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1 Introduction inequality

fltx+ (1-t)y) <tf(x)+ (1-t)f(y) 1)
The study on convex stochastic processes began in 1974
when B. Nagy in 19, applied a characterization of
measurable stochastic processes to solving dloldforallx,y el andt € [0,1]. If the reversed inequality
generalization of the (additive) Cauchy functional in 1 holds, thenf is concave.
equation.
In 1980, Nikodem 22] introduced the convex stochastic de
processes in his article.

The concept of convexity has been generalized
pending on the problem and applications studied. Some

: . of these generalizations are midconvexonvex, quasi
Later in 1995, A. Skrowronski in36] presented some onvex, pseudo convex, Invexk-convex, e-convex,

further results on convex stochastic processes. In 201 ~convex, (k.h) -convex, Wright-convex , E-convex,
Maden et. al. 16 introduced the convex stochastic stronal

. ; . gly convex and p-convex.
processes in the first sense and proved Hermne—Hadamaré
type inequalities to these processes. In the year 2014, E. In 2005, the croatian mathematician Sanja VaroSanec
Set et. al. in B3] investigated Hermite-Hadamard type generalizes The notion @Fconvexity giving the notion of
inequalities for stochastic processes in the second sense h-convexity. (See3g)).
They investigated a relation between s-convex stochastic
processes in the second sense and convex stochas%n
processes.

Imdat Iscan in year 2013 introduces a new kind of
vex functions class, called harmonically convex

. function. In his work [L3] obtains a Hermite-Hadamard
For other results related to stochastic prqcessestee [ inequality type for this kind of generalized convex
[3], [9], [17] where further references are given. functions

Convexity is one of the hypotheses often used in

optimization theory. It is generally used to give global For others recent results, see the books
validity for certain propositions, which otherwise would [4],[5],[6],[11],[21], [28], [30], where further references
only be true locally. A functiorf : | — R, wherel C R is are given.

an interval, is said to be a convex function bnf the
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2 Preliminaries Example et f(x) = |Ln(x)| for x € (0,1],

m(t) = c(1—t)o fort € (0,1) and 0< ¢ < 1, and some
The following definitions are well know in the literature.  lo € R. Let hy(t) = t't andhy(t) = t'2 for t € (0,1) and
C. Nicolescu in 21] wrote about the geometric-arithmetic 1,12 € R if I,I> < 1, then f is an decreasing and
convexity. (h1,h2,m)-GA-convex function or(0,1]. And f is not an

e . o (h,m)-convex function or{0, 1].
Definition 1.A function f: | C Ry = (0,+) — Ris said
to be GA-convex if In this paper we propose the generalization of
convexity of this kind for stochastic processes.
¢y Y) <t )+ (1-0f(y) (2)

Definition 6.Let (Q,F,P) be an arbitrary probability
holds forall xy € l and t € [0, 1]. space. A function XQ — R is called a random variable
if it is F-measurable. Let(Q,F,P) be an arbitrary
probability space and let T= R be time. A collection of
random variable Xt,w),t € T with values inR is called

Definition 2.For f : [0,b] — R,b > 0and me (0,1], if a stochastic processes.

1.If X(t,w) takes values in S- RY if is called vector-
valued stochastic process.
2.If the time T can be a discrete subseRothen Xt,w)
is called a discrete time stochastic process.
3.If the time T is an intervalR™ or R, it is called a
In the year 2007, S. Varosanec i8g], introduce the stochastic process with continuous time
following definition.

G. Toader introduced in3[/] the concept ofm—convex
function.

ftx+m(l—t)y) <tf(x)+m(1—1t)f(y) 3)

is valid for all x,y € [0,b] and te [0, 1], then we say that f
is an m—-convex function.

Throughout the paper we restrict our attention
Definition 3.Let 1,J C R be intervals,(0,1) C J, and h: stochastic process with continuous time, i.e, index set
J — R be a non-negative function such tha0. T =[0,+).
A function f: 1 — R is called h-convex ,or that f belongs
to the class S¥n, 1), if f is non-negative and forallyc 1  Definition 7.Set(Q, A,P) be a probability space and ©

andte (0,1) we have R be an interval. We say that a stochastic processTxx
Q- Rif
ftx+(1-ty) <h®FR) +hA-t)f(y).  (4) _
1.Convex if
If the inequality4 is reversed, then f is said to be X(Au+(1=2)v,-) <AX(U,-) + (1= 2A)X(v,-) (7)

h-concave, i.e. £ SV(h,1).
Vel (h1) forallu,ve T andA € [0,1].

The concept of(h,m)—convex functionhas been This class of stochastic process are denoted by C.
introduced byOzdemir et al. in27], as follow. 2.m-convex if
Definition 4.Sea h: J C R — R be a non-negative X(tu+m(L—t)v,-) <tX(u,-) +m(1—t)X(v,-) (8)
function. We say that f [0,b] — R is (h,m)—convex
function, if f is non-negative and for all forallu,ve T andte [0,1],me (0,1].

,y € [0,b],me [0,1], and te (0,1), we have: .
xy€[0.] [0.4] (0.2), w v Definition 8.Let (Q,A,P) be a probability space and T

fitx+mL—t)y) <h®) f(x)+mh1-t)f(y) () R be an interval. We say that the stochastic process X
Q — Ris called
In the year 2016, Bo-Yaw Xi and Fend Qi i4(],

introduced the following definition: 1.Continuous in probability in interval T if for albte T

Definition 5.Sea h: [0,1] — Ro,m: [0,1] — (0,1] such P—lim(t,) =X(t,")
that h £ 0fori=1,2, and f: (0,b] — Ro.
If where P—lim denotes the limit in probability;
2.Mean-square continuous in the interval T if for alk
F(-yEIMO) <hg () f(x) +mbha(L-1)F(y)  (6) T
P—lim E(X(t,-) — X(t,")) =0
for x,y € [0,b) and t€ [0,1], then f is said to be an =l
(h1,hz,m)— geometric-arithmetically convex function or,  where EX(t,-)) denotes the expectation value of the
simply speaking aths, hy, m) — GA-convex function. random variable Xt,-);
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3.Increasing (decreasing) if for all,y € T such that t<
S,

X(u,) <X(v-), (X(u,-) > X(v,-))(respectively

4.Monotonic if it's increasing or decreasing;
5.Differentiable at a point £ T if there is a random
variable

X(t,):TxQ—=R

X(t,-) = X(to,")
t—1o

We say that a stochastic process T x Q — R is
continuous (differentiable) if it is continuous
(differentiable) at every point of the interval [15], [35],

[36], [22.
Definition 9.Let (Q,A,P) be a probability space T R
be an interval with EX(t)?) <« forallt € T.
Let[a,b] C T,a=1ty <ty < ... <ty =b be a partition of
[a,b] and 6 € [tx_1,t] fork=1,2,...,n.
A random variable Y: Q — R is called mean-square
integral of the process ¥,-) on [a,b] if the following
identity holds:

lim E[X(6c(tx —te_1) —Y)?] =0

n—oo

X'(t,-) = P— lim

t—tp

Then we can write

/bxa, Jdt=Y()(ae).

Also, mean square integral operator is increasing, that

is,

b b
/ X(t,-)dt g/ Z(t, )dt(ae)
whereX(t,-) < Z(t,-) in [a,b] [34].

The main subject of this paper is to extend some results
concerninghy, hp, m)-GA-convex functions t¢h; , hy, m)-
GA-convex stochastic process.

3 Hermite-Hadamard Type Inequalities

Theorem 2Let h : [0,1] — Ro, where h#£ 0 fori = 1,2;
m: [0,1] — (0,1], and X: [0,4) x Q — Rg be an
(h1,h2,m)-GA-convex function on(O,m—:’i—] x Q and

2)
hi € Li[a,b]forO<a<b.

Then
h(3) b
X(v/ab,-) < m/ﬁ (t,)dt
m(3)ha(3) (bt
+ |n(b§—|n§a)/a Xy
ProofSince

Vab= (a bt )2 (al )2

for 0 <t <1, from the(hs,hy, m)-GA-convexity of the

stochastic process on (O, L}

) x Q, we obtain

X(Vab) < (3 ) x(@i

1 1 al~tpt
m(=|h{=|X{——,].
i (2) 2<2) (m(%) )
Integrating both sides of the above inequality and

replacing the argument, in the right sida'~'.b' and
albtfor0<t <1 bys, then

In throughout paper, we will consider the stochastic 1 1 b
processes that is with continuous time and mean-square / X(@ b, )dt = 7/ X(s-)  (9)
continuous. 0 In(b) —1In(a) Ja

Now, we give the well-known Hermite-Hadamard integral

inequality for convex stochastic processes|{ an
Theorem 11f X : T x Q — R is Jensen-convex and mean (1 al-tpt 1 b S
square continuous in the interval-¥Q, then for any uv € /o X Wv' dt= m/&l X m(l)" ds
T, we have 2 2 (10)
1 v X(u,-) + X(v,- i
X (u;vj) < L X(t,)dt < (u, )42— (v,+) The proof of theorem is complete.
- u

Theorem 3Let h : [0,1] — Ro, where h£ 0 fori=1,2;
Definition 10.Let (Q,A P), be a, probability space T m: [0,1] — (0,1], and X: [0,+») x Q — Ro be an
[0,0) x Q = [0, +-e0) s (y, hz, m)-GA convexif that X is an integrable stochastic process|@2] x Q
X(u)\v(lf)\)m()\)7 ) < hl()\ )X(U, ) + m()\)hz(l—)\)X(V, ) and h,hy € L]_([O, 1]) forO<a< b, then

for all u,v € [0,1], with h : [0,1] — Rg and m: [0,1] —

1 b .
(0,1] such that h# 0for i=1,2. m/ﬁ X(t,-)dt < min{A,B},
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where

A=X /h1 dt+mX< )/ ha(t)
L) [

h(t) for all't € [0,1], we have

and
B—X /h1 dt+mX
If hy(t) = ho(t) =

b
m/a X(t,-)dt < min{C,D},

c:(X( +mX< ))/h
/h

ProofLettingx = al~tb' for 0 <t < 1, by the(hy, hy, m)-
GA-convexity ofX and ), we obtain

b 1
m/a X(t,.)dt:/O X (al ', -)dt

< min{A B},

where

and
D= (X(b +mX

where

A=X /h1 dt+mX< )/ halt)
2 ) [

Theorem4Llet h : [0,1] — Ro,hy # 0 for i = 1,2;
m € (0,1],X [0,+0) x Q — Rp be an

(h1,hp,m)-GA-stochastic process 060 Fbg} x Q such
] x Q and h,hy € Ly([0,1])

and
B— / hat dt+mX

The proof of Theorem is complete.

that X is integrable in[a,
for0<a< bthen

hy(3) b
< m/a X(t,-)dt
hy (l) b t
M @) /a X () e

< min{ (A/O1 ha(t)dt + mB/O1 hz(t)dt> ,

(/hl dt+mD/ hat dt)}

s (25 (3]
o= [ (3) ( ) e () ()
c-u(¢)romn(2)x(3 )

and
()G (G)x ()]
ProofFrom the (hl,hz, m)-GA-convexity of X on

(0, W} , We obtain

X (\/%)

(G2 (2
<min{h1<%> [hl(t) (a,-)+mhy(1— )x(% ﬂ
(5 ) [ OX(3) +mRX(0].

m(%) [he(1- X (b,-) + mhy(t) ( )
+mhp <%) [hl(t)x <r%) +mhp(1-H)X (%)} }

Substitutingal 'bt andalbt for 0 <t < 1 by u an
integrating on both sides of the above inequality with
respect td € [0,1] lead to

x(\/ﬁa,-)
hy (% b
< ) o X

h, (1 b
4—mﬁ/al X(%,-)du

x (2
m
+mhp (%) [hl(t)x (%) +mhp(1—t)X (%)] }

the theorem is proved.
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4 Other inequalities for products of process onfab] x Q and I -h3 € Ly([0,1]) for
(hy,hy, m) — GA—convex stochastic processes 0<a<b,then

In this section we give some results about ——— / X(s Jds< A+B+C (13)
Hermite-Hadamard type inequalities for the product of In(a
stochastic processes. Where

Theorem5Let h : [0,1] — Rp such that h# 0 for 1
i=1,2,m:[0,1] -+ (0,1, and XY : [0, 4%0) x @ + Ry  A— X(a,-)Y(a,-)/ h2(t)dt
are (hy,hp,m)-GA-convex stochastic processes on

0, m_(blj} x Q such that XY is an integrable stochastic
2

B= mlmzx /h2
processes orEa, ﬁ} x Q for0< a< bthen
2
X (vab.:) v (Vab:) ) c=[m2x<a,->-v<%,->
hy (% b
< M)y gvis s
In(b)~In(a) Ja - mX (- /hl (Hha(1—t)d
m(3)hi(3)h2(3)
4—2) 112) 212 ProofLet s= a'b'! for t € [0,1]. By the (hy, hy,m)-GA-
In(b) —In(a) convexity in stochastic processesofindY, we have
b 71 bX Y d 14
X/ X( > ,->-Y(s,-)+X(S,-)-Y<Ll,->]ds In(b)—ln(a)/a (5)Y(s-)ds (14)
a m(3) m(3)

—~
T Nl
SN—
>
N
5[
A~ (NI

m 2 b s s _ bl t_ (atb17t7_)dt
Tn(b)-In(a) W(mﬂm)“ b

ProofUsing the(hy,hz, m)-GA-convexity of X andY on  _ /1[h1 (DX (a,) + muhy (1 )X (3 _)]
— O ) )

0,—2-| x Q, we obtain
m(3)

X (\/%) -Y(x/%,-) (12)  x[h ()Y (a ) +mphy(1—1)X (%,-)]dt
< lhl (:—2L> X (atbl_t, )+ m<:—2L> ) (Z_2L> X (%a )] =X(a,-)Y(a, -)/1hf (t)dt
GG ()] () () fre0s

Letting s = al'b' and s = alb*! for t € [0,1] and
integrating the inequalit§2 on [0, 1] with respect td, we b
arrive at the inequalit# 1. The proof is completed. +[mpX(a,-)Y <Ea > + mg X <H’

Theorem6Let h : [0,1] — Ro,hy £ 0 for i = 1,2;

m,mp € [0,1], and XY : [0,4+0) x Q — R. If X is on 1
(hy,hy,m)-GA-convex  stochastic  processes  on ></ hy (t)h2 (1—t)dt.
(0, n?l] x Q.Y is an (hy,hy,m)-GA-convex stochastic 0

process or{0, %] x Q, and X-Y is integrable stochastic ~The proof of theorem is complete.
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5 Jensen type inequalities for
(h1,hp, m) — GA—convex stochastic processes

6 Applications

Some applications are derived as a result of the Theorems

The following result is related with the discrete version of obtained in the previous sections. These involves

the classical Jensens’s inequality

(h1,hp,m) — GA—convex stochastic processes.

Theorem 7Let h : [0,1] — Ro,hy #£ 0 for i = 1,2; and
hi(t1)ha(t2) < ho(tatp) for all tg,ty € [O, 1] and b be a

supermultiplicative function. Let m[0,1] — (0,1} and
X :[0,40) x Q — Ry be a (hg,hz,m) — GA—convex
stochastic process. Then
N mL mows
x( e (15)
i=

n i—1
<MMVMJ+;<HWMOWWWWJ
1= =

holds for all § € (0,b],w; > 0 with 3 ,w = 1 and
m(Wo) =1

ProofUsing induction oven . Whenn = 2 takingt = w
and 1—-t = ws in Definition 10 we obtainl5. Suppose that
for n = k the inequalityl5 holds, that is

X ﬁt.w Mome)
i=

K /i1
< hy(wp)X (tg,-) + ; <|1m(Wj)> ho (wi) X (8, -)

Whenn=Kk+1, lettingS = zk”wl by Definition10and
the induction hypothesis we have

X (IE!tiwin‘j%mwn’.)
i=
>m<W1>S< )

k+1
=X (t:‘{"l (ﬂtW'/SKH
k+1 ,, i-1 )
+ m(wl)hz(sk)x <t;\’2/5.< I—Lti""l/skl_ljzm(wj)’ )
i=

(16)

< hg(wp)X (tg,-)

< hg(wp)X (t1,-)

W2

S

S NORY

Since hy is a supermultiplicative function, we have
ha(S)h2 (Wi /S¢) < hp(wi) for i = 1,2,...,n. This implies
that whenn = k+ 1 the inequalityl5 holds. The proof is
complete.

+miwna(s) [ (@ ) Xz

for inequalities types—GA convex and(s,m)—GA convex

stochastic processes.
From Theoren2 we have the following Remark.

Remark. 1.Lettingh;(t) = hy(t) =t, forall t € [0,1] and
m(t) = 1 for allt € (0,1] we have

1 b
X(Vab,-) < m/ﬁ X(t,-)dt

2.Lettinghy (t) = hy(t) =tSforallt € [0,1] ,s€ (0,1] and
m(t) = 1 for allt € (0, 1] then we obtain

25-1x (v/ab,-) < é/bxa St
"7~ Inb)—In@.Ja

From Theoren8 we can deduce the following.
Corollary 1.Let hy(t) =t and h(t) = t%2 for all
€ (0,1), and §,% € (—1,1) and me (0,1], and
X 1 (0,+0) x Q — Rg be an (hg,hy, m)-GA-convex
stochastic processes of®, ] x Q such that X is an

integrable processes stochastic ofa, 2 =] x Q for
O<a<hb.Then

1 b
In(b) — In(a)/a X(tjdt

) X(2 . ) X(& .
< min X(a’)+m (m’),x(b’)er ()
s+1 S+1 s+1 s+1

Corollary 2.Let h: [0,1] — Rp,h # 0 and me [0,1], and

X :[0,4) x Q — Rg be an (h,m)-GA-convex stochastic
process or{0, ] x Q such that X is integrable ifa, 2] x

Q, and he L1([0,1]) forO<a< b Then

x(van )
h(3)

b
< m/a [X(s,-)+mx(%,-)} ds

1
< min{A, B,C,D}/ h(t)dt
0

where

A=X(a,)+mX(= )+mX(%, )+mZx(%,.)
B— 2mX(%,-)+X(b,-)+sz(%,-)

C= X(a,-)+mX(%,-)+2mX(%,-)

C= mx(%a')+”12X(%,-)+X(b,-)+mX(%,-)

(@© 2017 NSP
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Proof.This can be derived from lettinty (t) = ha(t) = h(t)

for all t € [0,1] and considering the symmetry betwegn

andb in theorem.

Corollary 3.Under the conditions of Corollarg, if h(t) =
tSfort € (0,1) and se (—1,1), then

b
2°X(Vab,-) < m/&l [X(s,-)+mX(%,-)]ds

1 .
< —min{A,B.C,.D
75-'—1 {777 }

Where
A:X(aa')erX( )+mX(%,)+mzx(%,.)
B = 2mX(2 )+ X(b.) +PX( 2.
C=X(a, )+mX(mz,)+2mX(%)
C=mX(2 )t PX (2 )+ x(b.) £ mx( 2 )

Now, we give some applications from Theorebend
6.

Corollary 4.Under the conditions of theorem , if ft) =
hz(t) = h(t) for all t € [0,1], then
/ X(s
In

)ds<A+B

Where

A— {X(a,-)Y(a, )+ mlmgX(m%, Y (%ﬂ /Olhz(t)dt

And

o (e (3)]

1
x /0 h(t)h(1—

In particular, if h(t) =t%fort € (0,1),s€ (—
m=my = Ny, then

i X
= [xava i (R (3)]

D=mB(s+1,5+1) [X(a, )Y (%) +X (r% ) Y(a, -)}

andf denotes the well known Beta function.

2.1], and

)ds<C+D

Where

The following are some applications of Theorém

Corollary 5.Under the conditions of Theorei if wy =
... =Wp = 1/nthen

(Ht” ajmi ) (17)
<h1<%>x(t17')+h2<%>ii{m(%)]ilx(ti,-)

Corollary 6.Let h: [0,1] — Ro be a supermultiplicative
function such that B 0,me (0, 1] and X: [0,+) x Q —

Rp be a(h,m) — GA—convex stochastic process. Then the
inequality

X (ﬁtiﬂflvvi,) < ilmilh(wi)X(ti,-) (18)

holds for all { € (0,b] and w > O with S ;w; = 1.

ProofThis follows from Theorem 7 by putting
hi(t) = hp(t) = h(t) andm(t) = mfor all t € [0,1] and
me (0,1].

Corollary 7.Let ht) =tSfort € (0,1),s€ [-1,1] and me
(0,1]. Let X: [0,+) x Q — Rg be a(h,m) — GA—convex
stochastic process. Then the inequality

X <_|£|ti”“wi,-> < _im‘—lwfxai,-) (19)

holds for all { € (0,b] and w > Owith " ; w; = 1.

7 Conclusion

In this paper we establish new inequalities of
Hermite-Hadamard type inequalitues, and others like
Jensen type, fofhy,hp,m)—GA convex stochastic. We
hope this research can stimulate the research of
applications in this area.
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