
. (14)

Where
∂C
∂ r

=
s
r

dC
ds

. (15)

Using the boundary condition at the bubble wall equation
(15) can be rewritten as:

∂C
∂ r

∣

∣

∣

∣

s=β =
r
s

∂C
∂ r

∣

∣

∣

∣

r=R,s=β
=

R2Ṗamb +4σR+3ṖambRṘ
3RℜTDT

.

(16)
Equations(13) and(16)give

kl =

β (1+b) R2Ṗamb +4σR+3ṖambRṘ
3RℜTDT

exp(µDT (ε +
1
2
).

(17)

WhereṘ =
µD2

T
R .

From equations (13) and(15),we have

∂C
∂ r

=

KR(1+b)

r(2+b)
exp

(

−µDT

(

r2

2R2 +
εR
r

−

(

ε +
1
2

)))

.

(18)

Wheres = β r
R andk = k1

β (1+b) .

Integrating the previous equation through the interval from
any instantt to tmt which the bubble reaches its maximum
radiusRm, at this instantC(Rm, tm) =C∞ that is

C(r, t)−C∞ =−kR(1+b)
∫ Rm

r

1

r(2+b)

exp

(

−µDT

(

r2

2R2 +
εR
r

−

(

ε +
1
2

)))

dr. (19)

Putting z = 1− R
r ⇒ dz = R

r2 dr,r = R ⇒ z = 0, andr −

Rm ⇒ z = 1− R
Rm

, we get

C−C∞ =−k
∫ 1− R

Rm

0
(1− z)b

exp

(

−µDT

(

1
2(1− z)2 + ε(1− z)−

(

ε +
1
2

)))

dz.

(20)

Or in the other form

C−C∞ =−k
∫ 1− R

Rm

0
(1− z)b

exp

(

−µDT

2

(

1− (1+2εz)(1− z)2

(1− z)2

))

dz. (21)

Since DT ≪ 1 and − ≤ z < 1 − R0
Rm

< 1, we can
approximate the integral and the previous integral takes
the form:

C−C∞ ∼=−k
∫ 1− R

Rm

0
(1− z)b(1− µDT (1− ε)z

−
3
2

µDT z2−
4
2

µDT z2−
5
2

µDT z4− . . .)dz. (22)

But we can put(1 − zb = 1 − bz + 0(z2), the above
equation by neglect the variable z of the orders greater
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than the second order can be rewrite in the form :

C(r, t)−C∞ =−k
∫ 1− R

Rm

0
(1− µDT (1− ε)

z−
3
2

µDT z2− bz+ bµDT(1− ε)z2 . . .)dz. (23)

Therefore,

C−C∞ =−k

(
2R(t)

Rm
(1− R(t)

Rm
)−µDT (1−

R(t)
Rm

)2(1− ε R(t)
Rm

)−b(1− R(t)
Rm

)2

2R(t)
Rm

).

(24)

To find the constantµ , using the initial condition,t = t0 ⇒
c =C0, k = k0, Ṙ = Ṙ0, Pamb = Pamb0 andṖamb = Ṗamb0, we
get

∆C0 = h0

(
2ϕ

1
3
0 (1−ϕ

1
3

0 )−µDT (1−ϕ
1
3

0 )2(1− εϕ
1
3

0 )−2ϕ
1
3b

0 (1−ϕ
1
3

0 )2

2ϕ
1
3

0

).

(25)

Where∆C0 =C∞ −C(R0, t0),ϕ0 =
(

R0
Rm

)2
and,

k0 =
R2

0Ṗamb0+4σ Ṙ0+3Pamb0R)Ṙ0

3ℜTDT
. (26)

From equation (25), we get the following expression for
µ :

µ =

2ϕ
1
3
0

(

(

1−ϕ
1
3
0

)

− ∆C0
k0

− b

(

1−ϕ
1
3
0

)2
)

DT

(

1−ϕ
1
3
0

)2(

1− εϕ
1
3
0

)

. (27)

Substituting forµ into equation (12), we get the relation
of the bubble radius as a function of time. That is:

R =
√

√

√

√

√

√

√

√

√

4DT

ϕ
1
3
0

(

(

1−ϕ
1
3

0

)

− ∆C0
k0

−b

(

1−ϕ
1
3

0

)2
)

(

1−ϕ
1
3

0

)2(

1− εϕ
1
3

0

)

(t − t0)+R2
0.

(28)

The constantk0 has two formulae due to the case of the
ambient pressure, for variable ambient pressure at
decompression; suppose the ambient pressure linearly
decreases with time, i.e.Pamb(t) = P0− α̇t, whereα̇ is the
ascent rate [11], k0 has the form:

kd =
α̇R2

0+4σ Ṙ0+3(P0− α̇t)R0Ṙ0

3ℜRDT
. (29)

And for constant ambient pressure (after decompression),
Ṗamb = 0, i.e. Pamb(t) = const. = P∞, at diving stops or

after finishing diving and reaching the sea level it has the
formula:

kc =
4σ Ṙ0+3P∞R0Ṙ0

3ℜTrDT
. (30)

The growth stages (variable or constant ambient
pressure) can be repeated sequentially, while the diver
ascents quickly to a lower-pressure level till he reaches
the sea level pressure ( 1atm).

The same effect of decompression can be occurred,
when aviators or astronauts are exposed to low-pressure
environments, in this caseP0 = Patm = 101.325N.m−2

(the sea level pressure).
The time for the bubble to reach its maximum radius,

can be calculated by applying the final conditions on
Eq.(12) to get:

tm =
R2

m −R2
0

2µDT
+ t0. (31)

From Eq.(28), we can get

Ṙ =

2DT

ϕ
1
3

0





(

1−ϕ
1
3

0

)

−
∆C0
k0

−b

(

1−ϕ
1
3

0

)2




(

1−ϕ
1
3

0

)2(

1−εϕ
1
3

0

)

√

√

√

√

√

√

√

4DT

ϕ
1
3

0





(

1−ϕ
1
3

0

)

−
∆C0
k0

−b

(

1−ϕ
1
3

0

)2




(

1−ϕ
1
3

0

)2(

1−εϕ
1
3

0

) (t − t0)+R2
0

.

(32)

And

Ṙ0 =

2DT ϕ
1
3
0

(

−∆C0
k0

− b

(

1−ϕ
1
3
0

))

R0

(

1−ϕ
1
3
0

)(

1− εϕ
1
3
0

) . (33)

2.5 Concentration Distribution Around a
Growing Gas Bubble in a bio Tissue

Concentration Distribution Around a Growing Gas Bubble
in a bio Tissue Equation (20) can written in the form

C(r, t) =C∞ − k(t)
∫ (1− R

Rm
)

(1− R
r )

(1− z)b

exp

(

−
µDT

2

(

1− (1+2εz)(1− z)2

(1− z)2

))

dz. (34)

The integral can be approximated as before to give

C(r, t) =C∞ −k(t)
[

(
R
r
−

R
Rm

)+
µDT

2R

(

(1−
R
r
)2(r− εR)− (1−

R
Rm

)2(Rm − εR)

)

+b

(

(1−
R
r
)2− (1−

R
Rm

)

)]

(35)
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3 Implementation

Suppose a diver at depth at which the ambient pressure
P0 = 200kp ≈ 2atm under this pressure more amount of
the nitrogen gas is dissolved in some body tissues, if the
diver ascents quickly, with ascent rate
α̇ = 3066.67N/m2s, to the sea level at which the ambient
pressure is the atmospheric pressure, then decompression
process will take place and the growth of nitrogen bubbles
occurs throughout the two stages, the first one takes place
throughout the decompression process, for nearly
65.1488s till the diver reaches the sea level pressure, the
second one takes at constant ambient pressure, sea level,
P∞ = Patm = 101.325kpa..

The following table shows the data which used to
simulate the problem for decompression stage as given by
authors [2,8,11] (see table 1).

By using Mathematica program (version), the
following graphs that demonstrate the effect of the
physical parameters on the growth of the gas bubble and
concentration distribution are obtained.

Table 1: The data which is used to get the graphs needed to show
the effect of the physical parameters on the growth of the gas
bubble.

P Value Unit P Value Unit
T 310(36C0) K R0 1.0×10−6 m
P0 200.000 N.m−2. P∞ 101.325 N.M−2

∆C0 0.7 Mol.m3 ℜ 8.314472 m/mol.K
σ 0.03. N.m. α̇ 3066.67 N/m2.s

DT 2.2×10−12. m2.s ϕ0 ]0,1[. —

4 Discussion of the results

The diffusion equation (4), for a convective growing gas
bubble in tissue with acceleration convective under the
effect of injection in ambient when the pressure is
constant and variant is solved by the method of combined
variables. The solution of the problem equation (28),
gives the growth of gas bubble radius as a function of
time combined with the physical parameters that affect on
the growth process, such as the initial void fractionϕ0,
the diffusivity of the tissueDT , the ascent ratėα , surface
tensionσ , the initial radial velocityṘ0, and the initial
difference in concentration∆C0.

The growth of gas bubbles in terms of time for two
different values of parameter ”b” is shown in Fig.[3]. It
is observed that, the growth under the effect of injection
process performs values greater than Mohammadein and
Mohamed (zero injection) [3] when ambient pressure is
constant or variant. The growth of gas bubble in terms of
time for two different values of gas diffusion coefficient in
a bio tissue when ambient pressure is variant is shown in
Fig.[4].

It observed that the growth of gas bubbles is directly
proportional with gas diffusion coefficient for all values of
parameter ”b”.

The growth of gas bubble in terms of time for two
different values of void fraction in a bio tissue when
ambient pressure is variant is shown in Fig.[5].

The concentration distribution surrounded a growing
gas bubble in a bio tissue under injection and
zero-injection processes is shown by Figs.[6],[7]
respectively.

Fig. 3: The effect of injection and zero injection process on
the growth of gas bubble in a bio tissue for variant ambient
pressure(· · · b=0, —b=1.0).

Fig. 4: The increasing of growing gas bubble in a bio
tissue for gas diffusion coefficient when ambient pressure is
variant(· · · .DT = 2.2×10−12,−−−DT = 4.4×10−12).

The concentration distribution around a growing gas
bubble in a bio tissue is presented for the two main stages
as obtained by equations [29],[30] and [35].

5 Conclusion

The gas diffusion problem is discussed for unsteady flow
in a bio tissue, based on the three-region model [8]. The
concentration distribution around a growing gas bubble in
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Fig. 5: The growth of gas bubble in a bio tissue when ambient
pressure is variant for two different values of void fraction(−−
−ϕ0 = 0.01 and —ϕ0 = 0.02).

Fig. 6: The cosentration distrebution around a growing nitrogen
bubble in a bio-tissue for diver under the effect of zero injection
procecess (b=0).

Fig. 7: The cosentration distrebution around a growing nitrogen
bubble in a bio-tissue under the effect of injection procecess
(b=1).

a bio tissue is obtained analytically for two main stages as
given by Eqs. (29), (30) and (35) respectively. The
discussion of results and figures concluded the following
remarks:
1. The growth of gas bubble radius is directly
proportional to the ascent ratėα, the initial difference of
concentration∆C0, the diffusivity of the tissueDT , the
initial void fraction ϕ0 and inversely proportional to the
surface tensionσ of the bio tissue.
2. The growth of gas bubble radius is directly
proportional to all values of parameter ”b”.

3. The effect of injection process (b=1) on the growth and
concentration distribution performs values greater than
that obtained by Mohammadein and Mohamed model [5].
4. When b=0 Mohammadein and Mohamed model [5] is
obtained as a special case from the present model
5. The effect of injection process is very dangerous on the
bio tissues increases pressure difference in blood
circulation of divers when ascending quickly to the
surface of sea and causes the a schema.
6. The injection process affect on the systemic blood
circulation and delays the growth of gas bubbles; which
increasing the incidence of decompression sickness
(DCS).
7. The study warns the divers to take any kind of injection
during the dive process to avoid the incidence of
decompression sickness(DCS).

Nomenclature
C : Concentration of dissolved gas[mol.m−3].
C∞: Concentration of dissolved gas in the tissue far from
the bubble[mol.m−3].
∆C0 := C∞ − C0. The concentration difference
[mol.m−3].
k : Time-dependent, concentration variable; defined by
equation (18a)[mol.m−3].
Pa: Gas partial pressure in arterial blood[N.m(−2)],
equation (10).
Pamb : Ambient pressure[N.m(−2)].
Patm: Atmospheric pressure[N.m(−2)].
Pg: Pressure of the bubble wall[N.m(−2)].
Q̇ : Blood flow per unit tissue volume[s(−1)].
ℜ : general gas constant[N.m/mol.K].
DT : Gs diffusion coefficient in tissue[mol.m−1].
r : The distance from the origin of the bubble.
R : Instantaneous bubble wall radius[m].
R0 : Initial bubble wall radius[m].
Ṙ : Instantaneous bubble wall radius velocity[m.s(−1)].
t : Time elapsed[s].
T : Temperature of the gas inside the bubble[K].
Greek symbols
α̇ : Ascent rate[N.m(−2).s(−1)].
αb : Gas solubility in blood[s2.m(−2)].
αt : Gas solubility in tissue[s2.m(−2)].
µ : Constant given by equation (27)[s.m(−2)].
σ : The surface tension of liquid surrounding the bubble
[N.m(−1)].
Subscripts
0 : Initial value quantities.
c : After the decompression process (constant ambient
pressure).
d : Through the decompression process (variable ambient
pressure).
g : Constant and variables corresponding to the gas
bubble.
m : Final or maximum value.
T : Constant and variables corresponding to the tissue.

c© 2016 NSP
Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci.10, No. 6, 2337-2343 (2016) /www.naturalspublishing.com/Journals.asp 2343

References

[1] M. A. Chappell and S. j. Payne. A physiological model
of the release of gas bubbles from crevices under
decompression. Respir. Physiol. Neurobiol. 153 (2) (2006)
166-180.

[2] M. L. Gernhardt. Development and evaluation of a
decompression stress index based on tissue bubble
dynamics. Ph. D. Thesis. University of Pennsylvania (1991)
.

[3] S.A. Mohammadein and K. G. Mohamed. Concentration
distribution around a growing gas bubble in tissue. Math.
Biosci. 255 (1) (2010) 11-17.

[4] S.A. Mohammadein. Concentration distribution around a
growing gas bubble in tissue under the effect of suction
process. Mathematical Bioscience. 253 (2014) 88-93.

[5] C. M. Muth and E.S. Shank. Gas embolism. New England j.
Med. 342 (7) (2000) 476-482.

[6] R. S. Srinivasan. W.A. Gerth and M. R. Powell.
Mathematical models of diffusion limited gas bubble
dynamics in tissue. J. Appl. Physiol. 86 (1999) 732-741.

[7] R. S. Srinivasan. W.A. Gerth and M. R. Powell. A
mathematical model of diffusion limited gas bubble
dynamics in tissue with varying diffusion-region thickness.
Resp. Physiol. 123 (2000) 153-164.

[8] R. S. Srinivasan. W. A. Gerth and M. R. powell.
Mathematical model of diffusion limited gas bubble
dynamics in unstirred tissue with finite volume. Ann.
Biomed. Engrg. 30 (2002) 232-246.

[9] R. S. Srinivasan, W. A. Gerth and M. R. Powell,
Mathematical model of diffusion limited evolution of
multiple gas bubbles in tissue. Ann. Biomed. Engrg. 31
(2003) 471.

[10] P. Tikuisis. K. A. Gault and R. Y. Nishi. Prediction
of decompression illness using bubble models. Undersea
Hyperb. Med. 21 (1994) 129-143.

[11] H. D. Van Liew and M. E. Burkard. Density of
decompression bubbles and competition for gas among
bubbles. Tissue end blood. J. Appl. Physiol. 75 (1993) 2293-
2301.

[12] R.D.Vann, F. K. Butler, S. J. Mitchell and R. E. Moon,
Decompression illness. Lancel 377 (760) (2011) 153-164.

[13] J. Zueco and A. Hernandez-Gonzalez, Network simulation
method applied to models of diffusion- Limited gas bubble
dynamics in tissue, Acta Astron. 67 (2010) 344-352.

S. A. Mohammadein
received the B. Sc. and
M. Sc. degrees from
Tanta University, faculty
of Science; and Ph. D.
degree from the Polish
Academy of Sciences (1994).
Currently, he is professor of
applied mathematics at Tanta
University, faculty of science.

He has published papers in the field of Bubble Dynamics
specially growth of gas or vapour bubbles and relaxation
times for the systems containing bubbly ow. He is also a

reviewer of some journals as Springer’s Journal of Heat
and Mass Transfer.

M. H. Omran
received the B. Sc from
El-Mansoura university,
faculty of science ”in
general mathematics”, M.Sc.
degree from Tanta university,
faculty of science(2006)
in Applied Mathematics
(Fluid dynamics), and D.Sc.
degree from Tanta university,

faculty of science(2010) in Applied Mathematics
(Fluid dynamics). Currently he is lecturer of Applied
Mathematics of Suez Canal Univer- sity, faculty of
science (Al-Arish).He has published papers in the Leld of
Bubble Dynamics specially growth of vapour or gas
bubbles.

R. A. Gad El-Rab
received the B. Sc. from
Alexandria University,
faculty of science in
general mathematics, M.Sc.
degree from Tanta University,
faculty of science (2001) in
Applied. Mathematics (Fluid
dynamics), and Ph.D. degree
from Tanta University, faculty

of science (2008) in Applied Mathematics (Fluid
dynamics). He has published papers in the field of Bubble
Dynamics especially growth of vapour or gas bubbles.

c© 2016 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp

	Introduction
	Analysis
	Implementation
	Discussion of the results
	Conclusion

