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Abstract: Pop and Brcas [L2] introduced the bivariate operators of the Bernstein-Kemtich type and the associated
GBS(Generalized Boolean sum) operators of the Kantoroiph. The concern of this paper is to obtain the rate of cqarere

in terms of the partial and complete modulus of continuitgl #re degree of approximation by means of Lipschitz classhi@above
bivariate operators. We also study the simultaneous appation for the first order partial derivative of the operatno the last section,
we estimate the degree of approximation by means of the hitzsclass for Bgel continuous functions and the rate of convergence
with the help of Peetre’s K- functional for the GBS operatbBernstein-Kantorovich type.
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1 Introduction forx e [0,1], ke {0,1,2,---,m}.
In[12], for me N, f € L1(4z), where
For a bounded functiofi(x) defined on the interval

ée?n[gél;’s the Bernstein polynomial of nth degree is Ay ={(xy) eRxR|xy>0x+y<1}.
N Pop and Brcas constructed bivariate operators of
(Raf) ) =Y pn k(x>f(l_<>7 Kantorovich type’m : L1(A2) — C([0,1] x [0, 1]) defined
K=0 ’ n as:
where
Prkl(t) = (n)tk(l—t)”k (Hmfixy) = (M+1)? Z Pmk.j (X,Y)
’ k K j=0K+j<m
are the fundamental polynomials. er 1T
Lorentz gave a brief presentation of the principle results X/ . f(t,s)dtds 2
concerning these polynomials in his bod}.[If f(x) is mel ML
continuous onJ, the fundamental property of these where
polynomials is that (R,f)(x) — f(x), as n — oo, Pk (X,Y) =
uniformly on J.In 1930, to approximate Lebesgue '
integrable functions on [0,1], Kantorovich [LQ m\ /(m—k) vy Mk
introduced and studied the operators K i y(1-x-y) v
m - L1(][0,1]) — C(]0,1]) defined for any functiorf in
L1([0,1]) and for anym € N as follows: foranyk, j > 0,k+ j <mand(x,y) € Az.

The method of construction of bivariate operators of
kit Kantorovich type was inspired by the construction of

(LnF)(X) = (M+1) g pm7k(X)/m fodt, (1) Bernstein bivariate operator8][ By : % (42) — % (42)
K=0 mi1

defined as:
m+1
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k j) 2 ,
Bmf)(X,y) = ixyfl=,=1, o'f
(Bmf)(x,y) k,j:o,%jgmpm’k”( y) (m m ||f||c<2>m2):||f||+zi(HW
i=
for any (x,y) € 42. In [12], Pop and Rrcas also
constructed the GBS operators associated with the
bivariate operators¢m of Kantorovich type. For f ¢ C
The purpose of this paper is to discuss the rate ofx _ nctional:
convergence of the bivariate Bernstein-Kantorovich type
operators.#m defined on a triangle and investigate the Ky(f,5) =inf{||f —g|| +]lgllcz(a,) : 9 € C2(42)}, (5)
rate of convergence by the associated GBS operators by
using Lipschitz class and mixed K- functional. whered > 0.
By [7], there exists an absolute constént 0 such that

' f
+|%])

(42), let us consider the following

2 PRELIMINARIES

Let C(Az) = {f : A2 — R| f be continuous od\,}. The _
norm inC(4,) is given by where a(f,1/8) denotes the second order modulus of

continuity for the bivariate case.

Ka(f,8) < Caxp(f,Vd), (6)

f||=su f(x,y)].
) ”_ I Ruyreaal TOOY) Next, we give some definitions which will be required
In the bivariate case, fof € C(4;), the complete for the GBS operator. A functiofi : A, — R is called a
modulus of continuity is given as: B-continuous (Bogel continuous) function(ab, yo) € Az
if
a(1;81,8) = sup{ 119~ 1) (1.9) (x) € 2

lim  Af[(x0,Yo); (X,y)] =0,
(xy)—(X0,Yo)

and|t_x|§617 |s_y|<62}7 . .
where Af[(Xo,Y0); (X,y)] denotes the mixed difference
wherew(f, &, 8,) satisfies the following properties: defined by

1.0(f,81,8%) — 0, if & — 0andd, — 0; - — — - .
2.|a]3((t7s)_f>()(’—;)|£6(:51’%2) - Af[(%0,Y0): (X,¥)] = f(x,¥) = f(X,Yo) — f(X0,¥) + f (X0, o)

It—XI)< IS—yI)
X | 1+— 14+ — ).
( A & , . . .
A function f : A» — R is called a B-differentiable

The details of the complete modulus of continuity for the (gsqe| differentiable) function c A, if the limit
bivariate case can be found if]] (Bog ) a0, Yo) € 42

Further, forf € C(Az) the partial moduli of continuity Af[(x0,Y0); (%,Y)]
with respect toc andy is given by im 7
(xy)=(x0¥0) (X—X0)(Y—Yo)

wi(f;0) = sup{|f(x1,y) —f(x2.y)| 1y €[0,1], exists finitely.
The limit is called the B-differential off at the point

X1 — Xo| < 5}, (3) (Xo,Yo0) and is denoted byg(f;xo,Yo) and the space of
B all B-differentiable functions is denoted B (A7).

and
The space of all continuous fuctions da is denoted
w(f;0) = sup{ [f(x,y1) — f(x,¥2)| : x € [0,1], by C(4,) where the norm is the sup nom||e.
From the definition of Bdel continuity it easily
_ follows thatC (4;) C Cy (42) ([2], page 52).
<d5;. 4
Y2 =vel < 5} @ In what follows, letd; (x) andd,(y) be defined as

Apparently, they satisfy the properties of the usual ) 5
modulus of continuity. 0 (x) = {Am((t—x)%xy)}

Let CZ(AZ) = {f E C(AZ) . fxx, fxy, fyx, fyy E C(AZ)}

equipped with the norm and

&2(y) = {Hm((t - y)%xY)}
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3 Basic Results

Lemma1[12] o

Letgj: A2 — R, (xy) =Xy i,j=0,1,2 be the test
functions. Then the following equalities hold for the
operatorsny, given by :

1. 7m(eo0; %, Y) = 1;

2. Hm(e10,%Y) = Sty

3 m(€0LX.Y) = g
4m((t=X);x.Y) = oimays

5. Am((S—Y)i%Y) = 5oy’
6.fm((t—x)%x.y) = i
7. Hm((s— y)z X,y) = 3(m-1y(1-y)+1

Lemma 2.[12] For any (x,y) € Az, (Hm)m-1 Verify
the following estimation:

LAm((t=%)%%Y) < gy

2 #m((s—x)Zx,y) < (mJ%l);

3 m((t—x)%xy) < ﬁz;

4. 7m((s—x)%xy) < (minz;

5 m((t=x)*(s=Y)%xY) < i
6. #m((t—x)2(s—y)*xy) < ﬁg

Lemma 3.For every fe C(Ay), we have
[|Am( )| <IF]]-

Proof From the definition of operatoRf and Lemma 1

the proof of Lemma easily follows. Hence details are

omittedd

Theorem 1.[12] If f € C(4Ay), then
lim (Amfixy) = f(xy)

uniformly onA,.

4 Main results

In the following theorem we obtain the rate of
convergence of the operators given Ry ih terms of the
partial modulus of continuity.

Theorem 2.Let f € C(43) and (x,y) € Ay. Then we have
the inequality

[ Am(f%,y) = (% y)] < 2(en(f;01(x)) + wa(F; &(y)))

(7)

ProofUsing equation (2.1),(2.2), Lemma 1 and applying
Cauchy-Schwarz inequality we have
[Am(F;%,y) = FOcY)) < Am([F(t5) = T Y)[%Y)

< Hn(|F(t,9) — F(L.Y)ixY)

+Zm([f(t,y) — F(XY)[XY)

< (w(f:@)(u 'ngy'xx,y)
);x,y>

Is—yl
< wp(f; %) {Hiﬁfm(IS—yl:x,y)]

+%fm<w(f;5l)(1+ 3
(o)
1

+ow(f;01) [1+ ajfmﬂt —x|;x,y)}

é (me((S—y)z;x,y)> 1/2]

w(f;5) [14— é (%m((t —x)%: x,y)) 1/2} :

wy(f;02) [1+

Now, choosingd, = 91(x) andd, = & (y), we obtain the
required result]

4.1 Degree of approximation

In our next result we obtain an estimate of the error in the
approximation for the operator®)(with the aid of the
Lipschitz class.

In the bivariate case, for@ £ <1, andf € C(A,) we
define the Lipschitz class as:

1£(8,9) — F(6Y)| < M{(t—X)2+ (s—y)?} 2.

Theorem 3.Let f € Lipum (&) . Then, for everyx,y) € Ay,
we have

[ Han(Fixy) — F )] < M{BR(X) + B2(¥)} 2.
ProofBy our hypothesis, fofx,y) € A, we may write
() 6Y) = FY)] < Hm(] F(,5) = F YY)

< MAm({t—xP+ |s—yP}2:x,y).

. . . 2
inequality with up 3

Now, applying Holder’s

vi = —— we have

—&
|(Hmf )(X,Y)— f(xy)| < M{Am((t—x)?x,y)
+Hm((5—y)%x,y) /2

— M{&2(x) + 82(y)} .

Hence, the proofis completed.
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Next, we consider o
Cl(4y) = {f eC(42): fy, fy € C(4,)}.

Theorem 4.Let f € C1(4,) and(x,y) € A,. Then, we have

| Hn(F:%,y) — T Y)] < [ Fell8(x) + | Ty | &2(y).

ProoflLet (x,y) € Ay be a fixed point. Then, by Taylor's
formula we may write

t ! S !
f(t,s)—f(x,y):/ fu(u,s)du+/ £ (x,v)dv

X y
Operating#m(.; X,y) on both sides,

a(Fixy)— Fxy) = xfm(/ f&(u,s>du;x,y)

S I
—h%/m(/ fv(x,v)d\/,x,y).
y
Since,
t ! I
[t < Ige-x
and .
[ty < 515
Therefore,

[ F:xY) — F (%, Y)] < | ell Ham([t =X %,Y)
+H Ayl A5 — Y% Y).-
Now, using Cauchy-Schwarz inequality,
[ Hm(F:xY) = F(xY)] < [ ell Am((E— %)% %)Y
H |l A m((s—y) % x,y) 2
= [[£ellBL(x) + || £, B2(y).-

This completes the proof of the theorem.
O

Theorem 5.For the function fe C(A), we have
the following inequality

| Zm(f;xy) — F(xy)]
< M{@(f;w)

+min{1,cm}||f||c<A2>}+w(f;wm<x,y>>,

where
l,Um(XaY) =
2mx+ 1 2 /2my+1 2
¢{<2<m+1>‘x) +(2<m+1>‘y) }
Ci(%,y) = 87 (X) + 85 (Y) + Wa(x.Y)

and the constant M- 0, is independent of f
and Gn(X,y).

I (fixy) = Am(fixy) — f(

ProofWe introduce the auxiliary operators as follows:
2mx+1 2my+1
2(m+1)"2(m+1)

+f(xy),

then using Lemma 1, we have

Heixy) = 1, Jp(t — x)ixy) = 0 and
Hm((s=y)ixy) =0.
From Taylor’s theorem, fog € C2(4;) and(t,s) € Ay,
g(t,s) —g(xy) = g(t,y) —g(x,y) +9(t,s) - g(t y)

dg X y +/ du

0g(x y)
oy (s—-y)
s 9%g(x,v)
+/y (s—v) =25 v

Applying the operatorz;;(.,x,y) on both sides, we get
. 2
A gxy) -~ alxy) = i (40— 0 75 duxy

A [° 9%g(x,v)
+Jifm</y(s—v) 2 dv,x,y)
t 2
= %m(/ (t—u)d g(uz’y)du;x,y>
B / 2amx1 ooy
X 2(m+ 1) ou?

+me</ys( )023(2 )dwx,y>

2my+1 2
_/—2(m+1) 2my+1 v J g(x,v)dv
X 2(m+1) ov?

Hence,
. 2
| (@i %,y) —9(%Y)| S%m< S lt—ul | 2L gy :x,y>
2mx+1 2
n / mD) | 2mx+ 1 acg(u,y) du
X 2(m+ 1) ou?
s 2
+Jifm< / |s—v]| o g();’v) dv); X, )
o | 2my-+ 1 9°g(x,V)
* /x 2(m+1) ‘ ov2 dv
2mx+1  \?
< {fm((t—X)Z;X,Y)‘F <m - >

+Am((s—Y)%ixy) + (%

2
)}
x19llc2(ay)
< (8700 + 35 (Y) + YR M)II9llcz(ay)
= Cn(},Y)[19llc2(a,)-
(8)
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Also, using Lemma 2

" 2mx+1 2my+1
I%”m(f;x,y)l<|fm(f;x,y)|+‘f< y )‘

2(m+1)’2(m+1)
+fxy)l

< 3If]]. 9)

Hence in view of 8) and @), for anyg € C?(4,), we get
| Am(fixy) — F(xy)| <

| (F =X, Y)|+[Zn(9:%y) —9
+oxy) —f

¢ 2mx+1 2my+1Y)
2(m+1)’2(m+1)

(zmes-ames) o)

< (4||f —g||+cm<x,y>||g||cz<A2>)
ool (% ).

Applying Zm(.; X,y) on both sides ofX0), we obtain

(£ (t,9);%,y) = F(XY) + F (X Y)Fm((t —X);X,y)
R0 Hn((5—Y)%9) + 5 Loyl (€~ X)%5%,)
+2f, (X Y) Hn((t = X) (5= )i X,Y)

+Hyy (% V) Am((s= V)% X))}

+m(E(t, S % Y)1/ (t—X) 4+ (S—y)% X, Y).

Applying Lemma 1, we may write,
lim mzm(f;%,y) = f(xy))

1 ' 1 / 1 "

= 5(1— 2x) f (X, y) + 5(1 =2y)f,(x,y) + éx(l —X) fx
1 1 "
_nyxy+ EY(]- -y) fyy

+ lim mAZm(e(t, s xY)\/ (t=X)%+ (s=y)%xy).

Now, taking the infimum on the right side of the Now, applying Cauchy-Schwarz inequality,

above inequality over aj € C?(4,), we obtain

Cm(X,y)
4

|Am(f;xy) — F(xy)| < 4Ka(f;

Finally, using 6), the required result followsl

4.2 Voronovskaja type theorem

In this section, we obtain a Voronovskaja type asymptotic

theorem for the bivariate operatotm(f;X,y).

Theorem 6.Let f € C?(4;) and (x,y) € 4,. Then, we

have
liMm o0 M(Am(T;xy) — F(XY)) =

3A—20f(xy) + 2(1—2y) fy(x,y) + 3X(1—X) iy
—xyfy+ 3y(1-y)fyy,
uniformly on4,.
ProofLet (x,y) € A,. By Taylor's theorem, we have
f(t.5) = f(xy)+ f(xy)({t—X) + f(xy)(s—y)
LYt 2655 )(E - )(5-Y)
+Hgy(xy)(s—y)?}

+e(t,S%Y)1/ (t —X)*+ (s—y)4, (10)

for (t,s) € Az, whereg(t,s;x,y) € C(A2)
ande(t,s;x,y) — 0, as(t,s) — (X,y).

)+ @(f; tm(x,y)).

(e (t,53) v/ T3+ (5=Y) %)

< {Hm(€%(t, s x,y)ix,Y) 2
< { At —x)*+ (s—y) 4 x,y) } /2
< {Hm(€%(t,sxy), %, Y)} 2
< {Am((t=X)%%y) + HAm((s—y) %) 2.
(11)

Applying Theoreml, since&?(t,s;x,y) — 0 asm — ,
we obtain

mm%m(gz(tvs; X,y);X,y) =0.
Further, in view of Lemma 1

12
m{fm«t Cx%xy) +%m<<s—y>4:x,y>} — o),

asm— oo uniformly in (X,y) € A,.
Hence,
Jim mAm(e(t,sxY)y/ (t=X)*+(s-y)%xy) =0,
uniformly in (x,y) € A,.
Thus the proofis completed.

Theorerrg 7.(Simultaneous approximation) For any
(x,y) € Ay(interior of A) and f e C(A,), J#m satisfies

= 0_f (Xv y)v (12)

lim (%(mef)(@y)) Ix

M—0c0
w=X

and

of
vy = a_y(xv y) (13)
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ProofSince f € C1(4,), therefore, by Taylor's formula,

we have

f(t,8) = F(xY) + fxY)(t=%) + f, (6 y)(s-y)

O, 5%, Y)y/ (t—X)2+ (s—y)2 for (t,5) € 4y,

whereq(t,s; x,y) € C(A2) and@(x,y) = 0. Operating.#m

to the above equation and then differentiating partially

with respect toc and using Lemma 1, we get
(ZAmtiny) = f0cy) (F(Amtiwy))

+fuw( (Hant =) wey)
(xy>( (HAm(s—y)iwy)

T= (%(Jﬁfmfp(t,sx,y) (t=x)2+(s=y)% ‘*’vy>>

w=X

Now we will show that for everyx,y) € Aoz, T—0,
asm— oo,

d
T=(m+ 1)2 (—p 7k,-(w,y))
K j— OZJrjgm do ™! wW=x

J+1

k+1
m+
/ [} ot

m+1

(t—x)2+ (s—y)2dtds

(m 1) (k) (1 —y) —x(j + ) ()
P
JISRREE Y
mE m+1

<oy [ /J o(t, s %.Y)
m1 Y mrl

(t —x)2+ (s—y)2dtds

(m+1)%(1-y)

_ (m+1)2(1-y) (K— MX) Py j (X.Y)
X(1—=x-Yy) k,j:O;rJSm o
sk

/ | (p(t sxy) (t— ) —|—(S—y)2dtds

m+1 m m+1

(m+1)? '
_ (m+1)7 (i -+ MY) P (X.Y)
1—X—y)k,j:OZ+j<m e

First, we estimatd;. Using Cauchy-Schwarz inequality,
we have

m(1—y) ok N
< 7x(1—x—y) <k1j=o%+j<mpm’k’J(X7y)(m X) )

% (A @S XY=+ (5= y)2ixy)Y?)

m(1-y) ok A
< X1 x_y) (k’jo’%mpm,m(x’y)(m ) )

x{@%wﬁnsxwa—w%xw

1/2
-Hﬁa#aﬁmws—w%wJ&

m(l-y)
~ X(1—x-y)

X <{(%/m<p4(t,s; x,y))}> 1/4{((%%(t X)%xy)) Y2

(Bt =02 (xy)) "

1/2
+«J@@—w%xwfﬂ} |

using Lemma1 2 of [12, we have

= O(7) as m — o and applying

Now,

(Bm(s — X))?(x,y)
Lemma 2, we get

1/4
ITaf < N{(%m¢4(t,s;x,y);x,y)} ,

for some constaritl > 0. .
Now, from Theorem 1, for angx,y) € Ay, we obtain,

r!jan {(,%fmqo“(t,S; x,y);x,y)} =o' (xy) =

Hence, for everyx,y) € Aoz, T1 — 0, asm— oo,
Ina §imilar manner, we can show that for every
(X,y) € Ay, To — 0, asm — co.
On combining the estimates & andTy, for every

(x,y) € Aoz, we getT — 0, asm— o. Hence, we
get the result12). By a similar reasoning, we can prove
(13). Thus, the proof is completed.

5 Approximation properties of GBS
oper ator s of Bernstein-K antorovich type

Forme Nandf € Cy(42) , the GBS operators associated
with the operators#y, is defined by
UZm(f(t,s);(%,y))

= (m+1)? Z Pk j(X.Y)
k,j=0,k+j<m

k+ j+1
m+l [ M+l j+1
ot s X, t —X)2+ (s—y)2dtds S
/51 /mlﬂ oSy (=X (sy) x/km/jm[f(t,yprf(x,s)_f(t,s)]dtds
Ti+ T2, (say) mr o
(@© 2017 NSP
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for any(x,y) € A,. More details on GBS operators can be where g1 € Cé’o,gz € ng,h € Cé’z

foundin [6], [9], [13].
For f € Cy(42), the Lipschitz claskipm (&) with
0< & < 1lisdefined as:
Lipw () = { 1 € (82): A 1[(t. 95 ()] <
M{(t-x7+ (5= )
for(t,s),(x,y) € Ay.

In the following theorem, we obtain the degree of

approximation for the operato(8) 7, f)(x,y) by means
of the Lipschitz class of Bogel continuous functions.

Theorem 8.For f € Lipm (§), we have

UAmf(6y) = f (6 Y)] < M{SF(X)+ 35(¥)} 2,
forM >0, & € (0,1].

3
2

ProofBy the definition of the operatotd i f(x,y) and
by linearity of the operators#y, given by @), we can
write

(UZmf)(xy) = Hm(f(x9)+ f(t,y)— f(t,9);%Y)
= Jm(f (xy) = Af[(t,;s); (XY x.Y)
= f(X,y) #m(eo0;X,y)

—m(AF[(t,9); (X Y)];%Y).

By the hypothesis, we get
|(U‘%/m)f(xay) —f (Xay)|

< (AT [(6,9); (6 W)]5%Y)
< MAm({(t—X)2+ (5— )2} 23%,Y).

Now, using the Hlder's inequality with
up=2/&,u;=2/(2— &) and Lemma 1, we have
|(UAmf)(xy) = f (XY

< M{Hm ((t—x)3x%Y) +%m((5—y)2:x,y)}§
s { Hm(eoo;x,y) 2972
— M{&2(x) + 33(y)} .

This completes the proafl

In order to improve the measure of smoothness, for
f € Cp(42), the mixedK— functional (8], [5])is defined
by

Knrea(Fituto) = Inf {nf—gl—gz—hnw
01,92,
+11]|D5%: |,

2,2
i [o87a:], o8]}

and, for
i,j =0,1,2,Cg' is the space of functions € Cy(42) such
that the mixed partial derivatives
DY, p=0,1,---,i,=0,1,---,] is continuous in4,.
The partial derivatives are defined as follows:

110 B Ay {(x0,X); Yo}
Dxf (%0,Y0) := Dg" (f; X0, Yo) = @oT,

and

Ay {xo; (Yo,

where  Axf{(x0,X):Yo} = f(x.Yo) — f (x0,Y0) and
Ayt {x0; (Yo.¥)} = f(x0.y) — f(X0,Y0). Similarly the
second order partial derivatives can be shown to be same
as the ordinary derivatives. For instance, the derivative o
D« f (Xo0,Yo0) with respect to the variablg at the point
(X0,Yo) is defined by

Dny f (X07 yO) =

Ay (Dxf) {Xo; (Yo.y)}
Y—Yo '

D D5 (f:%0,¥0) = lim
8 D& (fix0,Y0) V5o

In our next result, we study the order of approximation
of {U#n(f)} to the functionf € C, (42).

Theorem 9.Let (U7 f)(Xx,y) be the GBS operator of
(Amf)(x,y). Then

|(UAm)(xy) = f (xY)]

1 1
< 2Kni f;
> mlxed( 12(m+1)7 2(m+1)) )

for each fe Cy(Ap).

ProofForg; € CS;O(AZ), by Taylor formula we may write
01(t,9) = 91 (x,y) + (t—x) Dg°g1 (x,Y)

t
+ [ t-wDge (uy)du
([4], page 67-69). Since the operatts?mf(x,y) is
linear,

UZm(Lixy) =1, Udn(t;xy) =x andU.Zn(s;X,y) =Y.
We have,

(U AZmg1)(xy) = 01(x,y)

t
+U (/ (t—u) Dé’ogl(u,y)du; x,y) .
X
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By the definition
U A (91%Y) —

of U
ga1(xy)| =

t
i ( [ ¢~ [0E%uuy) - DE%es (u.9) dux y)

)

/|t—u|\DB AE Dé*"guu,s)\du;x,y

Similarly, we can write

IU%m(gz;x y) = G2(x.Y)|

<3 HDB ng i (5= ixy)

, forgp e Cg’z (Az).

< 592

a3 %

Again, forh € C5%(4y),
h(t,s) = h(xy) + (t —x) DE°h(x.y)
t

+(s=y)Dgh(xy)+ [ (s-y)(t-w)Dg*h(uy)du
+(t=X)(s-y)Dg'h(xy)
t

+/(t—u) Dé’oh(u,y)du+/(s—v) De%h(x,v)dv
+/(t—x) (s—v) Dé’zh(x,v)dv

y
+//(t—u) (s—v)D%?h(u,v)dvdu

Since U J#Zm ((t —

we have
U (h;x,y) —h(x,y)|

<

and Lemma 2

X);XY) = 0 =UAm((s—Y);xY),

Therefore, forf € C, (42), we obtain
U (fixy) — T (xy)]

< [(f =g1—g2—h) (X,y)|+[(91 — U Amg1) (X,Y)]
+ (g2 — U Z#m@2) (%,y)| + [(h—U Jmh) (x,y)]
+ UZm((f —g1—02—h); X, y)|

<2[[f—g1—02—hl,+

1
* amrp1%8°%]. " 3

al

2[[08%],.

m+1 H

m+1

Taking the infimum over alf; € CB ,O2 € Cg’z,h € Cé’z,
we obtain the required restlt.

Example ILet A; = {(X,y) € Rx R| X,y > 0,x+Yy < 1}.
Form=5 (orange)m = 15 (yellow) m= 25 (pink), the
convergence of the operatdfi, given by @), to f (X,y) =
y2+sin(mx? /2)(green) is illustrated in figure 1 fdx,y) €
Ao

Fig. 1: The convergence ofm(f;x,y) to f(x,y) (greenf, orange
s, yellow s, pink s ).

Example Zzor m = 10,2540, respectively, the

22 convergence of U.#m(f;Xxy) (yellow, blue, orange) to
< Jm (// [t—u[[s—V] ‘DB h(u,v)‘ dVdUW) f(x,y) = y+cos(4x?) is illustrated in figure 2. It is seen
Xy that as the values o increase, the convergence of

1) 22 2 2 U Zm(f;x,y) to f(X,y) becomes better.
<7z HDB hHw%m ((t =X (s-y) -va) In figure 3, form= 20, the comparison of convergence of
25 %/_m(f;x,y) (orange) and its GBS pperatbwifm(f;x,y)
< m HDB’ hHw (pink) to f(x,y) = y®sin(4x)(green) is observed.
(@© 2017 NSP
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differentiable  functions and the simultaneous
approximation property for the first order partial
derivatives of these operators are established. The degree
of approximation of the associated GBS operators is
obtained by means of the Lipschitz class foog8l
continuous functions and the Peetre’s K-functional.
Furthermore, the convergence of the bivariate and the
GBS operators is shown by illustrative graphics using
Maple algorithms.
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