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Abstract: The aim of this paper is to use the concept of the generalizeérivative to define fuzzy Caputo’s H-derivative of order
B € (1,2]. Our definition is an extension of fuzzy Caputo’s H-derivatof orderf3 € (0,1] and higher order H-derivative of integer
order. After that, we study fuzzy fractional initial valueoplems of ordei3 € (1,2] and give an algorithm to solve them based on
the characterization theorem. Finally, we apply the repcoty kernel Hilbert space method to obtain approximatet&wis of second
order fuzzy fractional initial value problems and give somuenerical examples.
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1 Introduction H-derivative, we define fuzzy Caputo’s H-derivative of
order 3 € (1,2] and solve second order fuzzy fractional

Fractional calculus has recently attracted the attentfon oinitial value problems (FFIVPs) based on the

many researchers for its considerable importance ircharacterization theoremd,p,6]. We apply a modified

science §,34]. But in many cases of modeling real world reproducing kernel Hilbert space method (RKHSM) to

phenomena, information about the behavior of aobtain numerical solutions. To see some applications of

dynamical system is uncertain. So fuzzy set theory washe RKHSM for solving differential equations of different

established by Zadeh in 196%,8]. In 1978, Dubois and types, the reader is asked to refer 28,29,30,31,32,35,

Prade introduced the notion of fuzzy real numbers and36,37].

established some of their basic properti8s The term This paper is organized as follows: In sectidnwe

"fuzzy differential equations” was coined in the same introduce some basics of fuzzy calculus and fractional

year by Kandel and Byattlf]. Many definitions were calculus. In sectior8, we define second order Caputo’s

suggested for a fuzzy derivative and then for studyingH-derivative and prove some related results. An algorithm

fuzzy differential equations1fl,12,13,14,15]. The most  to solve second order FFDEs is given in sectlofection

popular approach is using Hukuhara derivatiV2 . 6]. 5 is devoted to apply a modified RKHSM to solve
Recently, the concept of fuzzy fractional differential FFIVPs. This paper ends in secti6with a conclusion.

equations (FFDEs) was introduced to consider a new type

of dynamical systemdl[/]. In [18], the authors considered .

a generalization of the H-differentiability for the frastial 2 Some Basics of Fuzzy Calculus and

case. In the last few years, several research works havEractional Calculus

been devoted to study and solve FFDEs of oftler(0, 1], ) ) ) o

see [19,20,21,22,23,24,25,26,27). In this section, we introduce some necessary definitions of
In [3], a generalized concept of higher order fuzzy and fractional calculus.

H-derivative for fuzzy functions was introduced for Definition 2.1[7] A fuzzy set A in a universal set X is

integer order. Here, using the concept of generalizeccharacterized by a membership functiorfxu which

* Corresponding author e-mag#:momani@ju.edu.jo

@© 2017 NSP
Natural Sciences Publishing Cor.


http://dx.doi.org/10.18576/amis/110606

1598

S. Hasan et al.: Second order fuzzy fractional differential

associates with each point in X a real number in the Theorem 2.2[42] If f : O x O — [0, is continuous, then

interval [0, 1].
Its r-cut representation is given by
U = {x € X: ux) > r} for r € (0,1 and

[u]® = {x€ X: u(x) > 0}. [u]®is called the support oA .
Ais normal if there isc € X with u(x) = 1. The core ofA
is core@) = {x € X: u(x) = 1}. A convex set A is a fuzzy
convex set iffu(yx+ (1 —y)y) > min(u(x),u(y)) for all
x,y € X andy € [0,1]. If we takeX to be the set of all real

F: O x O — O is a well-defined function with r-cuts
(F(uv)]" = f(u",[M") ={f(xy): xeu",ye [V }vre
[0,1] anduv e Of.

For the differentiation of a fuzzy function, we use the
concept of strongly generalized derivativé].[ It was

given in 2005 as a generalization of the H-derivative
introduced by Hukuhara in 1967 for set valued mappings
and extended by Puri and Ralescu in 1983 for fuzzy

numbers] , then a special class of fuzzy sets resultsVvalued mappingslfZ].

which is called the set of fuzzy numbefsg . The
following theorem gives the conditions that must be
satisfied by two real valued functionsg,u, defined on
[0,1] so that[ui(r), ux(r)] is the parameterization form of
a fuzzy numbeu for eachr € [0,1].

Theorem 2.1[39] Suppose thatuu,: [0,1] — O satisfy
the following conditions:

Definition 2.3[1]Let F: (a,b) — OF and § € (a,b). We
say that F is strongly generalized differentiable atitt
there exists a fuzzy numbef(k) such that

(1) There exist Fto+h) © F(tp) and F(tg) © F(to — h)

and

. F(to-l—h)@F(to) F(to)@F(to—h)
||mh_>0+ f = — f
=F(to) or

1y is a bounded monotonic nondecreasing left (2) There exist Ftg) © F(to +h) and F(tg — h) © F(to)

continuous functionvr € (0,1] and right continuous
for r=0.

2. is a bounded monotonic nonincreasing left
continuous functionvr € (0,1] and right continuous
for r=0.

3.t (1) < up(1) (which implies that w(r) < up(r)vr €
[0,1]).

Then u O — [0,1] which is defined by (x) = sup

{r: ui(r) < x < uy(r)} is a fuzzy number with
parameterizatiorju]" = [u1(r),ux(r)]. Moreover, if u is a
fuzzy number with[u]" = [uy(r),ux(r)] (or simply,

[ugr, Uy ] ), then the functionsyuy: [0,1] — O satisfy the
conditions (1-3).

Addition and scalar multiplication ifilg can be defined
as those on intervals @f. So for anyA € O — {0}, and
u,v € O with [u]" = [ugr, U] and [V]" = [vir, V] , We
have [u+Vv]" = [u]" + [V]" = [ugr + var, U + Vo], and
AU = AU [Min{Augr, Aug b, max{Aug, Aug}].
While for subtraction, we use the H-difference, s&f]|[
The H-difference ofu,v € OF, denoted bjuov=w, is
the fuzzy number that satisfies = v+ w. Its r-cut
representation igI© v]" = [ug, — Vir, Uy — V.

Definition 2.2[40]The Housdorff metric D onlg is
defined by D Og x Og — Ot U {0} such that
D(u,v) = SupcpoymaxX |uir — Var|,[uzr — Vo |} for any
fuzzy numbers & (up,uz) and v= (v1,Vvy).

A fuzzy function on an interval T is a mapping
F: T — Q. If for fixedtg € T ande > 0, 36 > 0 such
that|t —tg| < & = D(F(t),F(to)) < €&, then we say that F
is continuous atg. If F is continuousvt € T, thenF is
continuous orT [41]. A natural way for extending a crisp
mapping f: 0 — O to a mappingF: O — Of is
Zadeh’s extension principle3]. Nguyen theorem gives a

and
F(to) ©F(to+h)

—h

F(to—h)©F(to)
e

lim h—0+

=F'(to).
The limits here are taken in the metric spg€é-,D).

We say thatF is (n)-differentiable forn = 1,2 if F is
strongly generalized differentiable in the nth form and
denote the (n)-derivative d¥ atto by F/(tg) = DF(to).
However, if D1F(to) exists, thenDiF (tp) doesn't exist
[5].

Remark: In [1], the authors suggested four cases for the
generalized H-derivative and proved that two of them are
reduced to a crisp element. So, they are missing here.

Theorem 2.3[43]Let F: [a,b] — O be a strongly
generalized differentiable function at¢ [a,b]. Then:

a) If F is (1)-differentiable atd, then F, and F are
differentiable at & and [F'(to)]
[F:{r (to), F2/r (to)],vr € 0,1]

b) If F is (2)-differentiable atd, then F, and F are
differentiable at & and [F'(to)]"
[FZIr (to), F:{r (to)],vr € 0,1]

Based on definition2.3, we have two possibilities to
obtain the first order fuzzy derivative of a fuzzy function
F. Consequently, there are four possibilities for the
second fuzzy derivative which is defined as follows.

Definition 2.4[3]Let F: (a,b) — Or. We say that F is
(n,m)-differentiable at o € (ab) if F() is
(n)-differentiable on a neighborhood of as a fuzzy
function, and F(t) is (m)-differentiable at¢ The second
derivatives of F at t are denoted by
F”(t) = D3 F (t),n,me {1,2}.

—0

Theorem 2.4[3]Let DIF,DiF : (a,b) — O be fuzzy

sufficient condition for when Zadeh’s extension of a real functions withF (t)]" = [Fy(t), Fx (t)],r € [0, 1].

valued functionf: 0 x 0 — O, sayF: Or x O — O,
is a well-defined fuzzy function.

a) If DIF is (1)-differentiable, then f and B, are
differentiable functions anfD? ; F (t)]" = [Fy, (t), Fyy (t)].
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b) If DIF is (2)-differentiable, then £ and B, are  (t,X,2),(t1,X1,21) € toto + a x 02
differentiable functions anfD? ,F (t)]" = [Fy (1), Fy, (t)]. | (tx2) — (t1,x1,21) [|[p3< & and Ry and Fy are

e g . , uniformly bounded on any bounded set.
c) If DzF is (1)-differentiable, then f and F, are ¢ There is an L > 0 such that

differentiable functions anfD3 ,F (t)]" = [Fy (t),Fy, (t)]. IFar (2, X0, 22) _ Far (t1, 30, 21)| <
d) If DIF is (2)-differentiable, then f and B, are L x max X, — x1|,|zz — z1|} for all r € [0,1] and
differentiable functions anfD2 ,F (t)]" = [Fy, (t), Fy (t)]. |Far (t2, X2, 22) - For (t1,X1,21) | <

L x max{|xz — X1|,|z2 — z1|} for all r € [0, 1].

Then the FFDEJ) is equivalent to the system of ordinary
For integration of a fuzzy valued function, we will fractional differential equations (OFDES):
consider the following definition.

Cnha _
Definition 2.5[38|Let F : [a,b] — Og. The integral of F ("DigeXar) (1) = Far (txar (), Xr (1))
on [a,b], denoted by[PF(t)dt , is defined levelwise by (CDEXar ) (1) = Far (£, Xar (1), Xar (1)) (2)
[Ja FO)dt)" = [Z[F ()] dt,vr € [0,1]. Xir(to) =Yorr,  Xer(to) = Yo

Now, we define some notations which are used for fuzzy. . . . .
fractional calculus throughout this paper: i X(t) is ©[(1) — a] -differentiable. If x(t) is°((2) —a]

CF[a bl = The space of continuous fuzzy valued -differentiable, then 1) is equivalent to the following
functions ona, b]. system of OFDEs:

. - .

cgu[efio’l%nct-ighnes.set of all absolutely continuous fuzzy (CDE . xar ) (1) = Far (£, Xar (1), Xr (1))

LE[a,b] = {F: [a,b] = OF;F is measurable and (CDE . Xar ) (1) = Far (£, Xar (1), Xar (1)) (3)
PD(F(x),0)Pdx < 0}, 1< p < o. _ —

'jl'ahe(ge(n)era)lized H—giﬁerep:]tiability was used to expand X (fo) = orr, X (fo) = Yoz

the definitions of fractional derivatives in the crisp senseUsing this theorem, a FFDE can be converted to a system

for the fuzzy space as follows. For details of fractional of ODEs of fractional order. Then a numerical method can
derivatives in crisp case, se#. be applied to solve the resulting system.

Definition 2.6 [45]Let 0 < a < 1,F: [a,b] — O and
F € CFla,bjNL"[a,b].
The fuzzy Riemann-Liouville fractlonal integral of order 3 Second Order Caputo’s H-derivative

a is defined by(J3, F)(x) = /'(0!) Ja (Xft)lf"dt’ x>alt In this section, we define fuzzy Caputo fractional

can be written in parametric form af(J3,F)(X)]" =  derivative of orderB e (1,2] for a fuzzy function

e Fir(t) Ry Rt ) ] F: [a,b] — OF. Moreover, we give some properties of
a (x—t)l-a g a(x—t)l-a " the mentioned fractional H-derivative.

Definition 2.7[2] Let 0 < a < 1,F: [a,b] — O and Definitio? 3-1-:;9'[[3 € (1ﬁ2] and F: [a,b] — Or be such
F € CFla,b)nLF[a,b]. Then F is said to be Caputo's that FF’ € C™[a,bjnL"[a,b]. Then the second order

H-differentiable at X if  (°DZ.F)(x) = Caputo’s H-derivative of F at x (a,b) is defined as
F'(t) . : "
Ja dt exists. We say that F is CrB B 1 X OF(t)
FL-a Gty COLFIN = rogy f moppat i e @

él a d|ﬁerent|able if F is (1)-differentiable, and F (2B

— differentiable if F is (2)-differentiable. We say that F i€](m,n) — B]— differentiable for ran e

Now, the extension of the characterization theorems whicht 1, 2} if (4) exists and F igm, n)—differentiable.
are introduced for fuzzy differential equations # 9] is

given. Theorem 3.1Let B € (1,2] and FF’ € ACF[a, b] be such
that [F(x)]" = [Far(t),Fxr (t)],r € [0,1]. Then the second
Theorem 2.5[6] Consider the FFDE order Caputo’s H-derivative exists almost everywhere on
(a,b) and
(¢ DEX)(t) =F(tx(1),  x(t)=xclr (1)  ()IfFis(1,1)-differentiable, therﬁ(CD P
Flr ) FZr()
where F: [to,to+ @] x O — Of such that: =Ir 2 B) ja (x—t)( dt’F 2-B) ja (x—t)(B=  dit]

(@)[F (&, X(0)]" = [Fur (t, xar (1), %er (1)), For (&, Xar (), %2r (1)) = [(CD§+F1r)( X), (CD§+F2r)( X)).

(b) For any ¢ > 0 there is ad >0 such that (jj|fF is (1,2)- -differentiable, theri(°D,, F) ()]
IFr(t.x,2)  —  Fur(ty,%a,2)] < € and 540 S0
IFar(t,%,2) — Far(t2,%1,21)| < € for all r € [0,1], whenever = [rzp; Ja ot rep Ja soe-n dt
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= [(°D§. Far) (%), (°D§, Far) (¥)].

(iii) If F is (2,1)-differentiable, therﬁ(CD F)YX)]"
[ 2 p fa Xthr(B>1 dt,,— 22— B fa XF:F(([Q 1)dt]

= [(CD§+F2r>< >,<CD§+F1r>< X).

(iv) If F is (2,2)-differentiable then{(CDa+F)( x)]

1 Fi® g Fr
= lrp o o g o ot ]

= [(°DE, Fir) (x), <CDa+F2r><x>]

ProofUsing Theoren?2.4, the proof results directly.

Theorem 3.2LetB € (1,2] and EF € ACF[a,b)].

(1) If F is (1,1)-differentiable, then

(3,°DE.F)(x) =F(x) 5 F (a)  F (a)(x—a).

(2) If F is (1,2)-differentiable, then

(398.CDE. F)(x) = —F (a) + (—F (a)) (x— ) © (~F (x).
(3) If F is (2,1)-differentiable, then

(38, CDE F)(x) = —F(a) oF'(a) (x—a) & (—F(x)).
(4) If F is (2,2)-differentiable, then
(95,°DE, F)(x) = F(x) & F(a) + (~F'(a)) (x— a).

ProofLet [F(X)]" = [Fur(t),Fx (t)] for r € [0,1]. Then we
have for the real valued functiongy and Fy,
(3, D8, Fur) (%) = Fur(X) — Fur(a) — Fy (8)(x— @) and
(35, DL, Far) (%) = Far (%) — Fr(2) — Fy (@) (x— ).
Assume that F is (1,1)-differentiable or (2,2)-
differentiable, then by Theorem3(l), we can write

[(CDE,F)(0)]" = [(CDE, Fy)(x), (CDE, Far)(x)]. Hence

(38, CDE, F)(x)])" = (35, °D8, Fur) (%), (35, CDE, Far) (¥)]
= [Fe(® - Fu(@ -  F@x - a),
Far (X) — Far(8) — Py (3) (x— ).

S0 (38,CDE F)(x) = F(x) o F(a) & F (a)(x—a) if F is
(1,1)-differentiable, and
(38 CDB, F)(x) = F(x) ©F (@) + (—F'(a))(x—a) if F is

(2,2)-differentiable.
Now, if F is (1,2)-differentiable or (2,1)-differentiahle

then from Theorem 3D we have
[(CDS, F)())" = [(°D&, Far)(x).(CDE, Fir)(x)].  So
[(35,CD5, F)(X))" = [(92, °DE, Far) (%), (92, CDE, Fur) (%))
= [Fx(X) — Fx(a) — Fz/r(a)(x —a),Fy(x) — Fy(a) —
Fy,(a)(x - a). Hence,
(J5,.°D5, F)(x) = —F(a) + (-F'(@))(x — ) & (~F (%)

if F is (1,2)-differentiable,
and (3%, °D5, F)(x) = —F(a) 5 F (a)(x— a) & (~F (X))
if F is (2,1)-differentiable.

4 Second Order Fuzzy Fractional
Differential Equations

In this section, we study FFDEs of the form

(°DE x)(t)
x(a) =a,

h(t)X (t) + F(t,x(t)),1<B<2t>a -
X(a)=a

where h(t) is a continuous real valued function with
nonnegative values ofg,b],F: [a,b] x O — Of is a
linear or nonlinear continuous fuzzy function, and
a,a € Og. An (m,n)-solution of §) is an
€[(m,n) — B]—differentiable functiorx: [a,b] — O that
satisfies §). To solve this problem, we convert it to a
system of second order fractional differential equations
based on the selection of the derivative type. This system
will be called (m,n)-system.

Let [F(t,x(t))]" =

[Far (t, Xar (1), Xar (1)), For (t, Xar (1), Xar (1)), x®)" =
[X/lr(t)aXZr(t)]a,[X(a)]r, = [xu(a), X2r(a),] [oar, a2] and

X (@] = [Xy(a),%(@)] = [o, 0] be the r-cut
representations oF (t,x(t)) and x(t). Then §) can be
translated to one of the following systems:

(1,1)-system:

(CDP xar ) (t) = h(t)xg, (t) + Far (t, Xar (1), Xar (1)),
(°DE.xar)(t) = h(t>><'2r(t),+Fzr(t,xllr(U,er(t)), ®)
x1r (@) = oy, Xqr(8) = ay,,
Xor(8) = Qar,  Xpr(2) = Oy
(1,2)-system:
(°DExar) (1) = h(t)Xgr () + Far (t,Xar (), Xer (1)),
(°DE 30 (1) = h(t>><'2r(t)/+Fzr(t,xl/r(U,er(t)), @)
Xir (@) = aur, Xy (@) = ayy,
Xor(8) = Qar,  Xpr(2) = iy
(2,1)-system:
(CDP xar ) (t) = h(t)Xgr (t) + Far (t, Xar (1), Xer (1)),
(°DE xa0) (1) = h(t>><'1r(t)/+Fzr(t,xl/r(U,er(t)), ®)
Xir (@) = ar, Xyr (@) = Ay,
Xor(8) = O, Xp(a) =0y
(2,2)-system:
(°DExar) (1) = h()Xar () + Far (t, Xar (), Xer (1)),
(°DE 30 ) (1) = h(t>><'1r(t)/+Fzr(t,xl/r(U,er(t)), ©)
x1r (@) = ayr, X1, (8) = 0oy,
Xor(8) =z, Xpr(8) = ay
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Theorem 4.1Let [x(t)]" = [Xur(t),%2(t)] be an ;[cosr(t+s—b—a)+cosr(|t—s|—b+a)].
(m,n)-solution of §). Then x(t) and % (t) solve the 2sinh(b—a)
corresponding (m,n)-system form e {1,2}. Moreover, i. WSla,b] = {u: uu,u" € AC[a,b],u” € Ly[a,b],

if Xl[b(tl)] F‘”d(t)xzr (tztﬁ'cﬂve thﬁd (Im,n)l-sy.:,tem ;C()t; each y(a) = u'(a) = 0} with inner product foru,v € W3[a, b
r € [0,1], [Xar (t), Xor as valid level sets, and(ty is . AN oL e 11
C[(mn) — PB]—differentiable, then ) is an given by <U’V>W23 = u(@vi(@+ pu (v (b))d and

(m,n)-solution of §). norm: ||u||W23 = (u(t),u(t))wzg. The reproducing

ProofThe same as the proofs of theorems (4.2) and (4.3} i of WE[a,b] is Gi(s) = gt,s) s<t where
in[3] 21 ~ )o(st) s>t

1
glt,s) = —m(a —s)?(6as + 5t — s — 10t2(3 + 8) —
g\tlgggthm 4.1 To find solutions of §), we follow the 302(10+ 5t 4 9) + 2a(5— £+ Bt(6+ 5))).
Stepl: Assume thak(t) is ¢[(m,n) — B]— differentiable
and convert%) to the corresponding (m,n)-system.
Step2:Solve the system.

ii. NMa,b] = W"a,bj@W,"[a,b] = {(uy(t),
Up(t))T: ug,uz € WANa,bj},m = 1,2 The inner product

Step3: Ensure that the resulting solution satisfies@1d the norm TOf,U(t) - (Ul(t)aUZ(t)).T and
TheoremsZ.3and (.1) v(t) = (Vl(t)aVZZ(t)) in N™a,b] are given by
(uvinm = Yo (uit),vi(t)we and  [[uljym =

2 .
S 1 [|uillGy. respectively.

- W3 1

5 The reproducing kernel Hilbert space fﬁ)yjrl?sﬂieyjtﬂg joifritczmgn\évﬂ[ea{ﬁ : d%g[ﬁf]lzgy.

method for Solving FFIVPs Obviously, Ij,j = 1,2 are linear and bounded.
Consequentlyl; is also a bounded linear operator such

To obtain (m,n)-solution of §), we apply the RKHS that |, : N3[a,b1r—> Ni[a,b]. Put Gr = (Gy,Gx)" and

method to solve the corresponding (m,.n)-system. We givey, = (yir,Yzr)' to rewrite @0 in the form

a summary of the procedure to obtain the analytic and y, (t) = G,(t,y;(t),y: (t)),y (a) = y(a) = 0.

apprpximate (1,1)-solutions which is equiyalent to the (5) Consider the countable dense a8, , and let
solution of €). In fact, the same technique can be ¢, (t) = G,(t)ej and Wj(t) = I;¢ij(t),] = 1,2 to

employed to construct other types of solutions. For the . ©,2
detgilsyof this method, se8(, 46,{{)7]_ construct an orthogonal function system| (t)}EiJ)i(Ll)

of the spaceN3[a,b]. Then use the Gram-Schmidt
Algorithm 5.1 orthogonalization process on it to form the orthonormal
(1)Use the transfornyy (t) = Xy (t) — ay, — (t —a)ay,,  function systen{V.j(t)}EfJ.’)Z):a‘l) of N%[a, b.

yor(t) = Xor(t) — agr — (t — a)orér to homogenize the (6) Using this operator, the approximate (1,1)-solution of
initial conditions and rewrite6) in the form: (10) has the form:

£, yar (£),Yar (£), Yar (£), Vo (1)), no2 i ]

ChB
("D ya)V) =y M= 3 55 3 Al 6)% . (1D

= s
= ha(

~—~~

(CD5+YZr) t) = hor (t,yar (t)aYZr(t)ayllr t)ayIZr(t))a (10) =1j=11=1k=1
yir(a) = y,lr (@) =yx(a) = y/2r (a) = which converges to the analytic solution:
(2)Apply the operato:]’ir to the both sides of the two © 2 i ] / _
/ / i=1i=1l=1k=
Yir (£) = Hir (t.yr (£),Y2r (). Yo, (1), i (1) ’
= ﬁ ;th(Svylr(S>(vtyzrs<‘>sl>i>;1r(5>7yzr(s>)dt’t >aj=12 where By are the orthogonalization coefficients. So the
. _ H H i n —
(3) Construct reproducing kernel functions of certain @PProximate solution (t) of (5) is x/(t) = y/'(t) +ar +
spaces: (t—a)a;.

iWi[a,b] = {u: [a,b] - O: ue ACla,b],u” € Ly[a,b]}

with inner product for u,v € Wi[a,b] given by )

(U = RV + UOV(D))d and  norm: Numerical Examples

”u”Wzl - <u(t),u(t)>W21 - Its reproducing function has |, yhig subsection, we give examples of second order
the form Ri(s) = FFIVPs and solve them using the RKHSM. Our
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computations are performed using Mathematica7.0.
ExamplelConsider the following FFIVP:

Table 1: The error of examplel at different values of t and r when

B=109.

CoExt) =0, 1<B<2te(0l] : 0 [ 05 __[ 0°
o+ ) >4 ) t (1,1)-solution
0.1 | 8.23357x10°° | 5.48905x10° > | 2.7445%10°
x(0) =y,X(0)=a, 0.2 | 1.54339%104 | 1.02893<104 | 5.1446410°5
where 0 = a = y are the fuzzy numbers whose r-cut | 0-3 | 2:22572x 1072 1'4838]X1(Tj 7'4190&1(T§
representation i§ — 1,1 —r]. 0.4 | 2.88491x 107 1.9232% 10~ 9.61636<10~
4 4 4
Depending on the type of differentiability, we have the 0.5 | 3.52749x 1074 2'3516&104 1'1758&104
following systems: 0.6 | 4.15716x10 2.7714410~ 1.3857X% 10
0.7 | 4.77632x10°% | 3.1842%10%4 | 1.59211x10°*
(D xar) (1) = 1 — 1 0.8 | 5.38664x10% | 3.5910%<10# | 1.79555¢10 %
ot A ’ 0.9 | 5.98932x10°4 | 3.99288<10%4 | 1.9964410°4
© Dﬁ Xor)(t) =1—, 1 | 6.58535x10~% | 4.3902310~%4 | 2.1951%10°*
(1,1)-system: o t (1,2)-solution
X1r (0) = %4, (0) =1 — 1, 0.1| 8.2336<10°° | 5.48905¢10 5 | 2.7445X10°°
Xor (0) = X (0) =1 — 1 0.2 | 1.5433%10 4 | 1.0289%10°4 | 5.1446410°°
0.3 | 2.2257%10%4 | 1.4838%10°%4 | 7.41906<10°°
0.4 | 2.88491% 1074 | 1.9232%10™% | 9.61636x10°°
(CDP. xqs)(t) =1 —r 0.5 | 3.5274%10°* | 2.35166<10% | 1.17583%10*
o+ ’ 4 4 4
0.6 | 4.15716<10~ 2.7714410° 1.3857% 10~
_ (CD0+X2r)(t) =r—1 0.7 | 4.7763%10°% | 3.1842%10°% | 1.5921%10°*
(1,2)-system: , 0.8 | 5.38664<10~% | 3.5910%10~% | 1.79555¢10~4
Xir(0) =%, (0) =71 -1, 0.9 | 598934104 | 3.9928810% | 1.99644<10°4
Xor (0) = X,2r (0)=1—r 1 | 6.5853510°4 | 4.39023104 | 2.19512x10°*
t (2,1)-solution
0.1 | 8.2335%10°° | 5.48905¢10°° | 2.7445%10°
(CDo+ Xqr)(t) =1—r, 0.2 | 1.5433%10°% | 1.0289310*4 | 5.1446410°°
0.3 | 2.2257%104 | 1.48381x10°4 | 7.41906<10°°
(2.1)-system: ("DpXer)(t) =r —1, 0.4 | 2.8849%10°4 | 1.9232%10* | 9.6163610°5
' v, _ 0.5 | 3.5274%104 | 2.35166<10%4 | 1.1758310°*
X (0) =X (0) =1 —1, 0.6 | 4.15716<10°%4 | 2.77144<104 | 1.3857%10°*
‘ ) ) ) )
Xor (0) = X, (0) =1—r 0.7 | 4.77632x10°4 | 3.1842X%10% | 1.5921110°4
t (2,2)-solution
0.1 | 8.2335%10°° | 5.48905<10 ° | 2.74452410 °
(CDg+ Xir)(t) =r—1, 0.2 | 1.54339%<10* | 1.0289310°4 | 5.14464<10°°
(DB ) (t) = 11 0.3 | 2.2257x10°* | 1.4838x10°* | 7.41906<10°°
(2,2)-system: ot 2\ = ’ 0.4 | 2.88491x10% | 1.9232%10 4 | 9.61636<10°
x1r (0) = %o, (0) =1 — 1, 0.5 | 3.5274%10°4 | 2.35166<10°% | 1.17583<10°*
] 0.6 | 4.15716<10°% | 2.77144<104 | 1.3857%10°*
Xr(0) =%, (0) =1—r 0.7 | 4.7763%10°% | 3.1842%10°% | 1.5921110°4
_ _ 0.8 | 5.38664<10°* | 3.5910%10°4 | 1.79555¢10~4
Applying Theorem 8.2), the exact solutions are: 0.9 | 5.9893%104 | 3.99288104 | 1.99644<10 %
(1,1)-solution: 1 | 658535104 | 4.3902310%4 | 2.19512¢10°4

X)) =[r—1,1-r)(g +t+ 1), € [0,1).
(1,2)-solution:
X)) = [r—1,1—r]=% +t+1),t € [0,1].

B) / :
(2,1)-solution: subject tox(0) = A,x(0) = a, where g is the fuzzy

XOF =r—11-r-—= _t11)te(0v3-1). number with r-cut representationr,2 — r] and

EZ(Z);-SOILtion-’ I~ LS 03 [a] = [A]" = [r — 1,1 —r]. Depending on the type of
' ' 8 differentiability, we have the following systems:

Xt =[r— 1,1—r]m —t+1),t[0,1].

(CDf. X ) () +xar () =T,
(CDg.xar) () +xar (t) =2,
x1r (0) =X, (0) =1 — 1,
Xor (0) = Xo (0) = 1.

Using the RKHS method with = 100 andm=5 , some
numerical results are given in Tablel and Figures 1 and 2.
Example 2 Consider the following FFIVP: (1,1)-system:

(CDEX)(t) +x(t) = 0,1 < B<2te 0]
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[xlr (t)a Xop (t)] [x4-(t), 25, (8)]

// xlr(t)

t

(-4 04 06 08 10

» (1,1)-solution B x5, () "I (14)-solution e,

[x 1 (2], x5, ()]

[xlr(t)a xZ'r(t)]

(2,1)-solution

(2,1)-solution

[ (0), 21 (0)] [ (03, 52, (0]

m/,,..——“““"_ e p=WESIRTSTET xl‘r(t)
05
' " o o 10
-0
_1-3\‘-—.__“___ Rw=wESEw===E= X, (f) {1r2}_SOIuﬁ0n

(1,2)-solution

(%1 (£}, 22, (2)]
[x1,(0), x5, (D] g

oA amzgzeszTEESTIEET X, (1) -1 (2,2)-solution
- (2,2}—50|ut'|0r1 —Approximate (r = 0] - Approximats [r = 0.5}
_Exact(f=2) ___ Approximate (§ = 2) — approximate [+ = 0.25) ... Approximate (r = 0.75)

-- Approximate (f = 1.9) ... Approximate (§ = 1.5)

Fig. 2: Approximate solutions for different values ot 8 = 1.9

. . . . for example 1.
Fig. 1: Exact and approximate solutior&) for different values

of B atr = 0.25 for example 1.

(CDB, o) (t) +Xar (1) =T,

The exact solution of this system fof = 2 is _ (CDg+X1r)(t)+X2r(t) =2-r,
[X(t)]" = [r,2 — r](1 + sint) — sint — cost which is not (1,2)-system: 0 X (O) = 1
(1,1)-differentiable. Hence, in this case, no solution for X1 (0) =%, (0) =1 —1,
the FFIVP exists. Xor (0) = Xo, (0) = 1—.
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Core x(t), support x(t)
10p—

The exact solution of this system whef = 2 is

[x(t)]" = [r,2—r](1+ sinht) — sinht— cost which is not .
(1,2)-differentiable. " -
(CDg+X2r)(t) +Xxue(t) =T, = 2 _ i i
(CDE xar) (1) + e (t) = 2,

, } : . (2,1)-solution
X (0) =X (0) =71 — 1, 0 (a)

%or(0) = X, (0) =1 1.

(1,2)-system:

[ (8, 22, ()]
The exact solution of this system whef = 2 is
[x(t)]" = [r,2 — r](1 — sinht) + sinht — cost which is
(2,1)-differentiable fot € (0,In(1+v/2)).

Using the RKHS method with n=100 and m=5, some
numerical results are given in Table2 and Figure3.

(2,1)-solution

(b)

-- Approximate (f = 1.9)

Table 2: The fuzzy approximate (2,1)-solutidxy, (0.4), Xor (0.4) —Balp=2

of example 2 at different values gfand r.
r B=2
0 [-0.510308,0.668146]
0.25 [-0.363001,0.52084]
0.5 [-0.215694,0.373533]
0.75 | [-0.0683874,0.2262262
1 [0.078919,0.078919]
r B=19

— Approximate (§ = 2) --Approximate (f = 1.8)

Error (3 =2)
6.4419578%10 '
4.4137786% 1076
9.4717531%10°6
1.45297276:10°°
1.95877026:10°°

B=18

Fig. 3: a)The core and the support of the fuzzy (2,1)- approximate
solutions a3 = 1.8, b) Approximate (2,1)-solutions for different
values off3 atr = 0.25 for example 2.

Table 3: The fuzzy approximate (2,2)-solutidxy, (0.5), X2 (0.5)

0 | [-0.493755,0.678996 || [-0.484393,0.685333 .
0.25 [[-0.347161,0.532403]] %—0.338178,0.539118% of example 2 at different values ffand r.
0.5 | [-0.200567, 0.385808] | [-0.191961,0.392902] r p=2 Error (B =2) .
0.75 | [0.053975,0.239215 || [-0.045745,0.246686] O | [0.398179,0.642991]  4.3430935%10"
1 | [0.092620,0.092620] | [0.100470,0.100470] 0.25| [-0.268033,0.512845]  3.1257081%10
0.5 | [-0.137886,0.382699] 5.81701694 10 °
0.75 | [-0.007740,0.252553] 8.5083257% 10 °
1 | [0.122406,0.122406] 1.1199634510°5
r B=19 B=18
0 | [-0.384033,0.666088] [-0.376094,0.678837]
(CDE X1 ) (1) + xar (1) =, 0.25 | [-0.252768,0.534823] [-0.244228,0.546971]
0.5 | [-0.121503,0.403557] [-0.112362,0.415104]
(CDB o) (t) +Xer(t) =21, 0.75 | [0.009762,0.272292] [0.019505,0.283238]
(2,2)-system: , 1 | [0.141027,0.141027] [0.151371,0.151371]
X1r (0) =X (0) =1 -1,
Xor (0) =Xy, (0) = 1—.
The exact  solution for B = 2 is
xt)]" = [r,2 —r)(1 — sint) + sint — cost which is c ,

(2,2)-differentiable fot € (0, ’—ZT ).

Using the RKHS method with n=100 and m=5, some

. . X ; 1,1)-system:
numerical results are given in Table3 and Figure4. (.1)-sy

Example 3 Consider the following FFIVP: e

COEX)M) =X () +t+1, 1<B<2te(01], Xor (0) = X5 (0) = 1—2r.

x(0) = A,X(0) = a, where[A]" = [a]" = [r —2,1—2r]. )
Depending on the type of differentiability, we have the The exact 30|Ut'0n of this system foB IS
following systems: Xp(t)=re' =5 -2t — 2%y (t) = (3—2r)e - 5 — 2t 2
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Core x(t), Support x{(t)
10

05

od 08

-0

{2,2)-solution

(a)

[y, (8), 22, (2)]

{2,2)-solution

(b)

-- Approximate (§ = 1.9)

— Exact {(§ = 2}

— Approximate (8 = 2) -- Approximate (8= 1.8)

Fig. 4: a)The core and the support of the fuzzy (2,2)- approximate
solutions a3 = 1.8, b) Approximate (2,2)-solutions for different

Xor (1) =re' — 5 — 2t 41— 3r
which is (2,1)-differentiable fdre (0,In2) .
( Dg+xlr)(t) :X,Zr(t)‘Ft—l—l,
cnB ;
(2.2)-system | o)) =X (0 +t+1
Xlr(O) = Xor O) —r_ 27
Xar (0) = X,l (0)=1-"2r.

The exact solution of this system ffr= 2 is

X)) =2eY((3r —3,3—3r) — de(4e — 3e* + Ar +
4ét + ét?). Using the RKHS method with n=100 and
m=5, the numerical results are given in Figure5 and
Table4.

Table 4: The fuzzy approximate solutions of example 3 at

different values of8 and .

rr ] 0.25 0.5
Approximate (1,1)-solutiofixy, (0.5), o, (0.5)

B=2 | [-2.712788,0.996826] [-2.300609,0.172467]
Error 3.12359K10°° 2.474548 1075

B=19 | [-2.730153,1.051163]| [-2.310007,0.210871]

B =18 | [-2.753118,-2.753118] [-2.322627,0.260319]

Approximate (2,1)-solutiofxs; (0.6), o (0.6)

B=2
Error
B=19
B=18

[1.074675,-0.674431
2.77320k 1075
[-0.996812,-0.697307]
[-0.896953,-0.727305]

[-1.235732,-0.968902]

3.03465«10°°
[-1.180255,-0.980585]
[-1.109253,-0.996155]

Approximate (2,2)-solutioffxs, (0.5), xor (0.5)

- B=2 | [-1.540386,-0.175658] [-1.519009,-0.609190]
values off3 atr = 0.25 for example 2. Error 3568930 10-5 1.050045¢10-5
B =19 | [1.537332,-0.143039] [-1.514875,-0.585346]
B =18 | [1.529377,-0.104349] [-1.506915,-0.556897]
/
(°Dfxar)(t) =, (t) +t 41,
cpf !
X ) () =X (1) +t 41,
x1r(0) = x4, (0) =1 =2, 6 Conclusions
Xor (0) = Xo, (0) = 1— 2r.

The exact solution of this system ffir= 2 is
Xqr (t) = re' + 3(1—r)cosht— % —2t—543r,

Xor(t) = (3—2r)é + 3(r — 1)cosht— % -2t+1-3r
which is not (1,2)-differentiable.

( D0+X2r)(t) X,Zr(t)‘Ft—l—l’

(2,1)-system: (CDB, xar) (t) = X (£) ++ 1,
, x1r(0) = Xr 0)=r—2,
Xar (0) = X, (0) = 1—2r.

The exact solution of this system ffir= 2 is
Xy (t)=B-2re-5% S _2t—5+3r,

In this paper, we present a definition of second order
Caputo’s H-derivative and its r-cut representations under
different types of differentiability. We give the fuzzy
forms of the Riemann-Liouville fractional integral when
applied to the Caputo’s H-derivative of ordérc (1,2] of

a fuzzy function. The generalized characterization
theorem allows us to translate the FFDE into four systems
of fractional differential equations and solve them indtea
of solving the FFDE. For a numerical solution, , we apply
a modified RKHSM to obtain analytic and approximate
solutions in series form in term of their parametric forms
in the spacewW3[a,b] @ W3[a,b] .Several examples are
given to show the effectiveness of the proposed method.
To see the effects of the fractional derivative on the
solution, we solve the same FDEs for different values of
the fractional order. The results shows that the solutions
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