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Abstract: The aim of this paper is to study and investigate some new properties of the beta polynomials. Taking derivative of the
generating functions for beta type polynomials, we give twopartial differential equations (PDEs). By using these PDEs, we derive
derivative formulas of the beta type polynomials. In order to construct a matrix representation for the beta polynomials, we firstly show
that the set of beta polynomials is linearly independent. Byusing linearly independent properties, we prove that any polynomial of
degree less than and equaln are written as a linearly combination of the beta polynomials. Therefore, we define matrix representation
for the beta polynomials. Moreover, we provide the simulation of the beta polynomials with some their graphs. We also give remarks
and examples and comments on the beta polynomials and their matrix representation.
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1 Introduction

Polynomials are widely used in other areas of
mathematics and information science as well as the other
sciences: they are important in the study of continued
fractions, operator theory, graph theory, discrete group
theory, Computer Aided Geometric Design (CAGD),
analytic functions, interpolation, approximation theory,
numerical analysis, electrostatics, statistical quantum
mechanics, special functions, number theory,
combinatorics, stochastic analysis, data compression, etc.
It is known that by using generating functions of the
special polynomials, many properties of the applied
mathematics which focuses on the formulation of
mathematical models, differential equations,
representations theory, numerical analysis etc., are
studied (cf. [1]-[7]).
Some special polynomials are also related to Applied
Probability Theory. For example, the Bernstein
polynomials are associated with the binomial distribution
and the Poisson distribution in Probability Theory (cf.
[1]-[7]).
The beta polynomials are also related to distribution
function in Probability Theory. It is known that the
Bernstein polynomials and the beta polynomials are used
many branches of Mathematics and Applied Mathematics
(cf. [7]). The Bernstein polynomials play a central role in
the theory of Bezier curves and surfaces and also in

CAGD. In [7], we gave relation between the beta
polynomials and the Bernstein polynomials. We also gave
relation between these polynomials and distribution
function. In order to investigate some fundamental
properties of the beta polynomials, we constructed a
novel collection of generating functions which are used to
derive identities and relations for the beta polynomials. In
[6]-[7], we studied on the (q-) beta type polynomials.

In [1], Bhandari and Vignat have also studied on the
beta polynomials. By using these polynomials, they gave
a probabilistic representation of the multidimensional
p-adic Volkenborn integral.
Similarly, matrices are widely used not only in applied
mathematics, but also in the information science. For
example, in the optimization of a dynamic programming
equation, in all areas of positive and social sciences, life
sciences, etc.
Throughout this paper, we use the following standard
notations:

N = {1,2,3,. . .}, N0 = {0,1,2,3,. . .} = N ∪ {0}.
Here,Z denotes the set of integers,R denotes the set of
real numbers andC denotes the set of complex numbers.
The beta polynomials are defined as follows:

Definition 1.1.Let x∈ [−1,0]. Let n andk be nonnegative
integers. Then we define

Bk,n(x) = xk (x+1)n−k
. (1)
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wherek= 0,1,2, . . . ,n. We usually set

Bk,n(x) = 0

if k< 0 ork> n (cf. [1], [6]).
In [7], we constructed generating functions for the

functions,Mk,n(x) as follows:

hk(t,x) =

(

x
1+ x

)k

et(1+x) =
∞

∑
n=0

Mk,n(x)
tn

n!
, (2)

wherek∈N0 = {0,1,2, · · ·} and for allt ∈C. There is one
generating function for each value ofk.

By using (2), we have

Mk,n(x) = xk(1+ x)n−k
, (3)

where n,k ∈ N0. From (2), if n ≥ k, we get the beta
polynomials:

Mk,n(x) =Bk,n(x)

and if n < k, we define a rational function,bk,n(x) as
follows:

Mk,n(x) = bk,n(x),

where

bk,n(x) =
xk

(1+ x)k−n

andn∈ {0,1,2, · · · ,k−1}.
Hence, we set

Mk,n(x) =Bk,n(x)+bk,n(x). (4)

The beta polynomials are defined by means of the
following generating functions (cf. [7]):

Fk(t,x) =
∞

∑
n=k

Bk,n(x)
tn

n!
,

where for allt ∈ C and

Fk(t,x) = hk(t,x)−
k−1

∑
n=0

bk,n(x)
tn

n!
.

Hence

Bk,1(x) =Bk,2(x) = · · ·=Bk,k−1(x) = 0

(c f . [6]-[7]).
We summarize our paper as follows:
In Section 2, we give some PDEs for the generating

functions for the beta type polynomials. By using these
equations, we find two derivative formulas of the beta-type
polynomials.

In Section 3, we prove that a set of beta polynomials is
linearly independent. We also give a matrix representation
for these polynomials. Finally, we give two examples for
this matrix representation of the beta type polynomials.

In Section 4, the simulation of the Beta type
polynomials are demonstrated. We also give some
graphics of the beta type polynomials.

In Section 5, we give some remarks, comments and
applications on the matrix representation and graphics of
the beta type polynomials.

2 PDEs for the generating functions

We know that applied mathematics consisted principally
of applied analysis, most notably differential equations.
Hence, in this section, we give PDEs for the generating
functions. By using these equations, we derive two
derivative formulas of the beta-type polynomials. These
formulas are used to compute derivatives of the beta-type
polynomials.

Taking derivative of (2), with respect tot, we obtain
the following PDE for the generating functions:

∂ 2hk(x, t)
∂ t2 = (x+1)2hk(x, t) (5)

or
∂ 3hk(x, t)

∂ t2∂x
= 2(1+ x)hk(x, t)+ khk−1(x, t)

+(1+ x)2 thk(x, t). (6)

Theorem 1.Let n≥ 1 and k≥ 1. Then we have

d
dx

Mk,n+2(x) = 2(1+ x)Mk,n(x)

+n(1+ x)2Mk,n−1(x)+ kMk−1,n(x).

Proof.By combining (2) with (5), we obtain
∞

∑
n=2

d
dx

Mk,n(x)
tn−2

(n−2)!
= 2(1+ x)

∞

∑
n=0

Mk,n(x)
tn

n!
+

(1+ x)2
∞

∑
n=0

Mk,n(x)
tn+1

n!
+ k

∞

∑
n=0

Mk−1,n(x)
tn

n!
.

Therefore
∞

∑
n=0

d
dx

Mk,n+2(x)
tn

n!
= 2(1+ x)

∞

∑
n=0

Mk+1,n(x)
tn

n!
+

(1+ x)2
∞

∑
n=0

nMk,n−1(x)
tn

n!
+ k

∞

∑
n=0

Mk−1,n(x)
tn

n!
.

Comparing the coefficients oft
n

n! on the both sides of the
above equation, we arrive at the desired result.

By using (5), we obtain

∂ 2hk(x, t)
∂ t2 = x2hk−2(x, t).

By using the above PDE, we get

∂ 3hk(x, t)
∂ t2∂x

= 2xhk−2(x, t)

+(k−2)hk−1(x, t)+ x2thk−2(x, t).

By combining (2) with the above PDE, we easily arrive
at the following theorem:

Theorem 2.Let n≥ 1 and k≥ 2. Then we have

d
dx

Mk,n+2(x) = 2xMk−2,n(x)+ (k−2)Mk−1,n(x)

+nx2Mk−2,n−1(x).
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3 A Matrix representation for the
polynomialsBk,n(x)

In this section, we show that the beta polynomials of
order n form a basis for the space of polynomials of
degree≤ n. Thus we see that the power basis spans the
space of polynomials and any element of power basis can
be represented as a linear combination of the beta
polynomials.

That is if there exist constantsα1, α2,...,αn such that

n

∑
k=0

αkBk,n(x) = 0 (7)

holds for allx then allα1, α2,...,αn is must be zero. We
assume that (7) is true. Then we write

0 = α0 (1+ x)n+α1x(1+ x)n−1+α2x2 (1+ x)n−2

+...+αn−2x
n−2(1+ x)2+αn−1xn−1 (1+ x)+αnxn

From the above we get

0 = α0

n

∑
j=0

(

n
j

)

x j +α1

n−1

∑
j=0

(

n−1
j

)

x j+1+α2

n−2

∑
j=0

(

n−2
j

)

x j+2

+...+αn−2

2

∑
j=0

(

2
j

)

x j+n−2+αn−1

1

∑
j=0

(

1
j

)

x j+n−1+αnxn

Hence

0 =

(

α0

(

n
n

)

+α1

(

n−1
n−1

)

+ ...α1

(

0
0

))

xn

+

(

α0

(

n
n−1

)

+α1

(

n−1
n−2

)

+ ...αn−1

(

1
0

))

xn−1

+

(

α0

(

n
n−2

)

+α1

(

n−1
n−3

)

+ ...αn−2

(

2
0

))

xn−2

+...+α0

(

n
1

)

+α1

(

n−1
0

)

+α0

(

n
n

)

Thus we get the following equations
(

n
n

)

α0 = 0
(

n
1

)

α0+

(

n−1
0

)

α1 = 0
(

n
2

)

α0+

(

n−1
1

)

α1+

(

n−2
0

)

α2 = 0

...
(

n
n

)

α0+

(

n−1
n−1

)

α1+ ...+

(

n
n

)

αn = 0.

From the above equation we easily see that

α0 = α1 = ...= αn = 0.

Consequently,{B0,n(x), B1,n(x), ...,Bn,n(x)} is a
linearly independent set. Therefore, any polynomial of

degree less than and equaln can be written as a linearly
combination of the beta polynomials. That is,

Pn(x) =
n

∑
k=0

akx
k =

n

∑
k=0

bkBk,n(x).

Here,Pn(x) is called a polynomial in the polynomials
Bk,n(x) form. This form gives us many advantages if one
wishes to analyze polynomials over a finite interval. We
now ready to write the following matrix form:

Pn(x) =
[

Bn,n(x) Bn−1,n(x) . . . B0,n(x)
]









b0
b1
...

bn









.

Applying the method of mathematical induction in the
above equation, we get the following matrix representation
of the polynomialsPn(x) by the following theorem:

Theorem 3.
Pn(x) = XAtB (8)

where At denotes transpose of the matrix A and

X1×n =
[

1 x . . . xn
]

,

Bn×1 =









b0
b1
...

bn









and
An×n = [ai j ] ,

where A=






































(

0
0

)

0 0 0 · · · 0 0
(

1
1

) (

1
0

)

0 0 · · · 0 0
(

2
2

) (

2
1

) (

2
0

)

0 · · · 0 0

...
...

...
...

. . .
...

...
(

n−1
n−1

) (

n−1
n−2

) (

n−1
n−3

) (

n−1
n−4

)

· · ·

(

n−1
0

)

0
(

n
n

) (

n
n−1

) (

n
n−2

) (

n
n−3

)

· · ·

(

n
1

) (

n
0

)







































.

and the ai j elements are related to the coefficients of the
beta polynomialsBk,n(x).

We also note that the matrix in (8) is upper triangular.
By using (8), we compute some examples for the

matrix representation of the polynomialsPn(x) as follows:

Example 1. Substitutingn = 2 into (8), the matrix
representation of thepolynomial P2(x) is given as follows:

P2(x) =
[

1 x x2
]





1 1 1
0 1 2
0 0 1









b0
b1
b2



 .
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From the above matrix representation, we get

P2(x) = (b0+b1+b2)+ (b1+2b2)x+b2x
2
.

Example 2.Substitutingn = 2 into (8), the matrix
representation of thepolynomial P3(x) is given as follows:

P3(x) =
[

1 x x2 x3
]







1 1 1 1
0 1 2 3
0 0 1 3
0 0 0 1













b0
b1
b2
b3






.

From the above matrix representation, we get

P3(x) = (b0+b1+b2+b3)+ (b1+2b2+3b3)x

+(b2+3b3)x
2+b3x3

.

Remark 2.1.
Joy [4] gave a matrix representation of the Bernstein

polynomials with their applications.

4 Simulation of the Beta polynomials

−1.0 −0.8 −0.6 −0.4 −0.2 0.0
x

−1.0

−0.5

0.0

0.5

1.0

Y(
x)

k=1
k=2
k=3
k=4
k=5

Fig. 1 Varying k values for n = k

y(x) =Bk,n(x) (9)

where k = 0,1,2, . . . ,n and x varies between [-1,0].
Below are the plots of y(x) with respect to k with varying
offset values as given by:

n= k+o f f set (10)

When offset is 0 then the plot shown in Figure1 is
obtained. As demonstrated in plots, increase in offset
shifts the curve to 0 while sequezes them. Meantime, as k
increases the resulting curves narrows.

−1.0 −0.8 −0.6 −0.4 −0.2 0.0
x

−0.25

−0.20

−0.15

−0.10

−0.05

0.00

0.05

0.10

0.15

Y(
x)

k=1
k=2
k=3
k=4
k=5

Fig. 2 Varying k values for n = k + 1

−1.0 −0.8 −0.6 −0.4 −0.2 0.0
x

−0.15

−0.10

−0.05

0.00

0.05

Y(
x)

k=1
k=2
k=3
k=4
k=5

Fig. 3 Varying k values for n = k + 2

5 Conculusion

Applying Equation (8), one can easily see that every
polynomials with degreen may be expressed in matrix
form that relates to the beta polynomials. Therefore, any
polynomial of degree less than and equal ton is written as
the linear combination of the beta polynomials.

Graphics of the beta polynomials are provided to
visualize the shape of polynomials on finite domain. The
effects of k and n on the shape of the curve are
demonstrated for the given range. These graphics may be
used not only in Bezier type curves and surfaces, in
Computer Aided Geometric Design (CAGD) but also in
other areas.

In the work of Farouki [3], we know that the monomial
form in Equation (8) of a polynomialPn(x) is frequently
used. Thus, in the above graphics we show that the beta
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−1.0 −0.8 −0.6 −0.4 −0.2 0.0
x

−0.10

−0.08

−0.06

−0.04

−0.02

0.00

0.02

0.04
Y(
x)

k=1
k=2
k=3
k=4
k=5

Fig. 4 Varying k values for n = k + 4

polynomialsBk,n(x) form may also be used to manipulate
the graph of a polynomial over a finite domain.
Consequently, we also think that a Bezier type curve may
be constructed by the beta polynomials.
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