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Abstract: A logical calculus based a method is compared with topological relation of 4 Intersection Model (4-IM) of spatial regions.
The first result of this paper is answer of the following question: what is the smallest formula represents the four intersection model?.
The second main result, as an algebraic view, under certain conditions, the family of all relations from 9-IM using the 4-IM of two
closed regions A and B are obtained.
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1 Introduction

Representation of spatial information is important in
many applications such as Geographic Information
System (GIS). In 1990, [4] and [5] M. Egenhofer and
others introduced a mathematical method for classifying
topological relationships between spatial regions in the
plane. Many researchers follows Egenhofer and
established the relations between two regions, two lines,
two points, region to line, region to point, and line to
point. (see [2,3,6,8]). One object of this paper, in
section3, is to give the connection between the spatial
geographic relations and the logical calculus of 4-IM, and
obtain the smallest set of formulas which represents the
spatial topological relations. The next section 4, we give
an algebraic view of all possible Boolean matrices of the
topological relations of two spatial regions with a
non-empty exterior.

2 Preliminaries

We recall some general notation and results taking
mostly from [1,2,4,6] these will be required in the paper .

Let (X,τ) be a topological space. For a subsetA⊆ X,
we write writeA◦ be the interior ofA in X.i.e. the largest
open set contained inA, andA be the closure ofA in X i.e.
the smallest closed set containingA. The boundary ofA,
written by∂A is defined by the set of difference between
A andA◦.i.e. ∂A = A−A◦. Moreover, the exterior ofA ,
denoted byAext, which is defined by

Aext = (X−A) = (X−A)◦ .

It is known that, the set{A◦,∂A,Aext} forms a
partition ofX.

A closed subsetA⊆ X is called regular ifA= A◦, that
is the smallest regular closed set containingA◦.

A region is a nonempty proper regular closed subset of
the real planeR2. As a topological space, the collection of
all regions in the real plane together with∅ andR2 forms
a complete Boolean algebra.

In this paper, we use the simple region, which is a
homeomorphic to the unit closed disk, and hence a simple
region (for short, a region) has a connected boundary and
connected exterior and has no holes.

For more details and properties of topological spaces,
we refer to [1]. In the sense of Egenhofer [4] and [5], the
topological relation between two connected closed
regions A and B can be characterized by considering the
intersections of interiors and boundaries of the two
regions. The results can be written as the following matrix

m(A,B) =

(

A◦∩B◦ A◦∩∂B
∂A∩B◦ ∂A∩∂B

)

If the intersection is empty, we write 0 for the entry in
the corresponding matrix , and write 1 for a non empty
intersection. By this way, the topological relations
between two regionsA and B can be represents as a
Boolean matrices (i.e. each element in the matrix takes
only 0 or 1) of degree 2× 2. Hence, there are 24 = 16
possible Boolean matrices.
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It is known that, the Boolean matrices representation
of geographic relations between two regions are:

m1 =

(

0 0
0 0

)

, m2 =

(

0 0
0 1

)

, m3 =

(

1 0
0 1

)

, m4=

(

1 1
0 0

)

,

m5 =

(

1 0
1 0

)

, m6 =

(

1 1
0 1

)

, m7 =

(

1 0
1 1

)

, m8=

(

1 1
1 1

)

.

Wherem1, m2, m3, m4, m5, m6, m7 andm8 represents
the disjoint, meet, equal, inside, contains, cover, covered
by and overlap relations between two regions, respectively.
For more details and properties of Egenhofer relations, we
refer to [2,4,5] and [6].

3 Logical calculus of 4-IM

In the present section, we give the answer of the
following question: what is the smallest formula
represents the four intersection model?

A logical sentence (or proposition) is the sentence
deals only with the value 1 (true) or 0 (false).

A logical sentence combined in different ways by
using the connectives”not” , ”and” , ”or” , ”if...then” and
”if and only if” . We use the symbols,p, q, r, s,...for
logical sentences (logical sentences are called variables).
We use the symbols¬, ∧, ∨, −→, ←→ for the
connectives”not” , ”and” , ”or” , ”if...then” and ”if and
only if” , respectively. The symbols¬, ∧, ∨, −→, ←→
are called a negation, a conjunction, a disjunction, a
conditional and biconditional connective, respectively.

Formulas are expressions build by means logical
connectives and variables are denoted byF1, F2, F3, ....

For any formulaF , let Var(F) be the set of all
propositional variables appearing inF. The function

v : Var(F)→{0,1}

is called a truth assignment restricted toF

Theorem 3.1.[9] For any formulaF there are
2|Var(F)| possible truth assignments restricted toF .

Definition 3.2.[7] Let Vn be the set of alln-tuples
(a1, a2, ..., an) over the Boolean algebraB= {0, 1}. An
elementv∈Vn is called a Boolean vector of dimensionn.

Now, let U = (P1,P2,P3,P4) be a Boolean vector of
four components, whereP1 = A◦ ∩ B◦, P2 = A◦ ∩ ∂B,
P3 = ∂A ∩ B◦ and P4 = ∂A ∩ ∂B. Let
V = {vi : 1≤ i ≤ 16} be the set of all functionsvi from
the setU into the set{0,1}. It is clear that|V| = 24. We
can describe the setV by the table(1).

For anyvi ∈V can be represented as a Boolean vector
asvi=(vi(P1),vi(P2),vi(P3,v4).
From table (1), we have

Table 1: The setV = {vi : 1≤ i ≤ 16}
P1 P2 P3 P4 P1 P2 P3 P4

v1 0 0 0 0 v9 1 0 0 0
v2 0 0 0 1 v10 0 1 0 0
v3 1 0 0 1 v11 0 0 1 0
v4 1 0 1 0 v12 0 1 1 0
v5 1 1 0 0 v13 0 1 0 1
v6 1 1 0 1 v14 0 0 1 1
v7 1 0 1 1 v15 1 1 1 0
v8 1 1 1 1 v16 0 1 1 1

v1 = (v1(P1),v1(P2),v1(P3),v1(P4)) = (0,0,0,0),
v2 = (v2(P1),v2(P2),v2(P3),v2(P4)) = (0,0,0,1),

... .... ....

v16 = (v16(P1),v16(P2),v16(P3),v16(P4)) = (0,1,1,1).

Define the order relation ”≤ ” on the setV as:

vi ≤ v j iff vi(Pk)≤ v j(Pk), 1≤ i, j ≤ 16,
k= 1,2,3,4.

We observe that, the algebraic structure
(V,∧,∨,′ ,v1,v8) forms a Boolean algebra, where

vi ∧v j = (min(vi(P1),v j (P1)),min(vi(P2),v j(P2)),

min(vi(P3),v j (P3)),min(vi(P4),v j(P4)))

vi ∨v j = max(vi(P1),v j(P1)),max(vi(P2),v j(P2)),

max(vi(P3),v j(P3)),max(vi(P4),v j(P4))),

and v
′

i = (1− vi(P1),1− vi(P2),1− (vi(P3),1− vi(P4)),
1≤ i ≤ 16.

Also, we see thatv1 andv8 are the smallest and largest
element of the setV, respectively. Now, we formulate.

Theorem 3.3. The algebraic structure(V;∧,∨,′ ,v1,v8)
forms a Boolean algebra.

The Hass diagram of the Boolean algebraV shown as
Figure (1). The corresponding possible values make sense
in GIS called the Egenhofer relations, see[6], given by the
set

G= {vi : vi = (vi(P1),vi(P2),vi(P3), vi(P4)),1≤ i ≤ 8}.

We indicatev1 as the disjoint relation,v2 as the meet
relation,v3 as the equal relation,v4 as the inside relation,
v5 as the cover relation,v6 as the covered by relation,v7 as
the contains relation andv8 as the overlap relation.

Clearly, the poset(G;≤) is a partially ordered set
which is neither meet nor join semi-lattice with the same
operations defined on the Boolean algebra V because
(1,0,1,0) ∨ (1,1,0,0) = (1,1,1,0) and
(1,0,1,0)∧ (1,1,0,0) = (1,0,0,0) do not belong toG.
Figure(2) represents the Hass diagram of the pair(G;≤).
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Fig. 1: The Boolean algebraV = (V;∧,∨,′ ,v1,v8)

Fig. 2: The partially order set(G,≤)

Now, consider the mapFi : B2→ B, B = {0,1}, 1≤
i ≤ 8.

Let F = {Fi(p,q) : p, q∈ {1,0}, 1≤ i ≤ 8}, where

F1(p,q) = ((p′∨q)∨ (p∨q′))′,

F2(p,q) = (p∨q)′,

F3(p,q) = (p′∨q)∧ (p∨q′),

F4(p,q) =

{

1 i f p = q= 1 or p= 0, q= 1
0 i f p = q= 0 or p= 1, q= 0

F5(p,q) =

{

1 i f p = q= 1 or p= 1, q= 0
0 i f p = 1,q= 0 or p= 0, q= 0

F6(p,q) = (p∨q′),

F7(p,q) = (p′∨q) and

F8(p,q) = ((p′∨q)∨ (p∨q′)).

Consider the set

F = {Fi : Fi = (Fi(1,1),Fi(1,0),Fi(0,1),Fi(0,0)), 1≤ i ≤
8}.
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Define the mapα : G→Fi byα(vi)=Fi for all vi ∈G, 1≤
i ≤ 8, where

α(vi(P1)) = Fi(1,1), (vi(P2)) = Fi(1,0),

α(vi(P3)) = Fi(0,1) andα(vi(P4)) = Fi(0,0).

If v3 = (v3(P1),v3(P2),v3(P3),v3(P4)) = (1,0,0,1), then

α(v3(P1)) = F3(1,1) = (1′∨1)∧ (1∨1′)

= (0∨1)∧ (1∨0) = 1,

α(v3(P2)) = F3(1,0) = (1′∨0)∧ (1∨0′)

= (0∨0)∧ (1∨1) = 0,

α(v3(P3)) = F3(0,1) = (0′∨1)∧ (0∨1′)

= (1∨1)∧ (0∨0) = 0,

α(v3(P4)) = F3(0,0) = (0′∨0)∧ (0∨0′)

= (1∨0)∧ (0∨1) = 1.

Hence,

α(v3(P1)) = F3(1,1) , α(v3(P2)) = F3(1,0),

α(v3(P3)) = F3(0,1) , α(v3(P4)) = F3(0,0).

That is

α(v3) = α((v3(P1)),α(v3(P2)),α(v3(P3)),α(v3(P4)))

= (F3(1,1),F(1,0),F3(0,1),F3(0,0))

= F3 = (1,0,0,1).

Hence,v3 corresponding toF̄3. By similar way, for all
vi , 1 ≤ i ≤ 8. Set v4 ≤ v7. Then v4(Pk) ≤ v7(Pk),
k= 1,2,3,4. Now,

α(v4(P1)) = F4(1,1) = 1,

α(v7(P1)) = F7(1,1) = (1′∨1) = 1,

α(v4(P2)) = F4(1,0) = 0,

α(v7(P2)) = F7(1,0) = (1′∨0) = 0,

α(v4(P3)) = F4(0,1) = 1,

α(v7(P3)) = F7(0,1) = (0′∨1) = 1,

α(v4(P4)) = F4(0,0) = 0, and

α(v7(P4)) = F7(0,0) = (0′∨0) = 1.

Hence, in all cases, we get

(α(v4(P1)),α(v4(P2)),α(v4(P3)),α(v4(P4))) ≤
(α(v7(P1)),α(v7(P2)),α(v7(P3)),α(v7(P4)))

That isα(v4)≤ α(v7).
Clearly,v4 is incomparable withv5 . By similar way , we
can prove that for any 1≤ i, j ≤ 8, we havevi ≤ v j implies
thatα(vi)≤ α(v j ), 1≤ i, j ≤ 8.

From the above discussion , we can investigate that

Theorem 3.4.There is one-one correspondence between
the set of Egenhofer relations G and the set of Boolean
vectorsF .

The following Theorem gives the answer of the
following question: what is the smallest number of

formulas can be represents the setF ?.

Theorem 3.5.For eachF i ∈ F ,1≤ i ≤ 8 can be written as
a new formula by usingF2, F6 or F7.
Proof

Since for any p,q ∈ {1,0}. Let
F i = (Fi(1,1), Fi(1,0), Fi(0,1), Fi(0,0)), 1 ≤ i ≤ 8,
whereF2(p,q) = (p ∨ q)′, F6(p,q) = (p ∨ q′) and
F7(p,q) = (p′∨q). Then

F1(p,q) = ¬(F6(p,q)∧¬F7(p,q)),

F3(p,q) = ¬F6(p,q)∧F7(p,q),

F4)(p,q) = ¬F2(p,q)↔ F7(p,q),

F5(p,q) = ¬F2(p,q)↔ F6(p,q), and

F8(p,q) = F6(p,q)∨F7(p,q).

Theorem 3.5, tell us the basic relations of Egenhofer
relations are the meet, cover and contains relations.

4 Construction of Boolean matrices for two
regions with the same exterior

The 9-IM intersection model based on considering the
exterior beside the interior and boundary of two
connected closed regionsA andB. Consider the matrix of
nine intersections given by

M(A,B) =





A◦∩B◦ A◦∩∂B A◦∩Bext

∂A∩B◦ ∂A∩∂B ∂A∩Bext
Aext∩B◦ Aext∩∂B Aext∩Bext





.

By considering the empty and non-empty
intersections of such nine sets, we have the 29 = 512
possible combination. Excluding the impossible cases ,
we get the same 8-relationships as the 4-IM, see [5]. In
this section, we discus in a algebraic view, under certain
conditions, how many relations can be obtained from
9-IM using the 4-IM of two closed regionsA andB ?. The
matrices of 4-IM in the sense of Egenhofer relations are
given by

m1=

(

0 0
0 0

)

, m2=

(

0 0
0 1

)

, m3=

(

1 0
0 1

)

, m4=

(

1 1
0 0

)

,

m5=

(

1 0
1 0

)

, m6=

(

1 1
0 1

)

, m7=

(

1 0
1 1

)

, m8=

(

1 1
1 1

)

.

The matrices representation of 9-IM are given by

D =





0 0 1
0 0 1
0 0 1





, M1 =





0 0 1
0 1 1
1 1 1





, E1 =





1 0 0
0 1 0
0 0 1





,

I1 =

(

1 0 0
1 1 0

)

, N1 =





1 1 1
0 0 1
0 0 1





, C1 =





1 1 1
0 1 1
0 0 1





,

c© 2017 NSP
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B1 =





1 0 0
1 1 0
1 1 1





, V1 =





1 1 1
1 1 1
1 1 1





.

Clearly, for each Boolean matrix of degree 33 of
9-IM, there is no row or column can be(0,0,0) as:

Lemma 4.1.[6] For each matrixM of the 9-IM, there is
no row or column be(0,0,0).

Lemma 4.2. For each matrixM of the 9-IM, then the
element lies in the positionα33 = 1.

Proof. From the definition of the 9-IM, we have for any
two regionsA and B of a topological space(X,τ), the
positionα33 = Aext∩ Bext. Thus

Aext∩Bext = (X−A)∩ (X−B) = X− (A∩B) 6= /0.

And hence in the 9-IM matrix the element lies in the
positionα33 = 1. Now, we can embedding of 4-IM into
the 9-IM as

(

A◦∩B◦ A◦∩∂B
∂A∩B◦ ∂A∩∂B

)

→





A◦∩B◦ A◦∩∂B A◦∩Bext

∂A∩B◦ ∂A∩∂B ∂A∩Bext
Aext∩B◦ Aext∩∂B Aext∩Bext





.

So,
(

0 0
0 0

)

→





0 0 1
0 0 1
0 0 1



,

(

0 0
0 1

)

→





0 0 1
0 1 1
1 1 1



,

(

1 0
0 1

)

→





1 0 0
0 1 0
0 0 1



,

(

1 0
1 0

)

→





1 0 0
1 0 0
1 1 1



,

(

1 1
0 0

)

→





1 1 1
0 0 1
0 0 1



,

(

1 1
0 1

)

→





1 1 1
0 1 1
0 0 1



,

(

1 0
1 1

)

→





1 0 0
1 1 0
1 1 1



,

(

1 1
1 1

)

→





1 1 1
1 1 1
1 1 1



.

For The Eignhofer relations, the question is : How
many Boolean matrices can be obtained under the
constraints of Lemma 4.1 and Lemma 4.2.

For the disjoint relation, i.e. the two regionA andB
are disjoint, under the constraint of Lemmas 4.1 and 4.2,
there is one and only one matrix obtained form the
disjoint relation as.

D =





0 0 1
0 0 1
0 0 1



.

For the meet relation, the two regionA andB are meet in
point or line, by using the constraint of lemmas 4.1 and
4.2, then the remaining value of the intersection value of
α23 = ∂A∩Bext andα32 = Aext∩∂B,

M =





0 0 1
0 1 ?
1 ? 1



.

Then there are 22 possible Boolean matrices for meet
relations as

M1 =





0 0 1
0 1 1
1 1 1



, M2 =





0 0 1
0 1 0
1 0 1



,

M3 =





0 0 1
0 1 1
1 0 1



, M4 =





0 0 1
0 1 0
1 1 1



.

The four matrices are realizable, see [6].

For equal relation, the two regionA and B are
coincide, we embed the equal relation of 4-IM into the
9-IM and apply Lemmas 4.1 and 4.2,

E =





0 0 ?
0 1 ?
? ? 1



,

It remain the value of the intersections ofAo ∩Bext,
and∂A∩Bext, Aext∩Bo andAext∩ ∂B. Then there are 24

possible Boolean matrices as:

E1 =





1 0 0
0 1 0
0 0 1



, E2 =





1 0 0
0 1 0
1 0 1



, E3 =





1 0 1
0 1 1
0 0 1



,

E4 =





1 0 1
0 1 0
1 0 1



, E5 =





1 0 0
0 1 0
1 1 1



, E6 =





1 0 1
0 1 1
1 0 1



,

E7 =





1 0 1
0 1 0
1 1 1



, E8 =





1 0 1
0 1 1
1 1 1



, E9 =





1 0 0
0 1 1
0 1 1



,

E10 =





1 0 0
0 1 1
1 0 1



, E11 =





1 0 1
0 1 0
0 0 1



, E12 =





1 0 1
0 1 1
0 1 1



,

E13 =





1 0 0
0 1 1
0 0 1



, E14 =





1 0 1
0 1 0
0 1 1



, E15 =





1 0 0
0 1 1
1 1 1



,

E16 =





1 0 0
0 1 0
0 1 1



.

It is possible that the matricesE1 to E8 are
represented in [6].

Let XT be the transpose matrix of a matrixX. Then
we have
E1 = ET

1 , E4 = ET
4 , E7 = ET

6 , E9 = ET
9 , E10 = ET

14,
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E11 = ET
2 , E12 = ET

15, E13= ET
16.

For inside relation, the regionA inside the regionB,
under the constraints of Lemmas 4.1 and 4.2, we have

I =





1 0 ?
0 1 ?
? 1 1



.

Then there are 23 possible for meet relations as

I1 =





1 0 0
1 0 0
1 1 1



, I2 =





1 0 1
1 0 1
1 1 1



, I3 =





1 0 0
1 0 0
0 1 1



,

I4 =





1 0 1
1 0 0
0 1 1



, I5 =





1 0 0
1 0 1
0 1 1



, I6 =





1 0 1
1 0 1
0 1 1



,

I7 =





1 0 1
1 0 0
1 1 1



, I8 =





1 0 0
1 0 1
1 1 1



.

The matricesI1andI2 are represented in [6].

For the contains relation, the two regionB inside the
regionA, Consider the constraints of Lemmas 4.1 and 4.2,
we have

N =





1 1 ?
0 0 1
? ? 1





Then there are 23 possible for meet relation as

N1 =





1 1 1
0 0 1
0 0 1



, N2 =





1 1 1
0 0 1
1 1 1



, N3 =





1 1 0
0 0 1
0 0 1



,

N4 =





1 1 0
0 0 1
1 0 1



, N5 =





1 1 0
0 0 1
0 1 1



, N6 =





1 1 0
0 0 1
1 1 1



,

N7 =





1 1 1
0 0 1
1 0 1



, N8 =





1 1 1
0 0 1
0 1 1



.

The matricesN1andN2 are represented in [6]. For the
transpose matrices, we have
I1 = NT

1 , I2 = NT
2 , I3 = NT

3 , I4 = NT
4 , I5 = NT

5 , I6 = NT
6 ,

I7 = NT
7 , I8 = NT

8 .
For the cover relation, the regionA cover the regionB,

we get

C=





1 1 ?
0 1 ?
? ? 1



.

By lemmas 4.1 and 4.2, we have 24 possible matrices

C1 =





1 1 1
0 1 1
1 1 1



, C2 =





1 1 1
0 1 1
1 0 1



, C3 =





1 1 1
0 1 0
1 1 1



,

C4 =





1 1 1
0 1 0
1 0 1



, C5 =





1 1 0
0 1 0
1 1 1



, C6 =





1 1 0
0 1 0
0 0 1



,

C7 =





1 1 1
0 1 1
0 0 1



, C8 =





1 1 1
0 1 1
0 1 1



, C9 =





1 1 0
0 1 1
0 1 1



,

C10 =





1 1 0
0 1 1
1 0 1



, C11 =





1 1 0
0 1 1
1 1 1



, C12 =





1 1 0
0 1 0
1 0 1



,

C13 =





1 1 0
0 1 0
0 1 1



, C14 =





1 1 0
0 1 1
0 0 1



, C15 =





1 1 1
0 1 0
0 0 1



,

C16 =





1 1 1
0 1 0
0 1 1



.

The matrices fromC1 to C4 are represented in [6].

For the covered relation, the regionB cover the region
A, we have

B=





1 0 ?
1 1 ?
? ? 1



.

By Lemma 4.1 and 4.2, then there are 24 possible

B1 =





1 0 1
1 1 1
1 1 1



, B2 =





1 0 1
1 1 0
1 1 1



, B3 =





1 0 1
1 1 1
1 0 1



,

B4 =





1 0 1
1 1 0
1 0 1



, B5 =





1 0 1
1 1 1
0 0 1



, B6 =





1 0 0
1 1 0
0 0 1



,

B7 =





1 0 0
1 1 0
1 1 1



, B8 =





1 0 0
1 1 1
1 1 1



, B9 =





1 0 0
1 1 1
0 1 1



,

B10 =





1 0 1
1 1 0
0 1 1



, B11 =





1 0 1
1 1 1
0 1 1



, B12 =





1 0 1
1 1 0
0 0 1



,

B13 =





1 0 0
1 1 1
0 0 1



, B14 =





1 0 0
1 1 0
0 1 1



, B15 =





1 0 0
1 1 0
1 0 1



,

B16 =





1 0 0
1 1 1
1 0 1



.

The matrices fromB1 to B6 are represented in [6]. For the
transpose matrices, we have
C1 = BT

1 , C2 = BT
2 , C3 = BT

3 , C4 = BT
4 , C5 = BT

5 , C6 = BT
6 ,

C7 = BT
7 , C8 = BT

8 , C9 = BT
9 , C10 = BT

10, C11 = BT
11, C12 =

BT
12, C13 = BT

13, C14 = BT
14, C15 = BT

15, C16= BT
16

For the overlap relation, the matrices are

V =





1 1 ?
1 1 ?
? ? 1





c© 2017 NSP
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Then there are 24 possible

V1 =





1 1 1
1 1 1
1 1 1



, V2 =





1 1 1
1 1 0
1 0 1



, V3 =





1 1 1
1 1 1
1 0 1



,

V4 =





1 1 1
1 1 0
1 1 1



, V5 =





1 1 0
1 1 1
1 1 1



, V6 =





1 1 1
1 1 1
0 1 1



,

V7 =





1 1 1
1 1 0
0 1 1



, V8 =





1 1 0
1 1 1
1 0 1



, V9 =





1 1 0
1 1 1
0 1 1



,

V10 =





1 1 1
1 1 1
0 0 1



, V11 =





1 1 0
1 1 0
1 1 1



, V12 =





1 1 0
1 1 0
1 0 1



,

V13 =





1 1 1
1 1 0
0 0 1



, V14 =





1 1 0
1 1 0
0 1 1



, V15 =





1 1 0
1 1 1
0 0 1



,

V16 =





1 1 0
1 1 0
0 0 1



.

The matrices fromV1 to V4 are represented in [6]. For
the transpose matrices, we have
V1 =VT

1 , V2 =VT
2 , V3 =VT

4 , V5 =VT
6 , V7 =VT

8 , V9 =VT
9 ,

V10=VT
11, V12=VT

13, V14=VT
15, V16=VT

16.

5 Conclusion

Representation of spatial information is important in
many applications such as Geographic Information
System (GIS). In 1990 M. Egenhofer and others
introduced a mathematical method for classifying
topological relationships between spatial regions in the
plane. Many researchers follows Egenhofer and
established the relations between two regions, two lines,
two points, region to line, region to point, and line to
point. In this presentation, we observed the connection
between the spatial geographic relations and the logical
calculus of 4-IM. The smallest set of formulas which
represents the spatial topological relations is obtained.
Also, we gave an algebraic view of all possible Boolean
matrices of the spatial relations of two spatial regions
with a non-empty exterior. As a future work on this topic,
we hope to study more applications of the spatial
geographic relations by using our representation.
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