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Abstract: In this article, an HIV-1 infection dynamical model with sedtion response including two continuous delays is prtesen
One delay represents the latent period between the timent@cioof virus particles with targeted cells and the timemteeng into
the cells. While the other delay is used for the period of potidn of new virions that release from the infected cellse basic
reproduction numbeRy is investigated and proved thatkg < 1, the infection-free equilibrium is globally asymptotiyastable.
However, ifRy > 1, then an infected equilibrium occurs which is globallyragyotically stable. The analytical and numerical results
show that time delays have great effect on the global stalifiequilibria because the basic reproduction number nigpen both the
delays.
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1 Introduction People living with HIV may progress through these
stages at different rates, depending on a variety of factors
including their genetic makeup, how healthy they were

Mathematical modeling is used in epidemiology, to before they were infected, how soon after infection they

understand the mechanisms of the spread of any diseasge diagnosed and linked to care and treatment. Some

and its control strategies. Human immunodeficiency virusmathematical models for controlling the infectious of

(HIV-1) is a lentivirus that causes acquired HIV-1 recombinant virus can be found irLPR,3]. A

immunodeficiency syndrome (AIDS). The HIv-1 following differential equations is used as a classical

infection passes through three stages that are: (1) acuteodel for the HIV-1

HIV infection, (2) clinical latency, and (3) AIDS

(acquired immunodeficiency syndrome). During the acute

period of infection, large amounts of virus are being Xx(t) = A —dx(t) — Bx(t)v(t),

produced in your body. The virus uses CD4 count to.

replicate and destroys them in the process which can faIY(t) BX(t)v(t) —ay(v), (1)

CD4 cells rapidly. During this infection the immune v(t) = ky(t) — pv(t),

response will begin to bring the level of virus in human

body back down to a level called a viral set point, which

is a relatively stable level of virus in human body. After wherex(t) represents the density of uninfected cefis)

the acute stage of HIV infection, the disease moves into atands for infected cells density ant) denoted the

stage called the clinical latency stage. During the clinica density of infected virusA is the rate of production
latency stage, the HIV virus continues to reproduce atuninfected cells and is their death rate3 is the rate of
very low levels, although it is still active. AID is the stage contact of virus with the target cells. It is assumed in the
of HIV infection that occurs when your immune system is above model that the infected cells, may die at a aate
badly damaged and you become vulnerable toeach cell creates the virus at a réteThis model was
opportunistic infections. modified by Revilla and Garcia-Ramos i8] by adding
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recombinant virus to the model)(is given by disease free equilibriumEy and single-infection
YA _ equilibrium E;, under some conditions on the
X(t) = A —dx(t) — Bx(Uv(t), reproductive numbers, are discussed in Section 3.
y(t) = Bx(t)v(t) —ay(t) — aw(t)y(t), Numerical examples are presented in Section 4. In the last
: Section, conclusion and discussion are drawn.
Z(t) = aw(t)y(t) —bz(t), )
v(t) = ky(t) — pv(t),
Wi(t) = cz(t) — qw(t), 2 Positivity and well-posdeness of the solution

with initial condition
The following theorem gives boundedness and positivity

x(0) > 0,y(0) > 0,z(0) > 0,v(0) > O,w(0) >0. (3)  of the solution.

Theorem 2.1. The solutions of the model4) are

Herew(t) represents th nsity of recombinant vir n . ; 7
erew(t) represents the density of recombina us @ dnon-negatwe and bounded with the initial condition (3).

z(t) denotes the density of cells which are infected by
both virusesa is the rate of infection of infected cells by Proof. Let X = C[(— ma><(r1,r2) 0);R°] be the Banach
recombinant virusg is the rate of removal of recombinant space of continuous mapping frdn- max(1y, 2),0); R®]
virus. b is death rate of infected cells These infected to R® equipped with the sup-norm. We further suppose
cells release recombinant at ratez. Revilla and that X(t) = (x(t),y(t),z(t),v(t),w(t)) and
Garcia-RamosJ] presented the structure of equilibrium x¢(v) = x(t + v) for v € [(—max11,12),0]. By using
solutions and their simulations of the modg).(Jiang et.  fundamental theory of FDES], for any initial condition

al. [4] further modified the model2) and presented a ¢ € X with ¢ > 0 we know that there exists a unique
control strategy by incorporating the constant injection solutionx(t, ¢ ) satisfyingx(v,¢) = ¢ (v).

rate of the recombinant virus. It has been shown thatNow the system4) can be written ag(t) = f(x), where
increasing the injection rate of recombinant is fruitfut fo

reducing the HIV virus},6,7]. A —dx(0) — qﬁg{/\/((oof
We extend the model] by considering the Holling

type-1l functional response and two delays functions. The Be 21Tix(— 1 )v(—17)
delay termt; represents the latent period between the o)~ (0) —aw(0)y(0)
time of contact of virus particles with target cells and the f(x) =
time of entering into the cells and while the other detay aw(0)y(0) — bz(0)

is used for the period of production of new virion that

release from the infected cells. The Holling type-II ky(0) — pv(0)
functional response is represented bM;Tt)

incorporating the above modification, our model becomes cz(0) —qw(0)

: Bx(t)v(t) It can be shown that if ang € X satisfiesp > 0, ¢;(0) =0
X(t) = A —dx(t) — 1+ovt)’ for somei, thenf(¢i) > 0. Therefore, by using Theorem
. Be-anix(t — 1y )(t — 1) 2.1 on page (8'1) mgl], we know _that><(t,¢) > 0 for all
y(t) = I : —ay(t) — aw(t)y(t), t > 0 in its maximal interval of existence ¢f > 0.

+ov(t—1) Next we show the boundedness of the solution. To do

Z(t) = aw(t)y(t) —bz(t), this let us consider

v(t) = ke~ 22yt — 1) — pv(t), G(t) = cke 11Xt — 1) + — e""zrzv(tjL o) + bzkw( t)
W(t) = cz(t) — qw(t). (4) +oky(t) + ckz(t).

First, the positivity and bounded of the proposed modelCalculating the derivative, and using the systet)) (e
will be presented. Then, the reproduction numBgwvill have

be investigated to prove the global behavior of the dG(t)

proposed model. We will study global stability of the

equilibria at the disease free and endemic equilibria. The dt

analytical and numerical results show that time delays _

have great effect on the global stability of equilibria +ck<Be Xt —T)V(t— 1) — (a+ GW(t))Y(t))

because the basic reproduction number depends on both ac

the delays. +ck<aw(t)y(t) - bz(t)) + —eon (keazrzy(t)
In next the section, the positivity and well posdeness 2

of the solutions is proved. In the same section the basic bk

reproduction numbeR, is presented. The analysis of the —py(t+ T2)> T (cz(t) B qw(t)).

= cke 01 ()\ —dXx(t — 1) — BX(t — T1)V(t — T1)>
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After some rearrangement, we get By taking derivative, we have
dG(t) _ —aiT —ar 1 d A A A a)\
T = ckAe 4 — [ cdke 1X(t — T1)+ Eacky(t) a(Vo(t)) _ _e—all’l(x(t) _ a)x+ dy_|_ 74 g d

1 bkq BA X(t)v(t)

+=bckz(t) + —w e2n2y(t + 1. ) PA -ain SV
ookt + 2uit) + Lpeav(t+ 1 Bean (v - X0 )
< ckde ™ —pG(t),

wherep = mln{d,z,z,q p}. Which shows thats(t) is
bounded

3 Analysis of single and double infections

The system 4) has three equilibria, virus-free
equilibrium Eg, recombinant absent equilibriug and
recombinant present equilibriuB as follows:

& = (4.0000)
e ape?lT1T827T2 L gAk pe @171  )Bk—apde?1 718272 o
1= ( k(od+B) | od+B
ABk—apde®1T1ta272 )
ape®111+3272(gd + ) /'

g, - (A% 1
2 = B ac’ Bac

acpke (A1T1132T2) A a(acp+kqbae’aZT2))B
(acp+kgboe 2272)

kgbe 3272 1 acpke (B1T1182T2) A a(acp + kaboe ™ azma))
acp ' Ba (acp+kaboe 3272)
where,
A = acpA + okgbde 222
B = acpd + okgbde 2% + Bkgbe %2,
In epidemiological models the threshold quantRy is

and

called the basic reproduction number of the disease whic
is a key concept][Q). It represents the expected average
number of new infections produced directly and indirectly
by a single infective, when introduced into a completely
susceptible population. The basic reproductive numbe

for our proposed model is

)\Bk
pd

(qTi+apt2)

Ry=——

For the third equilibrium to exist, the density of the
recombinant virus must be exist and should be greate
than zero, which determine the other reproductive numbe

acdp

RR=——(Ry—1).
2= Bbkge @z 0~ Y
Hence,R, > 1 if and only if Ry > Ry, whereR; = 1+
Bbkge 2272
acdp

Theorem 3.1. If Ry < 1, thenEg is globally asymptotically

+ W

23 . %(wt—rz)—)’(t))v

whereW(t — 17) = % By using the systemdj

and after some rearrangement, we have

Bx(t)v(t) )

1+ov(t)

(1) = —e =xt) ) (A —axw) -

+% (Be*alrlt.U(t —11) — (a+aw(t))y(t)

+% (aw(t)y(t) — bz(t)) +eazT2% (ky(t) - pv(t))
BA _arn X(t)v(t)
ae (w(t_m_ 1+0v(t)>

+% <Cz(t) - qw(t)) N % <y(t — 1) —y(t)) .

Now using the infection free equilibrium point
and some simplification, we get

C (Vo(t)) = e AT (x(t) - %)2 B (1 Ry
B

Noting that wherRy < 1, we haved (
equality holds only ifxp = a, y(t) =0, z(t) =0, v(t) =0,
w(t) = 0. Then by LaSalle’s invariance principle (sdd,[
12]), we conclude thaky is globally asymptotically stable
whenRy < 1.0

;J'heorem 3.2. When 1< Ry < Ry, thenE; is globally
psym ptotically stable.

o(t)) < 0. But the

Proof. Let us construct the following Lyapunov functional

Vi(t)

where

=Va1(t) + Bxavie 1Vio(t) + aVig(t),  (5)

Via(t) = e 21 (x(t) — xaInx(t)) + (y(t) —yzIny(t)) + z(t)

Zt?obolfe..Let us consider aeizrz (v(t) —valnv(t)) + (E:)W(t)’
Vo(t) = izm(x(t) — %)2+ %(y(t) +2(t)) +e""2r2i)\—dv(t) Vio(t) = /ttrl (%
g+ e [ @ o " o)
2 o Vistt) = [ y(£)aE.
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Now by taking derivative off), we have

%Vl(t) = _alrl(l %)X,(t) +(1- %)y (t)+ EW (t)
+Z, (t) + aeT:TZ (1_ V—\j')V/ (t) i Bxlvlefalrl <L)I(Jl_s[l)

1 ( X(t)v(t) ) X(t—1)v(t —11)
1+ovi ‘xqvi(1+ov(t))’ xvi(l+ov(t—1))
1 | X(t—Tt)v(t —11)(1+ avl))
n

1+o0ow Xvi(1l+ov(t—11))
+a(y(t) -yt —12)).
(6)

By using the recombinant absent equilibriin and the
model @), we get the following identities

A = dwy — g PV
1+ov;’
Be #xvy
— - = ay,

1+ovg
e ®Tkyy = pvy.

Using the above identities in equatiod) @nd the system
(4), we obtain

d an X1 X Bxqvie780
dtvl(t) - (2- X x1)+ 1+ 0wy
<3 Cxa viy(t—1) (14 ov(t)yix(t — T)v(t — 1)
X w1 (14 ov(t—11))xv1y

X(t—T1)Vv(t—11) (14 ov(t))
Hn oV ar ovi— ) )>
e (R~ ROW(). )

By using the results inl[3], the following inequities hold,
X1 X

ean2_L_Zy<p,
X X1

(3_ X1 vay(t—12)  (I4ov(t))yx(t —m)v(t—11)

X W1 (1+ ov(t—11))X1V1y
Xt—m)Vv(t—11)(1+0v(t)), viy(t—T12)
N ovioarovi-m) )T wa )S 0

Therefore, from equatioryy, we have‘% <0, whenRy <
R; but the equality holds, whex=x; andy=y; v=v1
andw = 0. We conclude thé&E; is globally asymptotically
stable (seel1]). O

4 Numerical ssimulation

The plot shows the density of uninfected cells
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Fig. 1: The plot shows the density of uninfected cells.

The plot represents the density of infected cells
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Fig. 2: The plot represents the density of infected cells.

biological feasible from14, 15] with the initial conditions
x(0) = 5.0,y(0) = 1.0,z(0) = 2.0,v(0) = 0.5,w(0) = 4.0.
Example 1. In the system4) we choose the parameters
values ash =4,d =021,a=0.33c=40b=56,p=
g=>56,11 = 10,1, = 100k = 50,0 = B = 0.004,0 =
0.000001a; = ap = 0.1. The results of numerical

In this section, we give some numerical examples tosimulation are represented in Figure 1 - 5. It gives that
illustrate the above theoretical results. For numericalRy = 0.0272889842985< 1 and the system4] has
simulation, we choose the parameters values which areisease free equilibriumEy(19,0,0,0,0). By the
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The plot represents the density of double infected cells The graph shows the density of virus cells
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Fig. 3: The plot represents the density of double infected cells. Fig. 4: The graph shows the density of virus cells.
L . S The plot represents the density recombinant (genetically modified) virus
theorem(2.1), we obtain infection-free equilibriufg of g e represertsthe densly recombiant (geneically o)

the system4) is globally asymptotically stable. In figure
1 the uninfected cells increasing sharply for all given 4507 /\/\/\N
values ofo at the first few days and then gradually goes i

to stable state. In figures 2 and 3 sharply decreases ar | { ]
the density of double infected and infected cells are
almost similar for all given values af. In figures 4 and 5
sharply increases and the density of virus and
recombinant cells are different for all given valuesiof
Example 2. In the system §), we set
A=2d=010a=05c=40b=p=q=56,0 =
0.0005a0 =B =0.002a; =a = 0.2,11 = T, = 5 with

the above initial conditions. It shows that
1< Ry =1.34< Ry = 13.84 and the systend) has single
infection equilibriumEy(2.94,140,3.696,170,0,0). Thus

by theorem(2.1) we prove that the systed) is globally
asymptotically stable.

Example 3. In the system§, we takeA = 2,a = 8 = 00 00 40 50 6o 700

0.002d =0.10,a=05,c=40b=2p=q=56,k= time t (days)

70,a; = ap =0.2,1; = 1o = 5,0 = 0.0009 with the above

initial conditions. It shows thal = 1.34> 1 and thus the  fig 5: The plot represents the density recombinant (genetically
system 4), is globally asymptotically stable. modified) virus.

w
o
=]

w
oS
S

¢=0.000001
0=0.1
0=0.3

Recombinant cells w(t)
n N
o (S
o o

5 Conclusion and discussion

investigated which are different from the basic
We developed HIV-1 therapy delay differential model reproduction number Ry. We proved that the
with saturation rate by including two delays. One delay infection-free equilibrium is globally asymptotically
represented in the latent period for cell infection while th stable ifRy < 1. While if Ry > 1, then the infection-free
second delay the other delay is used for the period ofquilibrium becomes unstable and there occurs a
production of new virion that release from the infected single-infection  equilibrium  which is  globally
cells. The basic reproduction numbRy is obtained and asymptotically stable iRy < R;. Furthermore, iR; < Ry,
two others reproduction numbei®; and R, are also thenE; is unstable and there exisE. Our Numerical
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results shown that delay can control the viral load to Nigar Ali doing his

minimum value due to which the rate of infection is PhD in Mathematics at
reduced and the number of infected cells becomes University of Malakand. His
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