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Abstract: In this paper, a discrete quintic spline method is develdpedhe solution of general type variational problem witle th
Lagrangian that depends on the minimizer and its highewvalk@res. The proposed technique depends on an arbitragyreter
which enables us to construct discrete splines with higleradcuracy. These methods are shown to be of fourth ordeneNcal
illustrations are given to demonstrate the validity anddffiectiveness of the proposed approach.
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1 Introduction the Euler equation can be derived as the simplest case: the
variation of the goal functional is

Nowadays, there is a need for finding an optimal function

which arises in many fields such as elasticity, optimal

control problem, optics, vibrations, beam problems and oP _,

economics, seelf). 0J = / —5 +—5 +ﬁ6u yax,  (5)

In the following, we consider the simplest form of a

variational problem as: integrating by parts, we obtain
b
)] :/a P0G U ) 5J= /b oP E@er_zﬁ)audx

0 dxdu  dx2 du”

whereld is the functional that its extremum must be found. ! xou X e

To find the maximal or minimal value af, the boundary

points have the form: [0P6 L oP su d oP Bul- ©)

a7 0 T Ov A X= a:

ou ou”’ dx ou”

the stationary condition becomes the differential equmatio

u(a) —Ao = u(b) —Bo =0. &)

The solutionu(x) of the minimizer J{u(x)] should

satisfy the following Euler-Lagrange equation
b J grangeeq d2 9P d oP OIP

@_E(E): (3) @W—d—xw‘f'%: ) (7)
ou dx ' ou ’
with conditions g).
In this paper, we consider the more general type

together with two boundary conditions on each end,

JoP oP d JopP

variational problem with the Lagrangian that depends on ou~— =0, - du= (8)
the minimizer and its first and second derivative, ou’ o dxou’
b L atx=aandx=Dh.
= / P(x,u,u’,u”)dx, (4)
a
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Or by the correspondent main conditions posed on thdor constructing discrete splines. Since the discrete
minimizeru and the derivatives'!), j = 1,2,3 at the end  quintic spline contains a parameter, high order accuracy
points as given below: can be achieved.

The article is organized as follows: In section 2, we
briefly mention the main definitions of the discrete quintic
u@) — A= u®(a)— A, =0,u@(b) —B; = ud(b)—B, =0,  spline function. Boundary conditions and convergence
(9) analysis are discussed in sections 3 and 4. Numerical
or results are presented to show the applicability and the
accuracy in section 5. Finally, in section 6 we conclude
the results of the proposed methods.
u(a)— Az = uM(@)—As=0,u(b) — Bz = u¥ (b)— B4 =0, In following section, we introduce the principle of
(10)  discrete quintic spline0,21,25,26,27,28].
whereA andB;, i = 1,2, 3,4, are finite real constants.

Similarly, the stationary equations for Lagrangian 2 Discrete quintic spline
P(x,u,u,u”, ....,u") depending on firsh derivatives ofu ,
is Let w:a = Xg<X1<Xo< ... <Xn = b be a uniform mesh of
[a,b] with w =X —x_1, = 1,2,...,n. Leth € (0,w] be
n Ldk ap  ap a given constant and the action of the central difference

-1)'——++-—-=0 11 is qi :
k;( ) kg0 T a0 =2 (11)  operators is given by

. ) 0 1 r(x+h)—r(x—h)
in this formulau can be replaced by a vector for several DT =r(x), DFr(x) = (T
minimizers.
Dt{f}r(x) _ r(x4+h)—2r(x) +r(x—h)

In [1], Galerkin method is used for solving the h?
variational problems (), (2)). A walsh series, Shifted D (x) = r(x+2h)—2r(x+h)+32r(x—h)—r(x—h)7
Legendre, Laguerre series, Shifted Chebyshev, Legendre 2h
and Haar wavelets, Adomian decomposition method {4 () — [(X*20 —4r(x+h) +6r(x) —4r(x—h) +r(x—2h)
variational iteration method, Chebyshev finite difference L
method , Bernstein direct method and exponential spline and for sufficiently smooth  r(x):
method are used for the solution of variational problemsp{'r(x) = r®)(x), k = 0,1,2. Using Lyche 5], we use
in [2]-[13. _ the basic polynomialxk} as: xtkt = xk k = 0,1,2,
While (to our knowledge) there is no methods developed, (s _ X(x2 _ h?)
for the variational problems Tf and @) or (10)). For (4} w2052 12) wl5)  viv2 — h2\(\2 _ AR2 ’
boundary value problems, finite difference, polynomialx = X5(x" =), % = x(x" — ") (x” —4h"), such that

1 _
spline and exponential spline methods are developed i®n XK = Uk = 01235 and
Khan et. al. 4], Usmani [L5], Usmani [L6] Van Daele Dﬁl}x{‘l} = 2X(22 + h?).

[17] and Zahra18 19]. Using [20,21,25], we can give the following theorem.

The goal of this article is to establish a new discreteTheorem 1. Let s(x,w,h) be a piecewise continuous
quintic spline method for the solution of variational function over|a, b] with with the meshw ands (x, w, h) is
problem ((7),(9)) or ((7),(10))). its restriction on [x_1,%] connecting the points

The polynomial splines deal with pieces that are (x_3,5_1) and (x,s), i = 1,2,....n. Then we have a
connected together by the continuity of certain derivative unique discrete quintic splirgx, w, h), satisfying:
at the knots but in the discrete spline, the connections will

involve differences instead of derivatives. D,ﬂk} (S+1—s)(x) =0, k=0,1,2,3,4, i=1,2,...n—1.
Discrete splines were first proposed by Mangasarian (12)
and Schumaker2d| as solutions to certain minimization Our main purpose is to solve the problem with the

problems involving differences. Thereafter, Schumakerboundary conditions given by E§)(or Eq.(L0). So we
[24] and Lyche P5,26] discussed cubic discrete splines need first to obtain explicit expression ®(X, w,h).
involving central differences. There are many papersClearly s(x,w,h) should pass through the points
appeared in this area but there a few papers in the field ofx_1,5-1) and(x,s). Let
solving boundary value problems. A discrete cubic spline
is proposed for solving obstacle problems 22 Also, s(x,w,h) =s, D,{f}S(Xi,w, h) = M;, (13)
Zahra and Van Daele2()] developed a discrete spline
with nonuniform mesh for solving singularly perturbed then sincde]4}s(x, w, h) is linear in the intervalx_1,x],
problems. we have:

The main merits of the method in this article over X — X X—Xi

. . - . . {4} X _ Xi—1

other methods is the introduction of a simple technique Dy s (X w,h) = w Mi—1+

M;, (14)
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It follows from Eq.(@4) that

(Xi — X) {5}
120w

(Xi — X){?’}
6w

(X— Xifl){S} .
1200 M

(x—xi—1) 1%
6w

S(Xa w, h) = Mi_1+

_|_

pi +

—Xi—1)
3

Qi

=%,

+ di + €,X€ [X-1,%], (15)

wherep;, g , di andg are constants. we can determine
these constants by the conditions:

S(Xi—lawa h) =§-1, S(Xivwv h) =5,

D\7s(x%-1,wh)=F_1 and Dy's(x,wh) =F.

Then we have the following expressions 4o
pi=F_1— @MH, g=HK- Lghz)l\/li,
dog, DD, @)
N L N =L e

Then, we get the discrete quintic spline

s(x,w,h) = 7()q1_23)j5} Mi—1+ X=X _1);0:)){5} M
+ai[ (x—x-1) 3 — (é*(’j —h?)(x— Xi—l)]
B %u;— )% =),
NOC L O S B
Hsa— (wZ_hzi(chz_4h2) M) (xi;x)' (18)

For h — 0, EQ.(18) reduces to the ordinary quintic
spline:
(x=%-1)°,
o

Using the continuity condition

DIMs (%, ,h) = D{Ys 11(x, w, h), we get:
1M1+ oM+ 1M1 = —6(S_1 25 +511) + (0? —h?)Fi_1

+(40?+ 2N F + (w? —h?)F1i=1,2,....,n—
where
oy (w? — ) (Tw? +2h2)
60
Also, from the continuity
Df}}s (X, ,h) = D,{f}s“()q,w, h), we have:

1, (20)

(w? —h?) (1602 — 4h?)
60 ’
condition

and apx=

2_h2
6 )Mi+l

(w

= |,l—2Fi+F|+]_,i:1,2,...,n_1 (21)

Now we get expressions fé1_1, i andF, 1 from Eq.Q0)
and Eq.21) by the operation (EqRQ) - (w? —h?) Eq.21))

S-1-25+s41) (P—a?)

|
Fi = w? 12002

[(w? —4h?)M;_1

+(8w? +8M)Mi+ (w? —4h))Miya],  (22)
Increase the indices of EQZ) by one and then reduce the
indices by one, we get:

(8—2511+542) , (P—?)  ,
Fii= 2 12002 [(w® —4h*)M;
+(8w? + 8h?)Mj 1 + (w? — 4h?)Mi, 2], (23)
(5-2—25.1+s) , (BP—a?) o
Fi= 2 190002 [(w®—4h*)M;_»
+(8w?+8n?)Mi_1 + (w? — 4h*)Mj], (24)

Now from Eqns 22),(23) and @4) into Eq.@21),one have
S 2—45 1+65—4s;1+S2=aMi2+ M3

+yMi + BMis1+aMiy0,i =2,3,...,n—2, (25)
where
. (w? — h?)(w? — 4h?)
120 ’
(@ —1?)(13w?+8h%)  (1lw*+5h%w?+4h?)
- 60 V= 20

For h — 0, Eq.25) reduces to the relation of ordinary
quintic spline, seell6,17,22]:
v

w
S-2—4s-1+65—4511+S2= m['vh—z

+26M;_1+ 66M; + 26M; 1+ Miy2],i =2,3,...,n— 2.
(26)
For the direct computation of the unknowns, the relation
(25) needs three extra conditions in case of the boundary
conditions @) and two equations for the boundary
conditions (0). These equations are constructed in the
following section.
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3 Boundary conditions

1.First class of boundary equations

Similarly, the local truncation errors for the equations
given by Eq. 27) and Eq. 80) can be obtained by the same
manner.

The boundary equations are written in terms of theLemma 1

minimizer u and the derivativesi!), j = 1,2,3. We can
get the first end condition near= a as:

—5.55+ 95 —4.55 + 53 = 3(»3(()l> + w“(aoMo +a M1

+aMz + agMs + asMs +asMs), i = 1,
The other two end conditions neas= b are:

(27)

Sh-3— 4% 2+ 5% -1 2% = —w?Fn+ w*(bsMy_s5

+baMn_s+0b3Mn_3+boMy_2+b1Mn_1+bgMp),i =n—1,
(28)
and

S$1-2— 251+ = WP — %Y + w*(CsMn-5 + CaMn_4

+C3Mp_3+CoMn_2 + 1M1+ CoMn),i = n,
2.Second class of boundary equations

(29)

Let u € C8ab] and u = u(x) then the local
truncation errorste, i = 2,3,...,n— 2 of the scheme2b)
are:

-l 6u® 1 B
+0(w®),i=2,3,....n—2, (34)

and
Ite cswbu I()+O(w8),i=2,3,...,n—2, H?’é%,
Ry 4+ O(wh).i =2.3,..n-2, =L,
(35)

whereh = pw is a parameter ang is a constant.
Pr oof

To get the local truncation errolte, i = 2,3,...,n—2
of Eq.(25), we first rewrite this equation in the following
form:

Itg = uj_» —4uj_1+ 6U; — 4u.+1+u.+2—au4 BuI 1

For this class, the boundary equations are presented in

terms of the minimizeu and its first derivative. We can
address the first end condition near a as given by
Eq.27). N o

The second end condition nea+ b is given by:

Sy-3—4.58, 2+95,_1—5.55,= —3ws§1l> + a)4(d5Mn_5

+dsMn_g+d3Mp_3+ oMo+ diMp_1+doMp),i =n—1,
(30)
wherea;, bj,c; andd;j, j = 0,1,.,5 are free parameters.

Also, the local truncation erroti$eg, i = 1,n— 1,n of
the equations given by EQRT), Eq. 28) and Eq.R9) can
be addressed as follows:

Ite; = —5.5up+ 9uq — 4.5up + uz — 3wuf)1) - a)“(aougl>

(4)

agul 4

+anul 4

+agu” +aquf” +asul’),i =1, (31)

(2 _

Iten_1 = Un_3— 4Un_24 5Un_1 — 2Un + w2Uy w4(b5ufi)5

+bau, + bl + U, + byl + boul?)i=n—1,

(32)
and
Iten = Un 2 — 21+ Un — @?ui” — w®uf” + (e s
+Catiy g + Cat 3+ caup, + cau?; +couiy”)i = ..
(33)

au® i = 2,3, ...,

12> n—2.

(4 (4
—Wi - Ui+)1
In the above equation, Taylor series are used to expand
the termsyi_» andu@z,etc. around the point and Lemma
1is then derived.
Lemma 2 The local truncation erroil$g for the boundary
equations are:
(i) First class of boundary equationstype
Fourth order method

G}ZOwS ® L o(w),i=1

lte = ¢ =24L08u® 1 O(w?),i=n—1  (36)
=293 8% 4 O(w?),i =n,
where
(aOa 7a3) T(S 15]752 1)
(bo. -, bg) = 155(49,71,~19,4),
(Co,-,C3) = 55(28,24556,1),a; = d;
Sixth order method
Owlou( 0 O(wll)’ i—1
te = { R0t 4 0H), i=n-1  (3)
= 10 .
6054%7016&)10ui( ) + O(wll)ﬂ =,
where
(80, -,85) = g3550(937. 182405990 140, —135,28),

(b, .,bs5) = gmg0(4233 432745662 3432 —1391 230),
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(Co,-,C5) = gougo( 1491830693 —1827211446 —4158 653), For the linear problem, whergx,u) = p(x) — g(x)u, then
aj =d. Eq. (ii) in Eq.@0) is changed to:
(i) Second class of boundary equationstype NS=C, where N=No+BG and G=diag(g).
Fourth order method (41)
1 8 In the following, we will write the matrices associated with
Itg = {W)wgui( ) +0(w?),i=1n—-1, (38) the variational problem given by Eqn28),(27)-(29)).
The matrixNp has the form:
Sixth order method 9 4
2
—1 10 , —46 —4 1
Ite = {@wmuf o), i=1n-1,  (39) 1-46-41
No = . ) (42)
Proof '
See Lemma 1. 1 _14 64 _54 12
In the following, we propose a simple algorithm for _1 5 _1

computing discrete quintic spline.

Algorithm for discrete quintic spline solution and the matr8 has the form:
w*a wta, whaz wlas wray
Clearly, we assume that the general form of the B v B«
variational problem ¥) at the grid point x; as a B v B«

u@ = f(x,ui), thenM; = fi.

1
Now the steps needed to evaluate the discrete quintic

spline solution of the problem T\,(9)) or the problem . 9 E y E a
((7),(10)) are listed as : w’bs wbs w'bs w’by w'by w’bo
w?cs whcy wcs whcy whc wicy
1.Determine the meslkv and choose a value of the (43)
parameteh(e (0, w]). For the vectoC, we have:
2.Solve the systen®f) fors, i =1,2,...,n.
3.M; can be evaluated frol; = M(x;,s)). A +3wAr+ whagfy, 1=1
4.From Eq.R2), K can be evaluated. —A; + afo, i=2
5.After computings, M; andF, it is possible to construct =<0, i=3,4,...n-3 (44)
a discrete quintic spline function from Ed.§). —w?By, i=n—1
w?B1 — wBy, i=n

This algorithm has its own advantage in comparison with
nonpolynomial spline methods [6,13,14,18, 25-27]. For
example, once the solution has been computed, th
information needed to construct a discrete quintic spline

ginally the vectoC can be written from Eq4QD).

A
function is available but it is not always possible for the 5.5A1 +3hAg + (@ (Go — foAr) + wnds + w202)
nonpolynomial spline solution. +0303+ uds + wsgs, i=1

—As+h*(a(go+9a— foAr) +B(g1+9s) + Vo),
4. Convergence analysis i=2

The discrete quintic spline solution of E@).(and

| ra(g 2+ g 1tg -
Eq.©) is based on the nonlinear equations given by Eqngi = (a(gi-2+0i+2) + B(Gi-1+Gia) +VG),

((25),(27)-(29)) and on the nonlinear equations given by 5 4 1=3,4,..,n-3
Eqns (25),(27) and @0)). B —h"B1 +h*(a50n-5 + 04Gn-4 + 0'30n-3+ 020n-2)
LetU = (u), S=(s), C=(c), C=(G), T = ( +010n-1+QogGn), i =n—1
(Ite), E = (&), = Uy —s be n-dimensional column h?B; — h3By, + h*(Bs9n_5 + BaGn—a + Badn_3
vectors. Then we can formulate our methods in the -
- : . +B20n—2+ B1gn-1+ 3ogn), I=n
following matrix form: (45)
. _ Also, the matrices for the variational problem given by
(I)NoU +Bf(U) =C+T, .
(iNoSV+D + BFH(SY)) =C,v =0,1,2, . (40) ric;r;;é@S),(Z?) and B0)) can be written by the same
. df; . .
()NE =T, N = No +BG, G = diag(5; ), In order to derive a bound offE || (whereg|.||refers to
the infinite norm), we need the following lemma.
where f(SV)) = f(x,S")),i = 1,2..,n, N and B are  Lemma 3 see [18] IfQ is square matrix of ordem and
banded matrices and Also we hakJ) — f(S) = GE. Q|| < 1, then(l + Q)~exists and| (I + Q) Y| < ﬁ.

(@© 2017 NSP
Natural Sciences Publishing Cor.


www.naturalspublishing.com/Journals.asp

664

W. Zahra, M. Daele: Discrete spline solution for...

Recall to Eq.40) and rewrite it as
E=N"1T=(No+BG)'T

= (1 + Ny 'BG) "INy T,

then L
Ny ||
ey < — e DT a6)
1-|INg [ 1B 1G]
Provided thaf|Ny || [|B|| G* < 1, G* = max| 5°|.

Lemma4 [15], the matrixNgis nonsingular and |'[#N0
satisfies that

'l

HN01||_ [3n+4n”—n+2].

Also, we have that

2 3
HNO 1H_ 8w4 [1+3( a) (bwa)2+3(§(fa)3]’
then||Ny || = &3 *[1+ O(w)], for small value ofw, we
have
(b—a
INo™ ] < 80,4) : (47)

Lemma5 The discrete problem (ii) in EqtQ) is uniquely
solvable iff
8
(b

_ a)4B ’

where||B|| = w*B andB is a finite number .
Proof

G < (48)

The proof follows directly from Lemma 3 and Lemma 4.

then the discrete problem (ii) in E4@ has a unique

solution if G* < ﬁfg

The next result gives the order of convergence of our

method.

Recall to Lemma 1 and Lemma 2, we get from B)(
that:

Fourth order method 1

1 136
T||= —==—w°Ug and |B||=-=w
(T 5720% Us 1Bl = 135
where u:i and Ug= max‘u(g)(x)‘ (49)
\/§ a<x<b ’

Then it follows from Eq.46), Eq.@7) and Eq.49) that
135b — a)*Ugw*

_ 4
IEl< s376q135—70—a)c] &« 0
where
G _ 135(b — a)*Ug
1~ 5376Q135— 7(b—a)%G"|’

Fourth order method 2
Also, from Lemma 1 and Lemma 2, we get from EBy)
that:

136
IBl| = T3z

1
T||= 570U d
(1Tl w°Ug an 135

2160

where = and Ug= max‘u(g)( )‘. (51)

1
ﬁ a<x<b
Then it follows from Eq.46), Eq.@7) and Eq.b1) that

135 — a)*Usw?

_ 4
IBl< 77280135 70—y ~ 2%+ (2
where
G 135 — a)*Us
2~ 17280135— 7(b—a)G*|’

The above results can be summarized in the following
theorem:

Theorem 6

Let u(x) be the exact solution of the variational
problem {7) along with first class of boundary conditions
(9) or with second class of boundary conditiod§)(and
let u;, i =0,1,2,...,n, satisfy the discrete problermw)
Further, ife, = Ui — 5, then|[E|| < Gjw?*, = f, where

Gj, j = 1,2 are constants an(E| < Gaw?, u # L T3 Ga
is a constant, neglecting all errors due to round off.

5. Numerical examples

We will consider some numerical illustrations for the
solution of the variational problem using discrete quintic
spline methods. All calculations are implemented with
MATLAB R2014b.
Example 1: Consider the following variational problem

11

mind[u(x)] = /O (5(U)24XP) 4 (B-+ T e

(53)
together with boundary conditions

u(0) =uM(0) ~1=u?(1) +4e=u® (1) +-9e=0. (54)
The analytical solution is
u(x) =

The results for our fourth order methods are given in Table

1.
Example 2: Consider the following variational problem

X(1—x)€e*. (55)

1.,
(2))2 +3u + (8xcosx

minuo] = [ (G0

— (2 —13) sinx — (X* — 2 + 1) siP x)u)dx,

along with the following boundary conditions

(56)

u(0) = u¥(0)+1=u®(1) — 4cog1) — 2sin(1)

=u®(1) —6cog1) +65in(1) = 0. (57)
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Table 1: The observed maximum errors (in absolute value) for Table 3: The observed maximum errors (in absolute value) for
U= is andw = 2~™ of Example 1

7
m Fourth order| Fourth order
method 1 method 2
3 2.3896974E-05 4.7495949E-07
4 7.9317283E-07 7.1111918E-08
5 2.3175701E-08 5.5279230E-09
6 5.1559823E-10 4.0083136E-10
7 4.1745806E-10 5.9799276E-11

U= As andw = 2~™ of Example 2

7
m Fourth order| Fourth order
method 1 method 2
3 9.3337500E-06 4.4177794E-07
4 2.9435635E-07 3.0606159E-08
5 8.2413365E-09 2.2033219E-09
6 1.9522872E-10 1.3564260E-10
7 9.4502183E-11 1.0490452E-10

Table 4: The observed maximum errors (in absolute value) for

The analytical solution of56) is U= % andw = 2~™ of Example 2

e
u(x) = (x2 — 1) Sin(x), (58) m Fourth order| Fourth order| Zahra [18]
. method 1 method 2
The results for our fourth order methods are tabulated irff3 9.33E-06 2.41E-07 1.06E-05
Table 3. _ _ o 4 | 2.94E-07 3.06E-08 4.12E-07
Example 3: Consider the following variational problem 5 8 24E-09 2 50E-09 1.70E-08
6 1.95E-10 1.35E-10 7.91E-10
mind[u(x)] = Lll(%((u(z))z _ XUZ) +(11+ 9%+ N X\’i)exu)dx7 7 9.45E-11 1.04E-10 2.57E-10

(59)

together with boundary conditions ) _
Table 5: The observed maximum errors (in absolute value) for

u(—1) = u(l)(_l) _E =u(l) = u(l)(l) 1+2e=0. (60) U= J% andw =2"™ of Example 3
€ m Fourth order| Fourth order| Khan et.
The analytical solution off9) is method 1 method 2 al.[14]
5 3 7.6E-05 7.4E-05 4.8E-03
u(x) = (1-x9)e. (61) 7 8706 8.4E-06 2.7E-03
The numerical results for our fourth order methods arg > 1.0E-06 9.9E-07 8.1E-04
Summarized in Tab|e 5. 6 1.2E-07 1.2E-07 2.0E-04
The observed maximum errors for the linear and| 7 1.5E-08 1.4E-08 5.2E-05
nonlinear problems for our fourth order methods are
listed in Tables 1 , 3 and 5,. Table 2 shows that our
methods have high accuracy compared with the .
4 Conclusion

nonpolynomial spline metho@#§] , the fourth order finite
difference method, fourth order shooting method and ) .
second order method introduced by Tien and Usmsi [ Two new methods of order four based on discrete quintic

and Usmani16]. Also, Table 4 declares that our methods SP!ine are presented for solving variational problems. A
are superior to the results in Zahrtg]. Finally in Table ~ Simple algorithm for constructing discrete quintic spline
5 the numerical results confirm that our methods areWith high order accuracy is obtained. The results obtained

better than the methods in Khan et. dl4]. These results by _the. devek_)ped technique show _that these methods
are encouraging and suggest that our methods arBl@intain a high accuracy. Comparisons are given to
practical when dealing with boundary value problemsdémonstrate the validity and the effectivity of the
arising in beam and plate deflection theory. proposed technique.
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