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Abstract: In this paper, the problem of peristaltic transport of a nanofluid in an asymmetric channel under the effect of induced
magnetic field has been investigated theoretically. The problem is simplified under the assumption of long wave length and law Reynolds
number. Exact analytic solutions for the present problem are obtained. Expressions for the velocity, stream function,temperature
distribution, nanoparticles concentration, pressure gradient, pressure rise, magnetic force function, axial magnetic field, and current
density distribution are computed. The effect of various emerging parameters on the flow characteristic are shown and discussed. The
trapping phenomena have been also discussed. Results show that the magnitude of the velocity decreases in the center of the channel
while it increases near the channel wall with an increase in Hartmann numberM. It is also noted that the size of the trapped bolus
increases in the lower half of the channel when we increase the Hartmann number as well as the local Grashof number.
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1 Introduction

It is well known that nanofluids are nanometer-sized
particles, which is called nanoparticles. These fluids are
engineered colloidal suspensions of nanoparticles in a
base fluid. The nanoparticles used in nanofluids are made
of metals (Al, Cu), oxides(Al2O3), carbides (SiC),
nitrides (AlN, SiN) or nonmetals (Graphite, carbon
nanotubes) and the base fluid is usually a conductive fluid,
such as water or ethylene glycol. Nanofluids have novel
properties that make them potentially useful in many
applications in heat transfer, including microelectronics,
fuel cells, pharmaceutical processes, and hybrid-powered
engines. In engineering devices it has been widely used
for engine cooling/vehicle thermal management, domestic
refrigerator, chiller, heat exchanger, and nuclear reactor,
in grinding, in machining, in space, defense and ships,
and in boiler flue gas temperature reduction. Nowadays,
there is a focus of the researchers in the flow analysis of
nanofluids due to the fluids enhance thermal conductivity
of the base fluid enormously, which is beyond the
explanation of any existing theory. Furthermore are very
stable and have no additional problems, such as

sedimentation, erosion, additional pressure drop, etc. See
for example refs. [1]-[10].

Recently, the MHD peristaltic flow of electrically
conducting fluids have received a great attention of many
researchers [11]-[20]. This is due to its different
applications in medical sciences and bioengineering. The
MHD characteristics are important in understanding some
practical phenomena such as blood pump machine,
Magnetic resonance imaging (MRI) which is used for
diagnosis of brain, cancer tumor treatment, vascular
diseases, hyperthermia, and blood reduction during
surgeries. It has been noticed that there are numerous
attempts of researchers to study MHD peristaltic transport
in the presence of uniform magnetic field, but no much
attention has been given to the peristaltic flows with an
induced magnetic field. Since the first attempt by
Vishnyakov and Pavlov [21] by considering Newtonian
fluids. Later, Mekheimer [22] studied the MHD flow of a
conducting couple stress fluid in a symmetric channel.
Mekheimer et al [23] examined the peristaltic flow of a
magneto-micropolar fluid under the effect of induced
magnetic field. Hayat et al [24] addressed the effect of
induced magnetic field on peristaltic transport of a third
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order fluid. The effect of induced magnetic field on
peristaltic flow of a Carreau fluid had been also
investigated by Hayat et al [25].

In the past few years, Y. Abd elmaboud [26] studied
the influence of induced magnetic field on peristaltic flow.
Akram et al [27] obtained numerical and analytical
solutions for peristaltic flow of a Williamson fluid in the
occurrence of induced magnetic field. Akram and
Nadeem [28] investigated the influence of induced
magnetic field and heat transfer on the peristaltic flow of a
Jeffrey fluid. M. Mustafa et al [29] investigated the effects
of induced magnetic field on the mixed convection
peristaltic motion of nanofluid in a vertical channel
considering a non-uniform motion where they took the
velocity gradients into account and the viscous stress
occurs in the governing equations of motion and
consequently the solutions they obtained are
approximated. In this work we considered the influences
of induced magnetic field on peristaltic flow of a
nanofluid in a horizontal asymmetric channel by
considering that the motion is uniform, i.e. there are no
velocity gradients, in this case the rates of strain disappear
and hence the viscous stresses also disappear. Neglecting
velocity gradients enables us to obtain closed form
solutions to our problem.

The present paper is organized as follows. Section 3
contains the formulation of the problem. In section 4 the
rate of volume flow. section 5 presents the solution of the
problem under consideration. Section 6 deals with the
results. Discussion, and trapping phenomenon. The
conclusions have been summarized in Section 7.

2 Problem formulation

We aim at considering the peristaltic flow of an
incompressible viscous electrically conducting nanofluid
in a two dimensional infinite asymmetric channel of
width d1+ d2. Asymmetry in the channel is produced by
assuming the peristaltic wave trains propagating with
constant speedc along the walls to have different
amplitudes and phases. The shapes of the channel walls
are presented as:

H1(X , t) = d1+ a1cos(
2π
λ

[X − ct]),Upper wall, (1)

H2(X , t) =−d2− a2cos(
2π
λ

[X − ct]+φ),Lower wall,

(2)
wherea1, a2 are the amplitudes of the upper and lower
waves, λ is the wave length,c is the velocity of
propagation,t is the time,X is the direction of wave
propagation,φ is the phase difference and varies in the
range 0≤ φ ≤ π , note thatφ = 0 corresponds to an
asymmetric channel with waves out of phase andφ = π

describes the case where waves are in phase. Further,d1,
d2, a1, a2, andφ satisfy the following inequality,

a2
1+ a2

2+2a1a2cosφ ≤ (d1+ d2)
2. (3)

so that the walls will not intersect with each other. We
choose cartesian coordinates system for the channel with
X along the center line of the channel andY is transverse
to it. A constant magnetic field of strengthH0 acting in
the transverse direction results in an induced magnetic
field H(hx(X ,Y, t),hY (X ,Y, t),0). The total magnetic field
thus is H+(hx(X ,Y, t),H0 + hY (X ,Y, t),0). Denoting the
velocity componentsU and V along the X and Y
directions respectively in the fixed frame, the velocity
field is V = (U(X ,Y, t),V (X ,Y, t),0). The transformation
from laboratory frame of reference(X ,Y ) to wave frame
of reference(x,y) is given by

x = X − ct, y = Y, u =U − c, v =V, and p(x) = P(x, t),
(4)

where (u,v), p and (U,V), P are the velocity components
and pressure in the wave and fixed frames of reference
respectively.

The governing equations of motion for the present flow
are (see [22] and [29])
(I) The Maxwell’s equations

∇.H = 0, ∇.E = 0, (5)

∇×H = J, J = σ [E+ µe(V ×H)], (6)

∇×E =−µe
∂H
∂ t

, (7)

(II) The continuity equation

∇.V = 0, (8)

(III) The momentum equation

ρ f
dV
dt

=−∇P+ µ∇2V + µe(H+.∇)H+
−

µe

2
∇H+2+ f,

(9)
(IV) The equation of nanofluid temperature

(ρc′) f
dT
dt

= k∇2T +(ρc′)p[DB∇C∇T +(DT/T0)∇T ∇T ],

(10)
(V) The nanoparticle volume fraction phenomena

dC
dt

= DB∇2C+(DT/T0)∇2T, (11)

(VI) The induction equation

∂H+

∂ t
= ∇× (V ×H+)+

1
ζ

∇2H+, (12)

where,µe is the magnetic permeability,ρ f is density of
the fluid, d

dt is the material derivative,µ is viscosity of the
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Fig. 1: Geometry of the problem.

fluid, ∇2 is laplacian operator,t is the time,(ρc′) f is the
heat capacity of base fluid,(ρc′)p is the effective heat
capacity of the particles material,c′ is the volumetric
volume expansion coefficient,C is the nanoparticle
volume fraction, T is the dimensional nanoparticle
temperature,T0 is fluid mean temperature,DB is the
brownian diffusion coefficient and DT is the
thermophoretic diffusion coefficient.

To describe the fluid flow in a non-dimensional form
we define the following quantities

x∗ =
x
λ
,y∗ =

y
d1

,u∗ =
u
c
,v∗ =

v
c
,h1 =

H1

d1
,h2 =

H2

d1
,

δ =
d1

λ
,Re =

ρd1c
µ

, t∗ =
c
λ

t,ν =
µ
ρ f

, p∗ =
pd2

1

cλ µ
,b =

a2

d1
,

d =
d2

d1
,a =

a1

d1
,α =

k
(ρc′) f

,θ =
T −T0

T1−T0
,Ω =

C−C0

C1−C0
,

Nb =
ρc′pDB(c1− c0)

(ρc′) f α
,Nt =

ρc′pDT (T1−T0)

(ρc) f αT0
,

Gr =
αg(T1−T0)d2

1

νc
,Br =

αg(C1−C0)d2
1

νc
,Pr =

ν
α
,

S =
H0

C

√

µe/ρ f ,Φ =
Φ

H0d1
, pm = p+

1
2

Reδ
µeH+2

ρ f c2

Rm = σ µecd1,hX = ΦY ,hY =−ΦX , (13)

whereRe is the Reynolds number,δ is the dimensionless
wave number,ν is the dynamic viscosity parameter,Pr is
the Prandtl number,Nb is the Brownian motion parameter,
Nt is the thermophoresis parameter,Gr is the local
temperature Grashof number,Br is the local nanoparticle
Grashof number.

The flow equations for this model in dimensionless
form under the assumptions of long wavelength and low
Reynolds number after dropping the stars shall take the
following forms

∂ pm

∂x
=

∂ 3ψ
∂y3 +ReS2 ∂ 2Φ

∂y2 +Grθ +BrΩ , (14)
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Fig. 2: Variations of velocity profile u with y for various values of
Hartmann numberM (panela), local Grashof numberGr (panel
b), amplitude of upper wavea (panelc), and width of the channel
d (paneld). The other parameters chosen are:F = 2,x = 1,d =
1,a= 0.3,b= 0.7,Nb = 0.8,Nt = 0.5,φ = 0.2,Gr = 0.5,Br = 0.5
(panela); F = 2,x = 1,d = 1,a = 0.3,b = 0.7,Nb = 0.8,Nt =
0.5,φ = 0.2,M = 1,Br = 0.5 (panelb); F = 2,x = 1,d = 1,M =
1,b = 0.7,Nb = 0.8,Nt = 0.5,φ = 0.2,Gr = 0.5,Br = 0.5 (panel
c); F = 2,x = 1,M = 1,a = 0.3,b = 0.7,Nb = 0.8,Nt = 0.5,φ =
0.2,Gr = 0.5,Br = 0.5 (paneld).

∂ pm

∂y
= 0, (15)

∂ 2θ
∂y2 +Nb

∂θ
∂y

∂Ω
∂y

+Nt(
∂θ
∂y

)2 = 0, (16)

∂ 2Ω
∂y2 +

Nt

Nb

∂ 2θ
∂y2 = 0, (17)

E =
∂ψ
∂y

+
1

Rm

∂ 2Φ
∂y2 . (18)

Using (18) in (14) we get

∂ pm

∂x
=

∂ 3ψ
∂y3 +M2(E −

∂ψ
∂y

)+Grθ +BrΩ , (19)

whereM2 = ReS2Rm is the Hartman number. Eliminating
the pressure between (15) and (19) we get

∂ 4ψ
∂y4 −M2 ∂ψ2

∂y2 +Gr
∂θ
∂y

+Br
∂Ω
∂y

= 0, (20)

The corresponding boundary conditions are

ψ =
F
2
,

∂ψ
∂y

=−1, at y = h1(x), (21)
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Fig. 3: Variations of the axial pressure gradientdp
dx with x

for various values of Hartmann numberM (panela), width of
the channelk (panel b), local nanoparticles Grashof number
Br (panelc), amplitude of lower waveb (paneld). The other
parameters chosen are:F = −2,d = 1,a = 0.3,b = 0.7,Nb =
0.8,Nt = 0.5,φ = 0.02,E = 0.1,y = 1,Gr = 0.5,Br = 0.5 (panel
a); F = −2,M = 0.1,a = 0.3,b = 0.7,Nb = 0.8,Nt = 0.5,φ =
0.02,E = 0.1,y = 1,Gr = 0.5,Br = 0.5 (panelb); F = −2,d =
1,a = 0.3,b = 0.7,Nb = 0.8,Nt = 0.5,φ = 0.02,E = 0.1,y =
1,Gr = 0.5,M = 0.1 (panelc); F = −2,d = 1,a = 0.3,M =
0.1,Nb = 0.8,Nt = 0.5,φ = 0.02,E = 0.1,y = 1,Gr = 0.5,Br =
0.5 (paneld).
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Fig. 4: Variations of dimensionless average rise in pressure∆Pλ
againstΘ for various values of Hartmann numberM (panela),
local temperature Grashof numberGr (panelb), constant electric
field E (panelc), width of the channeld (paneld). The other
parameters chosen are:Nb = 0.8,Nt = 0.5,d = 1,a = 0.3,b =
0.7,Gr = 0.5,Br = 0.5,φ = π

4 ,E = 1 (panela); Nb = 0.8,Nt =
0.5,d = 1,a = 0.3,b = 0.7,M = 0.5,Br = 0.5,φ = π

4 ,E = 1
(panel b); Nb = 0.8,Nt = 0.5,d = 1,a = 0.3,b = 0.7,Gr =
0.5,Br = 0.5,φ = π

4 ,M = 0.5 (panelc); Nb = 0.8,Nt = 0.5,M =
0.5,a = 0.3,b = 0.7,Gr = 0.5,Br = 0.5,φ = π

4 ,E = 1 (paneld).
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Fig. 5: Variations of magnetic force functionΦ versus space
variable y for different values of magnetic Reynolds number
Rm (panela), Hartmann numberM (panelb), local temperature
Grashof numberGr (panelc), and thermophoresis parameterNt
(paneld). The other parameters chosen are:F = 6,d = 2,a =
0.7,b = 1.4,Nb = 0.8,Nt = 0.5,φ = π

2 ,M = 2,Gr = 0.02,Br =
1.5,E = 3.5 (panel a); F = 6,d = 2,a = 0.7,b = 1.4,Nb =
0.8,Nt = 0.5,φ = π

2 ,Rm = 5,Gr = 0.02,Br = 1.5,E = 3.5 (panel
b); F = 6,d = 2,a = 0.7,b = 1.4,Nb = 0.8,Nt = 0.5,φ = π

2 ,M =
2,Rm = 5,Br = 1.5,E = 3.5 (panelc); F = 6,d = 2,a = 0.7,b =
1.4,Nb = 0.8,Rm = 5,φ = π

2 ,M = 2,Gr = 0.02,Br = 1.5,E = 3.5
(paneld).
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Fig. 6: Variations of axial induced magnetic fieldhx against
space variabley for different values magnetic Reynolds number
Rm (panela) and constant electric fieldE (panelb). The other
parameters chosen are:F =−3.5,d = 2.2,a = 0.7,b = 0.7,Nb =
0.8,Nt = 0.5,φ = π,M = 3,Gr = 0.2,Br = 1,E = 4 (panela);
F = −3.5,d = 2.2,a = 0.7,b = 0.7,Nb = 0.8,Nt = 0.5,φ =
π,M = 3,Gr = 0.2,Br = 1,Rm = 2 (panelb).

ψ =−
F
2
,

∂ψ
∂y

=−1, at y = h2(x), (22)

θ = 0, Ω = 0, Φ = 0, at y = h1(x), (23)

θ = 1, Ω = 1, Φ = 0, at y = h2(x), (24)
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Fig. 7: Variations of local temperature of the fluidΘ with y
for various values of Brownian motion parameterNb (panela),
thermophoresis parameterNt (panel b). The other parameters
chosen are:d = 1,a = 0.3,b = 0.5,Nt = 1,φ = 0.2,x = 1 (panel
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-0.5 0.0 0.5 1.0

0.0

0.1

0.2

0.3

0.4

y

Ω
(x
,y
)

Nb=0.7

Nb=0.9

Nb=1.1

Nb=1.3

(a)

-0.5 0.0 0.5 1.0
-0.1

0.0

0.1

0.2

0.3

0.4

0.5

y

Ω
(x
,y
)

Nt=0.6
Nt=0.8
Nt=1.0
Nt=1.2

(b)

Fig. 8: Variations of nanoparticles concentrationΩ with y for
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thermophoresis parameterNt (panel b). The other parameters
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Fig. 9: Variations of the current density distributionJz within
y for different values of magnetic Reynolds numberRm (panel
a), constant electric fieldE (panel b), Hartmann numberM
(panelc), and instantaneous volume flow rateΘ (paneld). The
other parameters chosen are:Θ = 6,d = 1,a = 0.3,b = 0.7,Nb =
0.8,Nt = 0.5,φ = π
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Fig. 11: Streamlines for three different values of local
temperature Grashof numberGr. The other parameters chosen
are: F = 0.2,d = 1,a = 0.5,b = 0.5,φ = 0.02,Nb = 0.8,Nt =
0.5,M = 1,Br = 0.5.

where,

h1(x) = 1+ acos2πx, h2(x) =−d− bcos(2πx+φ).
(25)

3 Rate of volume flow

The volume flow rate in wave frame of reference is given
by

q =
∫ h1(x)

h2(x)
u(x,y)dy, (26)

whereh1, h2 are functions of x alone.
The instantaneous volume flow rate in the fixed frame is
given by

Q =

∫ H1(x,t)

H2(x,t)
[u(x,y, t)+ c]dy = q+ ch1− ch2, (27)

in which H1, H2 are functions of x and t.
The time-mean flow over time periodT = λ/c at a fixed
position is given by

Q̄(x, t) = 1
T

∫ T
0 Q(x,y)dt = 1

T

∫ T
0 (q+ ch1− ch2)dt = q+ cd1+ cd2.

(28)
If we find the dimensionless mean flowΘ in the laboratory
frame andF in the wave frame according to

Θ =
Q̄

cd1
, F =

q
cd1

, (29)

one finds that Eq. (28) becomes

Θ = F +1+ d, (30)
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in which

F =

∫ h1

h2

udy. (31)

4 Closed form solution of the model

On integrating (17) twice with respect toy and then
inserting the resulted equation into (16), we obtain

∂ 2θ
∂y2 +NbC1(x)

∂θ
∂y

= 0. (32)

This equation can be exactly solved to give the temperature
distribution, and hence the nanoparticles concentrations,
as

θ (x,y) =C3(x)+C4(x)e
−NbC1(x)y, (33)

Ω(x,y) =C2(x)+C1(x)y−
Nt

Nb
[C3(x)+C4(x)e

−NbC1(x)y],

(34)
whereCi(x), i = 1,2,3,4 are unknown functions to be
determined. On applying the boundary conditions (23,
24) on (33, 34), and then solving the resulted equations,
we get

C1(x) =
Nb +Nt

Nb(h2− h1)
, C2(x) =

(Nb +Nt)h1

Nb(h1− h2)
, (35)

C3(x) =
e−NbC1(x)h1

e−NbC1(x)h1 − e−NbC1(x)h2
,

C4(x) =
1

e−NbC1(x)h2 − e−NbC1(x)h1
. (36)

On differentiating (33) and (34) with respect toy, then
substituting in Eq.(20), we get

Ψ = A1+A2y+A3 cosh(My)+A4 sinh(My)+
S1eS2y

S2
2(S

2
2−M2)

−

S3y2

2M2 (37)

where

S1 = (GrNb −BrNt)C1(x)C4(x), S2 =−NbC1(x),

S3 =−BrC1(x), (38)

and the constantsAi, i = 1,2,3,4 are constants to be
determined. On applying the boundary conditions (21,
22) on (37). (These constants can be easily obtained
through using the Mathematica software). Substituting
Eqs. (33), (34), and (37) into Eq. (19), we obtain that

∂ pm

∂x
=

S1eS2y

S2
+ S3y+Grθ +BrΩ +M2(E −A2). (39)

The non dimensional pressure rise over one wavelength for
the axial velocity is given by

∆Pλ =

∫ 1

0
(

∂Pm

∂x
)dx. (40)

The magnetic force functionΦ can be obtained from (18)
as follows

Φ =
1
2

RmEy2
−Rm[

1
2

A2y2+
1
M
(A3sinh[My]+A4cosh[My])

+
S1eS2y

S3
2(S

2
2−M2)

−
S3y3

6M2 ]+A5y+A6. (41)

whereA5, A6 are constants can be determined by applying
the boundary conditions (23) and (24). The axial induced
magnetic field and current density are given by

hx =
∂Φ
∂y

, Jz =−
∂hx

∂y
(42)

Now we are in a position to discuss the results which we
are obtained. This is seen in the next section.

5 Results and Discussion

To study the physical and graphical significance of
various parameters on nanofluid flow in an asymmetric
channel under the effects of induced magnetic field, Figs.
(2)-(11) have been plotted. The effects of Hartmann
number (M), local temperature Grashof number (Gr),
amplitude of upper wave (a), and width of the channel (d)
on the axial velocity can be observed through Fig. 2. It is
clear from Fig. 2(a) that an increase in M causes decrease
in magnitude of axial velocity U at the center of the
channel for large values of M. From physical point of
view this result is in accordance with the classical
Hartmann result that ”increasing the magnetic field
strength led to decay in the velocity”. Fig. 2(b) shows the
influence of Gr on axial velocity distribution, it is
observed that asGr increases, the velocity increases in the
region y ∈ [−1.46,−0.149]. An increasing inGr means
reducing the drag force and hence causes an increasing in
the axial velocity. Fig. 2(c) depicts that the axial velocity
decreases with an increase in the amplitude of upper wave
a in the regiony ∈ [−1.42,0.12] and increase in the rest
of the region. The situation is completely opposite in Fig.
2(d), the axial velocity increases in the region
y ∈ [−1.65,−0.647] and decreases in the rest of the
region with an increase in width of the channeld.

The pressure gradient for different values the
Hartmann numberM, width of the channeld, local nano
particle Grashof numberBr, and amplitude of lower wave
b is plotted in Fig. 3. It had been founded that the
magnitude of pressure gradient increases with an increase
in M, Br, andb while it decreases ifd is increased. It is
also noticed that forx ∈ [0,0.3] and x ∈ [0.7,1] the
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magnitude of pressure gradient is small. This leads to the
fact that flow can easily pass in the middle of the channel.
The effects of Hartmann numberM, local temperature
Grashof numberGr, constant electric fieldE, and width
of the channeld on the dimensionless average rise in
pressure ∆Pλ against the mean flow rateΘ are
investigated in Fig. 4. The expression of pressure rise as
shown in Eq. (52) is computed numerically by using
MATHEMATICA software. This graph is divided to four
regions as follows:
(i) The region (Θ > 0,∆Pλ > 0) refer to peristaltic
pumping.
(ii) The region(Θ > 0,∆Pλ < 0) refer to augmented flow
or copumping.
(iii) The region (Θ < 0,∆Pλ > 0) refer to retrograde or
backward pumping.
(iv) The region(Θ < 0,∆Pλ < 0) refer to that the flow is
reversed to focus of the peristaltic motion.

It is noticed that there is a linear relation between the
average rise in pressure and the mean flow rate, also
increasing Θ reduces the average rise in pressure,
furthermore, in the peristaltic region, the maximum mean
flow rate is achieved at zero average rise in pressure and
the maximum average rise in pressure obtained at a zero
mean flow rate. Fig. 4(a) shows the variation of∆Pλ
againstΘ for various values of Hartmann numberM. It is
clear that an increase inM results in an increase of the
peristaltic pumping, the free pumping(∆Pλ = 0), and
retrograde regions. Figs. 4(b, c) examine the variation of
∆Pλ againstΘ for various values of local temperature
Grashof numberGr and the constant electric fieldE. It is
observed that increasingGr and E led to an increase in
peristaltic pumping rate and also an increase in the
pressure rise. The variation of∆Pλ versusΘ for different
values of width of the channeld is presented in Fig. 4(d).
It is obvious that the pressure rise increases in the
peristaltic pumping and copumping regions, while it
decreases in the retrograde region with an increase ind.
The graphical results of the magnetic force functionΦ
versus space variabley for different values of magnetic
Reynolds numberRm, Hartmann numberM, local
temperature Grashof numberGr, and thermophoresis
parameterNt are shown in Fig. 5. It is observed from Fig.
5(a) that the magnitude of magnetic force function
increases with the increase inRm. In Figs. 5(b) to 5(d) it is
observed that with an increase inM, Gr, and Nt the
magnitude of magnetic force function decreases.

The expressions for axial induced magnetic fieldhx
against space variabley for different values magnetic
Reynolds numberRm and constant electric fieldE are
displayed in Fig. 6. It is noticed thathx andy are inversely
proportional to each other if we increasedRm andE in the
region −4.4 < y < 0, hxdecreases, while in the region
0 < y < 4.2, hx increases with an increase inRm andE.
Fig. 7 represents the effect of Brownian motion parameter
Nb and thermophoresis parameterNt on the local
temperature of the fluid. It is clear that the local

temperature of the fluid increases whenNb and Nt are
increased and this is in accordance with the conclusion
that simultaneous increase in the Brownian motion
parameter and thermophoresis parameter produces an
increase in the temperature specially for sufficiently
stronger thermophoresis effects.

The nanoparticles concentration profiles for different
values of Brownian motion parameterNb and
thermophoresis parameterNt are plotted in Fig. 8. It is
obvious that increasingNb led to an increase in the
concentration of nanoparticles, while increasingNt led to
decrease the concentration of nanoparticles.

Figs. 9(a)-9(d) describe the current density
distribution Jz within y for different values of magnetic
Reynolds numberRm, constant electric fieldE, Hartmann
numberM, andΘ . It is noticed that magnitude ofJz near
the center of the channel and decreases near the channel
wall when Rm is increased (Fig. 9a). The situation is
reversed in Fig. 9c, increasingM decreasesJz near the
center of the channel and increases it near the channel
wall. Also, E and instantaneous volume flow rateΘ have
opposite effects onJz, increasingE decreasesJz and
increasingΘ led to an increase inJz.

5.1 Trapping phenomenon

The trapping for different values of Hartmann numberM
and local temperature Grashof numberGr is shown in
Figs. 10 and 11. It is seen from Fig. 10 that the size of
trapping bolus increases by increasingM in the upper and
lower parts of the channel while the number of the
trapping bolus decreases only in the upper half of the
channel. Fig. 11 presents that the size of trapping bolus
decreases in the upper part of the channel and increases in
the lower part with an increase inGr.

6 Conclusions

In the present paper, the effect of induced magnetic field
on peristaltic flow of a nanofluid in an asymmetric
channel is studied. The problem is simplified under the
assumptions of long wave length and low Reynolds
number. Exact and closed form solutions of the problem
have been presented. The results are discussed through
graphs. The main findings are summarized as follows:
1- The magnitude of velocity decreases in the center of
the channel and increases near the channel wall with an
increase inM.
2- Axial pressure gradient increases with an increase in
M, Br, andb, while it decreases ifd is increased.
3- The pressure rise increases with an increase inGr and
E.
4- The magnitude value of magnetic force function
increases with an increase inRm and decreases ifM, Gr,
andNt are increased.
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5- Rm and E have opposite effects on axial induced
magnetic field.
6- IncreasingNb and Nt led to an increase in the local
temperature of the fluid.
7- The concentration of nanoparticles increases by
increasingNb and decreases with an increase inNt .
8- Rm and M have opposite influences on the current
density distribution.
9- The number of trapped bolus decreases with an
increase inM in the upper half of the channel.
10- The size of trapped bolus increases in the lower half
of the channel by increasingM andGr.
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