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Abstract: The problem of non-uniqueness arising in the integral fdaten of an exterior boundary value problem for the elastic
two-dimensional case can be faced using the fundamental@okechnique. In this work, a criterion based on the miréation of the
norm of the modified integral operator is established usimgpke multipole coefficients. As applications, the propbgeocedure in
the case of circle and perturbations of circle are examined.
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1 Introduction number of the integral equation. All the above mentioned
work referred to the acoustical case.

It is well known that the problem of non-uniqueness  Applying the modified Green’s function technique for
arising in the integral formulation of an exterior boundary the elastic case, the problem of the irregular frequencies
value has been treated with the addition of series ofarising in the integral equation of Fredholm type can be
outgoing waves to the free-space fundamental solutionfemoved as well. Although, the main ideas in both
that is with the modified Green’s function technique. This acoustic and elastic cases are the same, however, the
method was introduced by Jone3] pnd Ursell 0] to corresponding results for the elasticity case require more
treat the exterior Dirichlet and Neumann problem for the complicated procedures compared with the acoustical
Helmholtz equation. The appropriate choice of the simplecase. This is due to the complexity of the problem in
multipole coefficients of the added series to the free-spacélasticity. The first work which adopts the modified
fundamental solution guarantees the uniqueneséreen’s function technique in elasticity is due to Jones
solvability of the boundary integral equation which [8], who examined the cavity ii®. In [5,7], Bencheikh
describes the problem. Kleinmann and Roat#l,[have  have been also consider elastic problem&fn In [2,4],
shown that in addition to uniqueness solvability of the the exterior Dirichlet problem irR® is investigated by
integral equation, the simple multipole coefficients of the Argyropoulos,  Kiriaki and ~ Roach, and the
modification could be chosen so that the modified Green'd1on-uniqueness of the boundary integral equation is
function is the best approximation to the actual Green’sovercome with a suitable choice of simple mutipole
function for the problem in the least squares sense. Irfoefficients in the modification. Not so far, we have
[11], the same authors, motivated by a desire not only toPresented another criterion choosing the coefficients of
ensure uniqueness solvability, but also to provide athe modification, that of the minimization of the norm of
constructive method of solving the integral equation, theythe modified fundamental solution for the elastic
have chosen as a criterion, the minimization of the normtwo-dimensional caselp,17.

of the modified integral operator. In the same way, In this paper, the criterion of operators of minimal
Kleinmann and Kress1{ presented another criterion norm via modified Green’s function for the elastic
choosing the simple multipole coefficients of the two-dimensional case is investigated. If the norm of the
modification, that of the minimization of the condition modified integral operator can be made small enough then
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the modified integral equation can be solved by iteration.

So, if the simple multipole coefficients of the 1

modification are chosen to satisfy this criterion of the (_| +K_f) d(p)=g(p) pedD. (2.4)
minimal norm, then the unique solvability of the integral 2

equation is ensured. In the case of three-dimensional ,
elastic waves, some similar results are given byWe note that the operatoi$y and Ky arn’t compact.
Argyropoulos and Kiriaki §]. Indeed, their kernels are singular, but the singular irglegr

This paper is organized as follows. In section 2, we Eq. (2.1) and the corresponding modified Eq. (2.4) admit

present the modified Green’s function technique, also thé* 'égularization procedure as it is described in [13].

free space fundamental solution and the regular part are, Next, we will take the eigenvector expansion of the
expressed via Hankel vector functions. In section 3, acr€en’s function introduced in [6]. So, for the free-space
criterion of optimal modification, the criterion of fundamental solution we have the following expansion :

minimization of the norm of the modified integral iGOEOP’Q)Z ) ol ol =
operator are adopted and based on the optimal simplagrz Xm-026-1%7-1 (Fn (P-)®Fg (P<)). (25)
multipole coefficients for the modification are chosen.  F9 are the vector Hankel functions [1], whele =
The case of circle as an example of the proposed P, R, > Rq P, Re<Ro

procedure is considered in section 4. In order to givelQ, Rp < Rq andP< = {Q’ Re >Ry’ (2.6)
deeper insights, boundaries which can be derived as

. : ; ; . X The FS' are obtained by changing the function of
perturbation of the circle are investigated in section 5. g I y ging unet

Hankel HY of the vector Hankel functions into the
function of Bessell}, [1]. For the regular part of the
modification, apart of the usage of dyads similar to those
2 Formulation of the problem using modified  appeared in Eq. (2.5), we introduce simple terms as in [6]:

Green’s function technique R,
I
HPQ)= gz X 3 3 lanFa (PIeF(Q. (27)

In order to treat an exterior boundary value problem, we M=0d=1
can reformulate it as an integral equation, using the direct
or indirect method. An exterior Dirichlet boundary value Where
roblem for the elastic two-dimensional case can be
p FSL(P) = grad(HA(k Re).EZ(6k))
g
m

described through a boundary integral equation of the )A’

o 2.8
form [6,15 and 18]: Fs?(P) = rot (Hn(K Re).E (28)

andaZ is the simple multipole coefficient$Rp, 6p) are

(1| K_) 6(p) ) D 2.1) the polar coordinates of the poiRt

51 Ko P)=9(p) pedb, : coymd,) o=1 .
2 and ES(6h) — En{ si;((mez)) T=b with
where g is a Holder continuous density, the integral . :{1, m=20

operator Ko is defined as: (Kyp)(p) = ml2, m>0

1 In what follows, we use the usually assumption taken
L [,5TeGo(p,q).¢(q).d €dD, (2.2 Ollows, 1ally P

Z"I(af) %e%E)Ft)e? fﬁ]gﬁ_)z asgljo?nt operat(or ;no(—) the under consideration that the series in (2.7) converges
complex conjugateGg is the fundamental solution ard “”'Cf,?rgl":%.z/%s it _has been proved in [6], the set
is the surface stress operator. The superségpton T~ 1Fm Jm-ow IS @ complete set irLp (D) and linearly

m=0:c0
indicates the action of the operator on the paint independent. Since the elements of that set are not
In order to remove the lack of uniqueness appear

QHrthogonal, then in order to proceed, we define the
. ol=1:2 .

when the boundary value problem is formulated as afollowing set{Fg' +} " " where its elements have the

boundary integral equation we follow the modified following property:

Green'’s function technique. Introducing a regular solutio

H(P,Q) [6], the modified Green’s function is written as < Rkt >=8m dov.  (29)
the superposition of the fundamental solution and the
regular part as: In fact, we can represent every element of the new set as a

linear combination of Hankel vectors:

G1(PQ)=Go(PRQ+H(PQ). (23 FYkL(p) = i iﬁc&g'kﬁg' (P). (210
0o=1/=1

We modify the kernel of Eq. (2.2) with another defined

by usingGsi, and so the operatdfy is modified toKj. By taking the inner products of Eq. (2.10) wiltf' (P) in
The boundary integral equation obtains following a layerthe L, sense, we obtain a linear system with the
theoretic approach is given by : unknownsCZ ' having non-vanishing determinant. This
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. 2 o« 2 o 2
I [R—
+(—> [a%t ay? < TRILTRY? >
4uK2 ngo =1 nZO vgl " "

is established by the linear independencé gf' }gfolj

Solving this system to calculate the coefficie6& 'k of

Eq. (2.10). SFYk - can be computed through Eq. (2.10) <FI'W><FY2,w>]
explicitly. It is obvious from their definition that . 5 ) )
{Fd i}?:olof are linearly independent. " ( ! 2) 5 S 02 T < TFO2,TFY >
4“K m=00=1n=0v=1
<F92w>< FYLw>]

3 Optimal choice of the simple multipole
coefficients

N

i 2 o)
+ -
<4“K2> r;o(; 1nZO

<F22wW><FYZw>].

2 _
> [af’ ay? <TFR2 TRy >
v=1

In the sequel, we will consider a different criterion for
choosing the simple multipole coefficients in the
modification (2.3), from the criterion presented iIr5]. A , .
similar criterion is considered for the acoustical case by !N (3.4) the inner products and norms areinsense.

Kleinmann and Roachlf]. As in their work it is Necessary conditions for the minimum of (3.4) are the

mentioned this criterion does not only assure the unique/@nishing of the gradient, with respect to the coefficients.

(3.4)

solvability of the boundary integral equation but also SO. first, differentiating with respect @'l anda)? we
leads to a constructive method of solving the equation.0btain the relations:
We will prove that the same holds for the elastic 9 Kewi2
two-dimensional case. This argument is established by gaf _ 0
the following theorem. ( r’HKlvng2 )=(g)wel2(dD). (35
Theorem 3.1.The norm|| K| of the modified integral oo
operator K1 is_ r_ninimized if We_'cho'ose the simple From Eq. (3.5) we  conclude that:
tmhgl';leyalgltieoﬁgeﬁ|0|ents of the modification (2.3) through KGTFY! — 4“|K2 52 052,52 ,ad < TRILTRY >
Fyl=0, (3.6)
o £l and

am 'W:_a—%p (3.1)

where 5
af = |TRE|" =2

and

fo =<KZTRILFS'+ >.  (35)

Proof. The operator norm will be minimized if the simple
multipole coefficients in the modification minimize
|[Kyw||®> for each functionw € L,(dD). So we will
calculate the norm qu1W||2, using the expansion for the
kernel given by (2.5) and (2.7), we have :

IKaw]|? = || Kow|®

) 2 - -
S S gt <Kow TRZH >< Fghw>

m=00=1

[
YKz
+aZl < TR Kow >< R W >]

=9 2 -
S S (a2 < Kow TFRZ? >< Fg2w>

m=00=1

YKz
+af? < TRAZ Kow >< F72 W >

H 2 o« 2 oo 2 -
“(gie) 3,35 Sl <TegiTR >

m=00=1n=0v=1

<FZLw>< FyLw>]

K§TRY' — gk TmeoSo-15i188 < TRZTRYZ >
FY2=0. (3.7)

Taking the inner products of (3.6) and (3.7) wigh! +
andFY? L. The unique solution of this system give
andag? as they are expressed via (3.1). It remains to prove
that this choice of simple multipole coefficients provides a
minimum, that is if we denote blyf the modified operator
with the optimal simple multipole coefficients as specified
by (3.1) and byK; the modified operator with any other
choice of simple multipole coefficients, we have to verify
that :

[Kw|| < [[Kaw] Ywe Lp(dD).  (3.8)

Let the simple multipole coefficients in the arbitrary
modification be denoted by :

ol ol

ah =ag (0)+&7, (3.9

whereag! (0) is defined by (3.1). Then we can calculate
|IKzw]| taking into account (3.9) :

IKaw|? = [KOw]®  (3.10)

o 2 2 . -
+<Kiw Y z;hg'a%'<w,Fg' >>

m=00=1/=1

o 2 2 - -
+<y z/zhg'a%' <wFg > Kdw >
/=1

m=00=1
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o 2 2 o 2 2 _
+ S S <hi S <wRE > <w RS, where
m=00=1/=1n=0v=1k=1
where 1 2 ||y 2 P 2
=2mak” | |Hy,(ka)| + — |[Hy(ka)|7 |, 4.3

From (3.6) and (3.7) we have the vanishing of all terms

in the first two inner products of the sum in (3.10). Then 1 2 m?
P (3.10). Then 22 _ orak? UHm(Ka)] TRSLLES |Hm(Ka)|2] L (44

(3.10) becomes : (Ka)
Kow]% = [|[Kow]|® - (Ka)
[[Kaw]|* = [[Kw] Con = 21K | 2 Hiy (k&) i (K@) + 1 Hi (k&) Hyy (K@), (45)
w 2 2 o 2 2 p— - and )
z S Sz zk<hg<>, (312 Am=angh—lcml*.  (4.6)
m=00=1/=1n=0v=1k=1 . . .
where Proof. Taking the inner product of Eq. (2.10) wiktf' and
729 —<wFg' >. (313 using eq. (2.9), we obtain that
So to establish our argument we need to prove that the w 2 2
quantity : > > ;Qﬁ,‘{'klo"'k OmOovik,  (4.7)
p=0p=1s=

o) 2 2 o

2 2 L
22222 S Z3 Z <hZ > (314)  suchthat
m=00=1/=1n=0v=1k=1

is positive semi-defined.
But, by constructing an orthonormal sgg'} = -

1=1:2 . .
from {hg!}7" %, eg. by using a Gram-Schmidt The values of Eq. (4.8) for eaah,v,l,k = 1:2 are
procedure rﬁf and the linear independence of given in [18] as follows:

{h%'}ﬂ:l.:z there exists a set of coeﬁicien{ﬂ%ﬁ's}

1oVIk—< g9l EVK S (4.8)

ol=1:2 and the inner product is defined on the circle.

O:00?

such thatli |0V11 5mn50v, (4-9)
0 2
he! = i Zl zldgg'SugS. (3.15) 1922 — @2, 3y, (4.10)
p=0p=1s=
Then I =—(=1)%cm dm(1—-d0v), (411)
) ) and
RV IS qUAKT A
SRS S S S dgagE <l G2 =~ (-1) Tndm(1-0py).  (412)
p=0pu,5=109=0) r=1
By using Egs. (4.9)-(4.12), we obtain the following linear
z dauls dvuks D D* (3.16) systems :
p=0p,s=1

| {aTnCr%%Il+C 0212 &maaldl (4 13)
whereD is the matrix with elementdsp ° andD* is the mCOHY + 82Co212 = Bms2012 '
Hermitian conjugate. However, DD* is positive
semidefined14], which completes the proofl atCo21 4 TCoY2 = 511 dy2011

Cm%ll_Fam gll2 __ 6{7‘[1601&2

with the same non-vanishing determinant given by Eg.
(4.6). This is established by the linear independence of

{Fg'}%~2in L,(aD) and the Schwartz inequality. The

m=0:c0
unique solution of the system (4.13) gives & and

(4.14)

4 Optimal choice of the simple multipole
coefficients for the case of the circle

Lemma 4.1.If dD is a circle of radiusa, then the

ol L101= 1 . : F221 as they are expressed by (4.1), and the unique
:)(;ﬂg:zlr?: for{ '} m-o., are given by the following solution of the system (4.14) gives B$?* andF3l+ as
Fl11 (a2F—cnF2?) F221 _ (ahF2—caFd) 4.1) they are expressed b)./ (4@ .
mo Am »imo T Am : Theorem 4.2.1f 9D is a circle of radiusa, then the

and optimal multipole coefficients of the modification (2.3),

112, ~—E21 221 12
FH%ZLZ%H‘“TT“F’“), F%“:W, (4.2) which minimize the norm of the modified integral
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operator, given by Eq. (3.1), take the following forms : and

1 ala2 d
all_ 1 %%Wg%w (4.15)
a2 ata2,—cmdm m ahCm—Cmah,
aff = |G + () fp (i )| (416
Am §}naf2n— mCm 7m dAmarzn_tﬁarzn
al=_1 g_r%_k( e )‘h%( e ) , (4.17)
and -
5 122 _c g le cnal
o221 %zﬁ%ﬂ%%%ﬁ . (4.18)

Proof. To calculate the simple multipole coefficiersg,
we must calculate the values 6§ given by (3.3). We
know by [18] that:

KSTRE(p)= [ TRET (@) ToGo (0. p) dse

(4.19)

Using the following expansion for the Green’s function

Am= (2mu)? (uk?K? (2uH[] (ka) — AHp (ka) )
(2H/ (Ka) + Hyn (Ka))

- (2“7'””>2 (kHr’n(ka) - w> (KH’ (Ka) — <Ka>)),

we obtain the following relations :

11 _ ¢21 =1, =1
fo ="fn = 8“K2(am+am Am
T2 a2
_( mam — mam)
+Bm x ) (422
m
and
af%af%—cmam
fl2_ 2 (a%+a%( )
8uK? Am
& al o4l
+Bm(mamA mam)). (4.23)
m

Using (4.22) and (4.23) we obtain the expressions of

Using Eqs. (4.3)-(4.6), (4.19),(4.20) and the facts thatthe multipole coefficientsg as they are expressed via

15 s ka ﬁnvkm)

we obtain that
fal i <T|/:\nq|vTFrgl > z;oiozezlzﬁ=l (4 21)

SHKZ <T|:nvk7-|-|:rgl >< ank7 Frgl L > |V
(18]
8k, = 2mak? 1y (ka) Hyp (ka) + 25 3 (ka) Hi (ka)
82, — 2mak? 3, (Ka) Hr'n(Ka) WJm(Ka) Hon (Ka)|
Em = 2mmakK [K—r’;l\],’n(ka) o (K2) + (13, (ka) H;](Ka)} ,

Hm (ka) + g2 Jf, (Ka) H, (Ka)

al = 2ma(k* (2ud!, (ka) — A 3., (ka)) (2qu (ka) — AHZ, (ka)) + (%”)2

(kH’ - ’;"a)> (1hire) - 222,

— 2ma( (uK?)? (zag(Ka) +Jm(Ka))
(2Ha (Ka) + Ha(Ka)) + (2“7”)2

(KJ{n(Ka)— 73{{1(:51)) <KH’ (Ka) — L/‘/‘;Ka))),

(4.15)-(4.18)T
Theorem 4.3.

If 0D is a circle of radius and the optimal multipole
coefficients of the modification in Eq. (2.3) are given by
Egs. (4.15)-(4.18), then it holds that

[[Kall =

Proof. In view of Lemma 4.1 and Theorem 4.2, the
modified Green’s function admits the following
development:

| Fal(P<)
Gi(p.q) = 4uK2 22 1; <)

® [RS8 (P.)+agiFg (P)]

1
=5[6°(pa+G"(po)] (433
whereGP is the Green’s function for the exterior Dirichlet
problem whileGN is the Green'’s function for the exterior
Neumann problem for the circle. So :

G°(p,g)=0 and TGN (p,q)=0, (434
r) _ k2 /(K A" (k H,<Ka>>
P (@) =2 () ( M) for Rp > aandRy = a. After calculus we obtain that
. Inka) \ (e L e
uK? (kh (ka) — 2 ) (2H7 (Ka) ) + HY (Ka)),
( a) () T4G° (p,a) = —TeG (p,0),  (4.35)
(@© 2017 NSP
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for Ry = Ry = a. Then in the circle it holds that

TqG1(p,q) = 0.

This last result implies that

(4.36)

Kiw=0, YweL,(aD). (4.37)

Hence|Kiw|| = 0 and the integral equation is uniquely
solvable [

5 Optimal choice of the simple multipole
coefficients for a perturbation of a circle

As in [11] we will consider a family of non-circular
boundaries given parametrically by the relation:

R€:a+8¢(ep)a 0< epgzn—a (51)

where¢ andg—z are all bounded. Using the estimates for
the multipole vectors which are established18]|

Fo' (Pe) = ' (Pa) +0(e),
TR (Pe) = TRS' (Pa) +O(e),
<FI RV > =< FI FY*>,+0(e),
<TRS TRV > =< TFZ TRYk >, +0(e),
and

(5.2)
(5.3)
(5.4)
(5.5)

Fo' " (P)=Fg' (P +0(¢), (5.6)

where P; is a point in the perturbed circle whil&,
describes points on the circle of radiasand< , > is
the inner product on the perturbed circle, and, >4 is
the inner product on the circle.

Theorem 5.1.1f dD is defined by (5.1), then the optimal
multipole coefficients of the modification in Eq. (2.3)
minimize the norm of the modified integral operator given
by Eq. (3.1) take the forms:

an =an (@)+0(g), (5.7)

a=ay(a)+0(g), (58

ay =ag(a)+0(e), (5.9)
and

ay=ay(a)+0(g), (5.10)

wherea?! (a) are the optimal multipole coefficients for the
circle of radiusa.

Proof.
Suppose thadD is defined by (5.1). Then from Eq.
(5.5), it follows that

all (P) =ad (P)+0(g), (5.11)

and

NS (P =A% (P)+0(e).  (5.12)

Using Egs. (5.2), (5.6), (5.11) and (5.12), we obtain that

f9(P) =3 (P)+0O(g), (513

This leads to Egs. (5.7)-(5.1Q).

Theorem 5.2.If 9D is defined by Eq. (5.1) and the optimal
multipole coefficients of the modification in Eq. (2.3) are
given by Egs. (5.7)-(5.11), then it holds that

K1l = O(e).  (5.14)

Proof. Suppose thatD is defined by Eqg. (5.1) and the

optimal multipole coefficients of the modification in Eq.
(2.3) are given by Egs. (5.7)-(5.11). In view of Theorem
5.1, it holds that

Tp:Go (Pe,Ge) = Tp.Go (Pa,Ga) +O(€),  (5.15)
Tg:Go (Pe; de) = TgaGo(Pa,Ga) +O(e),  (5.16)
TpeG1(Pe;0e) = TpaG1(Pa,da) +O(€),  (5.17)
Tp:G1(Pede) = TpaGa(Pa;da) +O(€) (5.18)
and
(Kiw) (pe) = (K{w) (pa) +O(g).  (5.19)

By using (4.37) and (5.19) we obtain that
(Kiw)(pe) = O(e),

which leads td|Ky || = O(¢). .

(5.20)

6 Conclusion

In this paper, we have proposed a new criterion of
optimization of the simple multipole coefficients used in
the modified Green’s function for the elastic
two-dimensional case. To that end, we have based on the
minimization of the norm of the modified integral
operator. Some interesting results for the special circula
case have been shown.
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