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1 Introduction study of inequalities was started in the classical b [
and continued inf]. Nowadays the theory of inequalities
In recent years several extensions and generalizations still being intensively developed. This fact is confirmed
have been considered for classical convexity, and thdy a great number of recent published boo&k$fland a
theory of inequalities has made essential contributions tdiuge number of articles on inequalitie3 4,5,13,15,16,
many areas of Mathematics. In this paper we shall deaR3,26,41,50,51,53]. Thus, the theory of inequalities may
with an important and useful class of functions called be regarded as an independent area of mathematics.
operator convex functiondVe introduce a new class of The convexity of functions plays a significant role in
generalized convex functions, namely the class ofmany fields, for example, in biological system, economy,
operator h-convex functiohe theory of operator/matrix optimization and so on28,48]. And many important
monotone functions was initiated by the celebrated papeinequalities are established for the class of convex
of C. Léwner §2], which was soon followed by F. Kraus functions. The Hermite-Hadamard inequality (1) and
[39) on operator/matrix convex functions. After further Jensen’s Inequality (2) have been the subject of intensive
developments due to some authors (for instance, J. Bend&gsearch, and many applications, generalizations and
and S. Shermarif], A. Koranyi[3§], and U. Franz25)), improvements of them can be found in the literature (see,
in their seminal paper3[l] F.Hansen and G.K. Pedersen for instance 9,22,40,46,47] and the references therein).
established a modern treatment of operator monotone andL. Jensen(19058f] proved the following inequality:

convex functions. In 2,101833 are found Theorem 1. Jensen’s Classical Inequalitg] Let f be

compre.h.ensive expositions on thg subject matter. _a convex function ofia,b]. Then for any x< [a,b] and
Inequalities are one of the most important instrument N\ 10,1, (i = 1,...,n) with S, A; = 1, we have
) ) PR 1= )

many branches of Mathematics such as Functional

Analysis, Theory of Differential and Integral Equations, n n

Probability Theory, etc. They are also useful in f<zl)\ixi>§ZAif(Xi). (1)
mechanics, physics and other sciences. A systematic i= i=
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Theorem 2. Jensen’s Integral inequality. LetQ, >, u) elementary results from the continuous functional
be a probability measure space; iE.be ac—algebraof calculus. The functional calculus is defined by the
subsets of a non-empty s& and u: > — [0,1] be a  spectral theorem.

probability measure. Then for an integrable function The notion of a convex function plays a fundamental role

g:Q —-RwithgQ) C I, we have in modern mathematics. The theory of convex functions
has been studied mostly due to its usefulness and
f (/ gdu) S/ f ogdy. applicability in Optimization. We recall some concepts of
Q Q convexity that are well known in the literature.

Jensen’s inequality has been widely applied in many areagefinition 1. A function f: 1 — R is said to be convex
of research, e.g. probability theory, statistical physic&l  ¢,1ction over I if for any yy € | and for any te [0,1] we

information theory. have the following inequalit
The inequality 1) reduces fom = 2 to the the condition gineq y

(3) and it follows in general for induction. The opposite f(tx+ (1—t)y) <tf(x)+ (1—t)f(y). (3)
inequality is obtained for concave functions. Jensen B

realized the importance of his inequality as a vehicle topefinition 2. [ 27]] We shall say that a function |
collect a number of known, but seemingly unrelatedR _ R is a Godunova-Levin function or fe Q(l)if fis

inequalities under the same umbrella as well as anon negative and for eachye I andte (0,1) we have
generator of many new inequalities, each generated
simply by choosing appropiate convex (or concave) f(x) f(y
function. fltx+(1-t)y) < ¥+—1(—)t'
From the results founded by Hadamard ia9|| the
Hermite-Hadamard (double) inequality for convex Definition 3. [[ 20]]We say that f:1 — R is aP-function,
functions on an interval of the real line is usually stated asor that f belongs to the class(P, if f is a non-negative
follows. This classical inequality provides estimates of function and for all xy e 1, t € [0, 1] we have
the mean value of a continuous functibn[a,b] — R.

— < .
Theorem 3. Hermite-Hadamard’s Inequality4{]. Letf Flx+ (1-1y) < F09 + 1Y)
be a convex function oria,b, with a < blIf fis  pefinition 4. [[ 1] Let s € (0,1]. A function f: [0,c0) —
integrable onfa, b], then [0,00) is nameds-convex (in the second sense), ordf K2

b if
f (%)) < bi/ f(x)dx < @+, (2) fAXH (L= A)y) <ASE(X) + (1—A)5F(y)
—a.Ja 2
The interested reader can find the history of the
Hermite-Hadamard inequality in the historical note by
D.S.Mitrinovic and 1.B. Lackovic44] and [43]. Both has
been studied widely and in recent years they have foun
generalizations thereof using generalized conve
functions. In particular, for operator functions of positi

self-adjqint operators in a Hilbert spakle Definition 5. [[52]] Let h : J — R be a non negative
Inspired and motivate by the work of Dragom21,  fnction and he 0, definided on an interval & R, with
Ghazanfari in 26], Erdas et al. 23], Horvath et al. 85, (0 1)  J. We shall say that a function:f — R , defined

T.Andoin [1], L. Horvath [35, I. Kim [37], S. Salas49, o an interval Ic R, is h-convex if f is non negative and
in this paper, we define a novel class of convex functionsq following inequality holds

calledoperator h-convex functioWe establish some new

generalized Jensen and Hermite-Hadamard inequalities f(tx+(L—t)y) <h()f (X)+h@—t)f(y)

for operatorh-convex functionsThis paper is organized

as follows: In Section 2 we provide some notations, for any xy < | and for allt (0,1).

definitions and recall well known fundamental theorems.

In section 3, we establish the main results of the article:For some results concerning this class of functionssge |

the generalized Jensen‘s inequality and generalized1,50].

Hermite-Hadamard's inequality fooperator h-convex We can see, from this definition, that this class of

functions functions contains the class of Godunova-Levin
functions. It also contains the class of

for each xy € (0,00) andA € [0,1].

It can be easily seen that fer= 1, s—convexity reduces to
rdinary convexity function.
significant generalization of convex functions is that of
-convex functionstroduced by S.Varosanec in [32].

2 Preliminaries 1. If h(t) = 1 then anh—convex functionf is a
P—function.

Our purpose in this section is to establish some basic 2. If h(t) =t® se (0,1] then arh—convex functionf is

terminology, we review briefly and without proofs some ans—function.
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3. Ifh(t) =t3, with s= —1 then arh—convex function

f is a Godunova-Levin function.

In order to achieve our results we need the following
definitions and preliminary. WitiB(H) we shall denote
the C*—algebra commutative of all bounded operators
over a Hilbert spacel with inner product,). Let < be a
subalgebra oB(H). An operatorA € </ is positive if
(Ax,x) > 0 for all x € H. Over &/ there exists an order
relation by means

A<B if (Axx) < (BxX)

or
B>Aif (BxX) > (AxX)

for A,B € o7 selfadjoint operators and for adle H.

The Gelfand map established a—isometrically
isomorphism @ between the setC(o(A)) of all
continuous functions defined over the spectrumAef
denoted byo (A), and theC*—algebreC* (A) generated by
A and the identity operatdiy overH as follows:
Foranyf,ge C(og(A)) anda, 3 € C (Complex numbers)
we have

1. @(af+Bg)=ad®(A)+Bd(B)
2. ®(fg)=D(A)®(B) and @ (T) = D (f)’
3. ||¢’(f)|\=||f||1=t€SU(g)|f(t)l

4. @ (fg) =14 and @ (fy) = A, wherefp(t) =1y
fi(t) =tforallt € o(A)

with this notation we define
f(A)=o(f)

and we call it the continuous functional calculus for a
selfadjoint operatoA.

If Ais a selfadjoint operator anflis a continuous real
valued function oro (A) then

f(t)>0forallte o(A) = f(A) >0

thatis to sayf (A) is a positive operator ovét. Moreover,
if both functionsf, g are continuous real valued functions
ono(A) then

f(t) >g(t) forallt € o(A) = f(A) > g(A)

respect to the order iB(H).

Definition 6. Let H be a Hilbert space and € R an
interval. A continuous function fl1 — R is called
operator convex with respect to H if

f(AA+(1—A)B) < Af(A) +(1—A)f(B)

for all A,B € B(H)s® with o(A)ud(B) C | and for all
scalarsA € [0,1]. f is called operator convex of order
n e N if it is operator convex with respect to H C".
Finally, f is simply called operator convex if there is an
infinite dimensional Hilbert space H such that f is
operator convex with respect to.H

HereB(H)S2is the set of selfadjoint bounded operators on
the Hilbert space Hg(A),o(B), denotes the spectrum of
AandB, andf(A) and f(B) are defined by the continuous
functional calculus. We refer the reader td9] for
undefined notions o@* —algebra theory.

As illustration below we state some classical theorems on
operator inequalities.

Theorem 4. [Bendat and Shermanlf]] f is operator
convex if and only if it is operator convex of every order
n € N, and this last property holds if and only if it is
operator convex with respect to the Hilbert sp#é¢C).

Theorem 5. [F. Hansen and G.K. Pedersen3]]] A
continuous function f defined on an interval | is operator
convex if and only if

f aixja; | <y aif(xj)a;

for every finite family{x; : j € J} of bounded, self-adjoint
operators on a separable Hilbert space H, with spectra
contained in |, and every family of operato{aj RS J}
inB(H) with § jc;ajaj = 1, wherel € B(H) is the identity
operator.

Theorem 6. [D.R. Farenick and F. Zhou Z4]] Let
(Q, 2, 1) be a probability measure space, and suppose f
is an operator convex function defined on an open interval
| CR. Ifg: Q — B(C")S?is a measurable function for
whicho(g(w)) C [a,B] C | forall we Q, then

f(/ gdu></ f ogdu.
Q Q

Some other references about this topic are 36,34).
Dragomir in R1] has proved a Hermite-Hadamard type
inequality for operator convex functions.

Theorem 7. [[ 19,Theorem 1] Let f: 1 — R be an
operator convex function on the interval I. Then for any
selfadjoint operators A and B with spectra in | we have

()R () ()

(1
g/olf((l—t)A—i—tB)dt
+£(B)

) )

The definition of operatos—convex function is proposed
by Ghazanfariin [23].

A+B
2

1

2

3A+B
4

A+3B
4

1
< =
-2

A+B
2

f(A)+ (B)
2

Definition 7. Let | be an interval in0,) y K a convex
subset of BH) ™. A continuous function fI — R is said
to be operatos-sconvex on | for operators in K if

f((L=A)A+AB) < (1—A)°F(A) + A% (B)
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in the operator order in BH), for all A € [0,1] and for

Theorem 10. Let J be an interval include iR with

every positive operator A and B in K whose spectra are(0,1) C J. Let h: J — R be a non negative and identically

contained in | and for some fixed=s(0, 1].

nonzero and supermultiplicative function. Let.t.,t, be
positive real numbers and fl — R be an operator

The following Hermite-Hadamard inequality for operator h—convex function defined over an intervatl|0, ) for

s-convex functions holds.

Theorem 8. [[ 26],Theorem 6] Let f: | — R be an
operator s-convex function on the intervald [0,) for
operators in Kc B(H)*. Then for all positive operators
A and B in K with spectra in,Iwe have the inequality

25 1f<A+B) /f —t)A+tB)dt<7f(A;iI(B)

Dragomir in B1] introduced an even more general
definition ofoperator h-convex functions

Definition 8. Let J be an interval include iR with
(0,1) c J. Leth: J — R be a non negative and identically

nonzero function. We shall say that a continuous function

f:1 = R, defined on an interval € R, is an operator
h—convex for operators in K if

f(tA+(1-t)B) <h(t) f (A)+h(1-t)f(B)
forallt € (0,1) and ABe K CB(H)™ suchthat SPA) C
and SgB) C

With this concept Dragomir obtained some resultsf(%Z{thiAi) Sh(%)f(An)+h<T” 1) (Z. L

involving operatordi-convex functionsThe first of them
is located as Lemma 2.3 in5]] and it involves the
associated functiogp. The second is the Theorem 2.4 in
[51],
inequality foroperator h-convex functions

Lemma 1. If f is an operator k-convex function then

Pxap(t) = H)B)x,X))

for x € H with ||x|| = 1is an h—convex function ovg0, 1) .

((ftA+(1—

Theorem 9. Let f be an operator hconvex function.
Then

2h(1/2) <A+B) /ftB+ 1-t)A)dt

) [

< (f(A) + (B

(4)

3 Main Results

In this section we enunciate and prove our main theorems
related to Jensen’s inequality and Hadamard-Hermite's

inequality for h-convex functionand for operator
h-convex functions

which establishes the Hermite-Hadamard type

operators in ,KC B(H)", and A, ...
o(A)Cl,(i=1,...,n) then

(7.204) <8

where |, =31t

JAn € K with

(®)

Proof. We prove this result by mathematical induction
overn > 2. If n= 2, the desired inequality is obtained
from the Def|n|t|on8 of operatoh—convex function with
t=%3,(1-)=Z,x=A1yy="~An.

Assume that fon 1, wheren is any positive integer, the
inequality 6) is also true.

Then, we see that
1 n 1 n—-1
fl=StA|="f + = tj
R) = (g g
th Tn—lrF1 tj
(TnAn Tn i= Tn—1A|

Again, using the Definition8 in the right side of the
previous inequality, we have
4)

Now, as we have assumed thg} iolds forn— 1 we obtain
1(7.30m) < () reen () B sty 1w
() e gr(5)n(s)

Further, sincén is a supermultiplicative function, we see
an) ( fi ) (Tn—l ti ) ('ﬁ)
h h <h =h{ =
( Tn Tn—l - Tn Tn—l Tn
using this fact we obtain
(2350 ) <n(2)ra (L) rm
Tn i;l ~ \T izl T
= 5n(g) @
2"

And the proof is complete.

Remark. If h(t) = 1/t then we get

f <TiniitiAi> < j

and in particular, it > 0,(i=1,..,n), 3" ; t = 1 then

f <_im—> <3 TfA),

making a coincidence with the Godunova-Levin function.

ey
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Remark. If h(t) =15,s€ (0,1] then we get

(whw) <5 ()

and in particular, it; > 0,(i =1,..,n), 3" ;i = 1 then

n n
() < 5
this corresponds te—convex functions.

Remark. If h(t) = 1 then we get

f (T—lniitmq) < iif )

making a coincidence witR—functions

The following theorem is similar to the Theorem 1.2

proved by Bougoffa in12], in our case using operator
h—convex functions.

Theorem 11. If f is an h— convex function with (1/2) #
Oand %, ..., X lie in its domain then

|1—h(1/n)|
N P)

Xn—1+Xn Xn+ X1
(57) 0 (222))

Proof. Note that applying thé—convexity property off
we have

X1+ X2 X2 + X3
f f
Xn—1+Xn Xn+ X1
+---+f< 5 )+f< 5 )

ca(2)

therefore
CN(E) g 0
[1—h(1/n)]| |:nzlf(XI) f(n_l n >:|

X1+ X2 X2 +X3
>
> f( . )+—f( : )
Xn—1+Xn Xn+X1
+ +f( 5 >+f< > )

The proof is completed.

Remark. If h(t) =t we obtain

[1-h(@/m| _ n
2h(1/2)

T n-1

(1(25%) (2515

and this corresponds to the result obtained by Bougoffa in

[12).
Remark. If h(t) = t° we obtain

1-h(1/n)] ne—1
2h(1/2)

- 2l-s

and the inequality in Theoref1l take the form

(3]
n=1 n=1
A (5)

Hot f <7X”12+X”) +f <¥)>

for s—convex functions.

=}

Remark. If h(t) = 1/t we obtain

[1-h(1/n)] n-1

2n(1/2) 4

B (59)

=)

The following corollary is immediate.
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Corollary 1.Let f: |1 — R be an operator h convex
function on the interval IC [0,o) for operators in
K C B(H)™. Then for all operators Ac K ,(i=1,..,n),
with spectra in | we have the inequality

(3 L f(A)
|1—h(1/n)| Z rA (n;n)]
An-1+An An+Ag

R

Proof. An application of the Theorem 3.5 leads us to the
proof.

2 2

Similarly, the following result is a generalization of the
Theorem 1.4 given by Bougoffa ilf].

Theorem 12. If Let J be an interval include in R with
(0,1) c J. Leth: J — R be a non negative and identically
nonzero, supermultiplicative function such that
h(t) <1t € (0,1). If f is an h—function and g, ..., a, lie

in its domain then

1 n
f(by)+..+ f(bn) < m Lzlf(al)

where
n
a na— a; .
a=Y — and h= i=1,..n
I; n b n—l ) ( ) ) )
Proof. Putting
n .
a=5y 2
G n
and na-a
b= —— i=1..,n
1 n_la ( 30y )
we see that
n a; .
bi = Z —‘1 (i=1,..,n)
=54 N

Sinceh is supermultiplicative anéi(t) < 1,t € (0,1) and
applying then—convexity property off , we have

f(by)+ ..+ f(bn)

On the other hand we have

S

=}
22 2
> >
Il =]

Ms = =

>
Il
et

—
>
I =
h
—
—
S :
i
|
—
VN
>
I ]
i,

So

f(by) +..+f (bn) < m { =

This complete the proof.
Remark. If h(t) =t we obtain

1 J—
[1-h(/m[

n
n—-1

and so

)

and this corresponds to the result shown by Bougoffa in

[12].

Remark. If h(t) =t5,s€ (0,1] we have

(= 1) (f(bx) +..+ F(bn) < n [ 304 f(@) — F (Shs

nS
ns —

1 J—
[1-h(1/m|

1

in consecuence the inequality takes the form

(0°— 1) (F(by) + .+ £ (b)) <1° 58, f (@) — f (s 12)].
Corollary 2.Let J be an interval include in R witf®, 1) C

J. Let h: J — R be a non negative and identically nonzero
and integrable function. Let fl — R be an operator h
convex function on the intervald [0, ») for operators in

(22:1

1 n 1 d _ K C B(H)™. Then for all operators Ac K ,(i =1,..,n),
=h (n 1) j_%#lf(a,)+..+h(n 1) j:ly]#nf(a,) with spectra in | we have the inequality
1 n '
_ nh(—n_l > f@) F(Br) + .+ f(Br) < iy [She FA) — £ (500 1A0)]
=
1 n
< h(n)h(m > f(aj) where
=1 N
n i nA—A .
A=Y — = =1,.
n(7) 3 35 W=ty (e
=1
< i f(a) The following Theorem proposes a refinement of Theorem
=R 2.4in [51].
(@© 2017 NSP
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Theorem 13. Let J be an interval include in R with

and so applying tha convexity property off, we can

(0,1) c J. Let h: J — R be a non negative and identically conclude

nonzero and integrable function, with(1y2) # 0. Let

f: 1 — R be an operator h convex function on the

interval | C [0,) for operators in KC B(H)". Then for
all operators AB € K with spectra in | we have the
inequality

Wi/z)((l_)\)f<(l—}\)A—|2—(l+)\)B)

+M((2—/\)2A+AB))

1
< / f(1—t) A+tB)dt
0

< (F((L=A)ALAB)+Af(A) +(1-7) f(B ))/lh(t)dt
1/ ht

Proof. Since f is anh convex function on the interval
| C [0,0) for operators irK C B(H)" and by Theoren®
we have

1 (1—A)A+
(12! < 2

< [(h(L=A)+A) F(A) +(h(A)+1-A)

(1+A)B)
1
g/o f(1—t)((1—A)A+AB) +tB)dt

/ h(t

< (F(1=A)A+AB)+ (B

and

1 (2-A)A+AB
2h(1/2>f( 2 )

1
g/o f(1-t)A+t((1—A)A+AB)dt
< (f(A)+f((l—)\)AJr)\B))/Olh(t)dt

Multiplying the first of these byl — A) > 0 and the second
by A > 0, and adding the inequalities, we obtain

1-A , [(1-A)A+(1+A)B
2h(1/2) ( 2 )

2 (2-A)A+AB
+2h<1/2>f< 2 )

< (1—)\)/01f(1—t)((1—)\)A+)\B)+tB)dt

1
+)\/0 f(1—t)A+t((1—A)A+AB))dt

/ h(t

A (F(A) + f ((1—)\)A+)\B))/0 ht)dt

< (1-A)(f(L1-A)A+AB)+ (B

2h(i/2) ((1—)\)1‘ <(1—/\)A-£(1+/\)B)
+M((2—/\)2A+AB>)

1
g/ f(1—t)A+tB)dt
0

-1

< (F((L=A)A+AB)+AT(A) +(1-A) f( ))/ h(t)dt

< [(M(L=A)+A) F(A) +(h(A)+1-A) ]/h

This complete the proof.

Remark. If we takeA =0 or A =1 in the first two
inequalities we get the result showed in Theor@nif
A =1/2then we get

s (30 (45) v (%52)
((452) e (%59)

= a2 1/2 (A B)

and with this
wu' () <mam ((50) 1 (54))
/:f(l—t)A+tB)dt
(f (A—;B)+f(A)—£f(B))/()1h(t)dt
< {h(%)—kﬂ (F(A) + f B))/Olh(t)dt
In general, ifh(A) > 0 for A € (0,1) then

I e ey

2
h(1-A), [ (1-A)A+(147)B
h(1- A>f< 2 )

My

hEA) (2 )\)2A+)\B>
>m.{ (1 T }
( ( (1-— )\ A+ (1+2) >+h<A)f<(27A)2A+AB>>

(1-2)
me{h(l Ay h(/\)}x
f<(17/\>(l—)\)Az(H)\)BJFA(2—)\)A+)\B>

2
=mdsicy ) ()

h(1/2)
T an2(1)2)

IN

IN

IN

= (-
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in consecuence we get the following sequences of [9] M. Bessenyei, Ples ZsCharacterization of convexity via

inequalities Hadamard inequalityMath. Inequal. Appl. 9 (2006), no. 1,
5362.
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