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Abstract: In the present paper, we obtain some approximation properties for the bivariate Bernstein-Durrmeyer operators on a triangle.
We characterize the rate of convergence in terms ofK−functional and the usual and second order modulus of continuity. We estimate
the order of approximation by Voronovskaja type result and illustrate the convergence of these operators to a certain function through
graphics using Mathematica algorithm. We also discuss the comparison of the convergence of the bivariate Bernstein-Durrmeyer
operators and the bivariate Bernstein-Kantorovich operators to the function through illustrations using Mathematica. Lastly, we study
the simultaneous approximation for first order partial derivatives and the shape preserving properties of these operators.
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1 introduction

Let ψ(x,y) be a continuous function in a closed regionR :
0≤ x≤ 1,0≤ y≤ 1. Kingsley [7] introduced the Bernstein
polynomials for functions of two variables as

Bm,n(ψ ;x,y) =
n

∑
k=0

m

∑
l=0

ψ
(

k
n
,

l
m

)

λn,k(x)λm,l(y),

whereλr,i(x) =

(

r
i

)

xi(1− x)r−i,x ∈ [0,1]. He studied the

simultaneous approximation for these operators. Butzer
[3] also discussed the simultaneous approximation in a
direct manner. In [8], Pop obtained the rate of
convergence in terms of the modulus of continuity and
established the Voronovskaja type asymptotic theorem for
the operatorsBm,n(ψ ;x,y).

Stancu [10] defined another bivariate Bernstein
operators on the triangle
△ := S = {(x,y) : x+ y ≤ 1,0 ≤ x,y ≤ 1} for functions
f : S → R, as

Mn( f ;x,y) =
n

∑
k=0

n−k

∑
l=0

bn,k,l(x,y) f

(

k
n
,

l
n

)

, (x,y) ∈ S

wherebn,k,l(x,y) =

(

n
k

)(

n− k
l

)

xkyl(1− x− y)n−k−l. He

derived the rate of convergence in terms of complete
modulus of continuity forMn( f ;x,y).
Pop and Fărcaş [9] discussed the convergence and
approximation properties of the Bernstein-Kantorovich
type operators defined as

Un( f ;x,y) = (n+1)2
n

∑
k=0

n−k

∑
l=0

bn,k,l(x,y)

×
∫ k+1

n+1

k
n+1

∫ l+1
n+1

l
n+1

f (s, t)dsdt

and the associated GBS operators on the triangle△. In
[1], Acar and Aral studied the approximation properties
of two dimensional Bernstein-Stancu-Chlodowsky
operators on a triangular domain with mobile boundaries,
and gave shape preserving properties and also obtained
weighted approximation properties of these operators.
Derrienic [6] studied multivariate Bernstein polynomials
defined for integral functions on a triangle and proved the
convergence of theses operators and its derivative inLp
spaces. In 1992, Zhou [11] defined the two-dimensional
Bernstein-Durrmeyer operatorsVn : f → Vn( f ; ., .) with
f ∈ C(S)(the space of all continuous functions onS),
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endowed with the norm‖ f ‖= sup
(x,y)∈S

| f (x,y)|, as

Vn( f ;x,y) = (n+1)(n+2)
n

∑
k=0

n−k

∑
l=0

bn,k,l(x,y)

×
∫ 1

0

∫ 1−t

0
bn,k,l(s, t) f (s, t)dsdt

and obtained the rate of convergence in terms of the
K−functional and the smoothness of the functions inLp
spaces. Deo and Bhardwaj [5] also studied some direct
theorems and established an inverse theorem for the
operatorsVn on S.
The aim of this paper is to study the approximation
properties of bivariate Bernstein-Durrmeyer operatorsVn
on the triangleS. We obtain the rate of convergence by
means ofK−functional, usual and second order modulus
of continuity and establish the asymptotic formula to find
the order of approximation for the operatorsVn in
continuous function spaces. We demonstrate the
convergence of the operatorsVn to a certain function and
the comparison of the convergence with the bivariate
Benstein-Kantorovich operators to the function using
Mathematica. We also study the simultaneous
approximation for first order partial derivatives and shape
preserving properties of these operators.

2 Preliminary results

Lemma 1. For ei j = sit j,(i, j) ∈ N
0×N

0, N0 = N∪{0},
we have

(i)Vn(e00;x,y) = 1;

(ii)Vn(e10;x,y) =
1+ nx
n+3

;

(iii)Vn(e01;x,y) =
1+ ny
n+3

;

(iv)Vn(e20;x,y) =
n(n−1)x2+4nx+2

(n+3)(n+4)
;

(v)Vn(e02;x,y) =
n(n−1)y2+4ny+2

(n+3)(n+4)
;

(vi)Vn(e11;x,y) =
n(n−1)xy+ n(x+ y)+1

(n+3)(n+4)
;

(vii)Vn(e40;x,y) =
1

(n+3)(n+4)(n+5)(n+6)
{n4x4 +

n3x3(16− 6x) + n2x2(72− 48x + 11x2) + nx(96−
72x+32x2−6x3)+24};

(viii)Vn(e04;x,y) =
1

(n+3)(n+4)(n+5)(n+6)
{n4y4 +

n3y3(16− 6y) + n2y2(72− 48y + 11y2) + ny(96−
72y+32y2−6y3)+24}.

The moments(i)− (vi) are given in [5]. The proof of(vii)
and(viii) can be obtained by a simple computation. Hence
the details are omitted.

Lemma 2.[5] For hi j = (s− x)i(t − y) j,(i, j) ∈ N
0×N

0,
we have

(i)Vn(h00;x,y) = 1;

(ii)Vn(h10;x,y) =
1−3x
n+3

;

(iii)Vn(h01;x,y) =
1−3y
n+3

;

(iv)Vn(h20;x,y) =
2{(6− n)x2+(n−4)x+1}

(n+3)(n+4)
;

(v)Vn(h02;x,y) =
2{(6− n)y2+(n−4)y+1}

(n+3)(n+4)
.

Lemma 3. For the bivariate operators Vn( f ;x,y), we
have

(i) lim
n→∞

nVn((s− x);x,y) = 1−3x;

(ii) lim
n→∞

nVn((t − y);x,y) = 1−3y;

(iii) lim
n→∞

nVn((s− x)2;x,y) = 2x(1− x);

(iv) lim
n→∞

nVn((t − y)2;x,y) = 2y(1− y);

(v) lim
n→∞

nVn((s− x)(t − y);x,y) =−2xy;

(vi) lim
n→∞

n2
Vn((s− x)4;x,y) = 12x2(x−1)2;

(vii) lim
n→∞

n2
Vn((t − y)4;x,y) = 12y2(y−1)2.

Proof.The proof of this lemma easily follows. Hence we
omit the details.

Lemma 4. For every x ∈ [0,1] and n ∈N, we have

Vn((s−x)2;x,y)+

(

1+nx
n+3

−x

)2

<
3

n+3

(

φ2(x)+
1+9x2

n+3

)

,

where φ(x) =
√

x(1− x).

Proof.From Lemma2, we have

Vn((s− x)2;x,y)+
(

1+nx
n+3 − x

)2

<
2{(6− n)x2+(n−4)x+1}+(1−3x)2

(n+3)2

=
(21−2n)x2+(2n−14)x+3

(n+3)2

=
(2n−14)x(1− x)+7x2+3

(n+3)2

=
1

n+3

(

2φ2(x)+
27x2−20x+3

n+3

)

≤ 3
n+3

(

φ2(x)+
1+9x2

n+3

)

.

3 Main results

Basic convergence theorem

Theorem 1[12] Let Vn : C(S)→C(R), n ∈ N, be linear
positive operators. If

lim
n→∞

Vn(ei j) = ei j, (i, j) ∈ {(0,0),(1,0),(0,1)}
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and
lim
n→∞

Vn(e20+ e02) = e20+ e02

uniformly in S, then the sequence Vn( f ) converges to f
uniformly in S, for any f ∈C(S).

Estimates of rate of convergence

For f ∈ C(S), the complete modulus of continuity for the
bivariate case is defined as follows:
ω( f ;δ1,δ2)

= sup{| f (s, t)− f (x,y)| : |s− x| ≤ δ1, |t − y| ≤ δ2},
whereδ1,δ2 > 0. Taking into account that on triangleS,
we have

| f (s, t)− f (x,y)| ≤ ω(|s− x|, |t − y|)≤ ω( f ;δ1,δ2)

whenever|s− x| ≤ δ1, |t − y| ≤ δ2,δ1 > 0,δ2 > 0
and

ω( f ;λ1δ1,λ2δ2)≤ (1+λ1+λ2)ω( f ;δ1,δ2),λ1 > 0,λ2 > 0.

Further, the partial moduli of continuity with respect to
x andy is defined as

ω1( f ;δ ) = sup

{

| f (x1,y)− f (x2,y)| : y ∈ [0,1] and

|x1− x2| ≤ δ ,δ > 0

}

,

ω2( f ;δ ) = sup

{

| f (x,y1)− f (x,y2)| : x ∈ [0,1] and

|y1− y2| ≤ δ ,δ > 0

}

.

It is clear that they satisfy the properties of the usual
modulus of continuity. The details of the modulus of
continuity for the bivariate case can be found in [2].

In what follows,δn(x) =
√

Vn((s− x)2;x,y),
δn(y) =

√

Vn((t − y)2;x,y).

Theorem 2 Let f be continuous on S, then we have

|Vn( f ;x,y)− f (x,y)| ≤ 3ω( f ;δn(x),δn(y)).

Proof.Applying Lemma 2 and the Cauchy-Schwarz
inequality, the proof of this theorem is straightforward.
Hence the details are omitted.

Theorem 3 Let f ∈ C(S). Then, we have the following
inequality

|Vn( f (s, t);x,y)− f (x,y)| ≤ 2(ω1( f ;δn(x))+ω2( f ;δn(y))).

Proof.The definition of partial moduli of continuity and
using Cauchy-Schwarz inequality, proof of this theorem
easily follows.

Local approximation

For f ∈ C(S), let C2(S) = { f ∈ C(S) : f (i, j) ∈ C(S), 0 ≤
i+ j ≤ 2}, where f (i, j) is (i, j)th-order partial derivative
with respect tox,y of f , endowed with the norm

|| f ||C2(S) = || f ||+
2

∑
i=1

(∥

∥

∥

∥

∂ i f
∂xi

∥

∥

∥

∥

+

∥

∥

∥

∥

∂ i f
∂yi

∥

∥

∥

∥

)

.

The Peetre’sK−functional of the functionf ∈ C(S) is
given by

K ( f ;δ ) = inf
g∈C2(S)

{|| f − g||+ δ ||g||C2(S),δ > 0}.

It is also known that the following inequality

K ( f ;δ ) ≤ M1{ω2( f ;
√

δ )+min(1,δ )|| f ||}, (1)

holds for all δ > 0 ([4], page 192). The constantM1 is
independent ofδ and f andω2( f ;

√
δ ) is the second order

modulus of continuity.
Now, we find the order of approximation of the

sequenceVn f ;x,y) to the function f (x,y) ∈ C(S) by
Peetre’s K-functional.

Theorem 4 For the function f ∈ C(S), the following
inequality

|Vn( f ;x,y)− f (x,y)| < 4K ( f ;Jn(x,y))

+ω
(

f ;

√

√

√

√

(

1−3x
n+3

)2

+

(

1−3y
n+3

)2
)

≤ M

{

ω2

(

f ;
√

Jn(x,y)
)

+min{1,Jn(x,y)}|| f ||C2(S)

}

+ω
(

f ;

√

(

1−3x
n+3

)2

+

(

1−3y
n+3

)2 )

,

holds. The constant M > 0 is independent of f and Jn(x,y),
where

Jn(x,y)=
1

n+3

(

φ2(x)+
1+9x2

n+3

)

+
1

n+3

(

φ2(y)+
1+9y2

n+3

)

and φ(x) =
√

x(1− x).

Proof. We define the auxiliary operators as follows:
V n( f ;x,y)

= Vn( f ;x,y)− f

(

1+ nx
n+3

,
1+ ny
n+3

)

+ f (x,y). (2)

Then, from Lemma2, we have
V n(1;x,y) = 1, V n((s − x);x,y) = 0 and
V n((t − y);x,y) = 0.
Let g ∈ C2(S) and(s, t) ∈ S. Using the Taylor’s theorem,
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we have
g(s, t)− g(x,y)

=
∂g(x,y)

∂x
(s− x)+

∫ s

x
(s−α)

∂ 2g(α,y)
∂α2 dα

+
∂g(x,y)

∂y
(t − y)+

∫ t

y
(t −β )

∂ 2g(x,β )
∂β 2 dβ . (3)

Operating byV n on the equation (3), we get
V n(g;x,y)− g(x,y)

= V n

(

∫ s

x
(s−α)

∂ 2g(α,y)
∂α2 dα;x,y

)

+V n

(

∫ t

y
(t −β )

∂ 2g(x,β )
∂β 2 dβ ;x,y

)

= Vn

(

∫ s

x
(s−α)

∂ 2g(α,y)
∂α2 dα;x,y

)

−
∫ 1+nx

n+3

x

(

1+ nx
n+3

−α
)

∂ 2g(α,y)
∂α2 dα

+Vn

(

∫ t

y
(t −β )

∂ 2g(x,β )
∂β 2 dβ ;x,y

)

−
∫

1+ny
n+3

y

(

1+ ny
n+3

−β
)

∂ 2g(x,β )
∂β 2 dβ .

Hence,
|V n(g;x,y)− g(x,y)|

≤ Vn

(
∣

∣

∣

∣

∫ s

x
|s−α|

∣

∣

∣

∣

∂ 2g(α,y)
∂α2

∣

∣

∣

∣

dα
∣

∣

∣

∣

;x,y

)

+

∣

∣

∣

∣

∫ 1+nx
n+3

x

∣

∣

∣

∣

1+ nx
n+3

−α
∣

∣

∣

∣

∣

∣

∣

∣

∂ 2g(α,y)
∂α2

∣

∣

∣

∣

dα
∣

∣

∣

∣

+Vn

(
∣

∣

∣

∣

∫ t

y
|t −β |

∣

∣

∣

∣

∂ 2g(x,β )
∂β 2

∣

∣

∣

∣

dβ
∣

∣

∣

∣

;x,y

)

+

∣

∣

∣

∣

∫
1+ny
n+3

y

∣

∣

∣

∣

1+ ny
n+3

−β
∣

∣

∣

∣

∣

∣

∣

∣

∂ 2g(x,β )
∂β 2

∣

∣

∣

∣

dβ
∣

∣

∣

∣

≤
{

Vn((s− x)2;x,y)+

(

1+ nx
n+3

− x

)2}

||g||C2(S)

+

{

Vn((t − y)2;x,y)+

(

1+ ny
n+3

− y

)2}

||g||C2(S)

<

{

3
n+3

(

φ2(x)+
1+9x2

n+3

)

+
3

n+3

(

φ2(y)+
1+9y2

n+3

)}

||g||C2(S).

Also,

V n( f ;x,y)| ≤ |Vn( f ;x,y)|+
∣

∣

∣

∣

f

(

1+ nx
n+3

,
1+ ny
n+3

)∣

∣

∣

∣

+| f (x,y)| ≤ 3|| f ||C(S). (4)

Now, for everyg ∈C2(S) and from equation (4), we get
|Vn( f ;x,y)− f (x,y)|
≤ |V n( f −g;x,y)|+ |V n(g;x,y)−g(x,y)|+ |g(x,y)− f (x,y)|

+

∣

∣

∣

∣

f

(

1+nx
n+3

,
1+ny
n+3

)

− f (x,y)

∣

∣

∣

∣

< 4|| f −g||C(S)+

{

3
n+3

(

φ2(x)+
1+9x2

n+3

)

+
3

n+3

(

φ2(y)+
1+9y2

n+3

)}

||g||C2(S)

+

∣

∣

∣

∣

f

(

1+nx
n+3

,
1+ny
n+3

)

− f (x,y)

∣

∣

∣

∣

≤
(

4|| f −g||C(S)+3Jn(x,y)||g||C2(S)

)

+ω
(

f ;

√

(

1−3x
n+3

)2

+

(

1−3y
n+3

)2 )

.

Taking the infimum on the right hand side over allg ∈
C2(S) and using (1), we obtain

|Vn( f ;x,y)− f (x,y)| < 4K ( f ;Jn(x,y))

+ω
(

f ;

√

(

1−3x
n+3

)2

+

(

1−3y
n+3

)2 )

≤ M

{

ω2

(

f ;
√

Jn(x,y)
)

+min{1,Jn(x,y)}|| f ||C2(S)

}

+ω
(

f ;

√

(

1−3x
n+3

)2

+

(

1−3y
n+3

)2 )

,

whereM = 4M1. Hence, the proof is completed.

Theorem 5 Let f ∈C1(S) and (x,y) ∈ S. Then, we have

|Vn( f ;x,y)− f (x,y)| ≤‖ f ′x ‖ δn(x)+ ‖ f ′y ‖ δn(y).

Proof.Let (x,y) ∈ S be a fixed point. Then, we may write

f (s, t)− f (x,y) =
∫ s

x
f ′u(u, t)du+

∫ t

y
f ′v(x,v)dv.

Now, applying Vn(.;x,y) on both sides of the above
equation,

|Vn( f (s, t);x,y)− f (x,y)| ≤ Vn

(∣

∣

∣

∣

∫ s

x
f ′u(u, t)du

∣

∣

∣

∣

;x,y

)

+Vn

(∣

∣

∣

∣

∫ t

y
f ′v(x,v)dv

∣

∣

∣

∣

;x,y

)

.

By using the inequalities,
∣

∣

∣

∣

∫ s

x
f ′u(u, t)du

∣

∣

∣

∣

≤‖ f ′x ‖ |s− x|

and
∣

∣

∣

∣

∫ t

y
f ′v(x,v)dv

∣

∣

∣

∣

≤‖ f ′y ‖ |t − y|,
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we get

|Vn( f (s, t);x,y)− f (x,y)| ≤ ‖ f ′x ‖ Vn(|s− x|;x,y)

+ ‖ f ′y ‖ Vn(|t − y|;x,y).

Now, by applying Cauchy-Schwarz inequality, we obtain

|Vn( f (s, t);x,y)− f (x,y)| ≤ ‖ f ′x ‖ (Vn((s− x)2;x,y)1/2

+ ‖ f ′y ‖ (Vn((t − y)2;x,y)1/2

= ‖ f ′x ‖ δn(x)+ ‖ f ′y ‖ δn(y).

This completes the proof.

Voronovskaja type theorem

Theorem 6 Let f ∈C2(S). Then, we have
limn→∞ n(Vn( f ;x,y)− f (x,y))

= f ′x(x,y)(1−3x)+ f ′y(x,y)(1−3y)+ f ′′xx(x,y)x(1− x)

−2 f ′′xy(x,y)xy+ f ′′yy(x,y)y(1− y),

uniformly in (x,y) ∈ S.

Proof.Let (x,y) ∈ S. By the Taylor’s theorem, we have

f (s, t) = f (x,y)+ f ′x(x,y)(s− x)+ f ′y(x,y)(t − y)

+
1
2
{ f ′′xx(x,y)(s− x)2+2 f ′′xy(x,y)(s− x)(t − y)

+ f ′′yy(x,y)(t − y)2}
+η(s, t;x,y){(s− x)2+(t − y)2}, (5)

whereη(s, t;x,y)→ 0, as(s, t)→ (x,y).
OperatingVn(.;x,y) on both sides of (5), we get

Vn( f ;x,y) = f (x,y)+ f ′x(x,y)Vn((s− x);x,y)

+ f ′y(x,y)Vn((t − y);x,y)

+
1
2
{ f ′′xx(x,y)Vn((s− x)2;x,y)

+2 f ′′xy(x,y)Vn((s− x)(t − y);x,y)

+ f ′′yy(x,y)Vn((t − y)2;x,y)}
+Vn(η(s, t;x,y){(s− x)2+(t − y)2};x,y).(6)

Now, by applying Cauchy-Schwarz inequality to the last
term of (6), we have
Vn
(

η(s, t;x,y){(s− x)2+(t − y)2};x,y
)

≤ {Vn(η2(s, t;x,y);x,y)}1/2{
√

Vn((s− x)4;x,y)

+
√

Vn((t − y)4;x,y)}.

Sinceη(., .;x,y) ∈C(S) andη(s, t;x,y)→ 0,
as(s, t)→ (x,y), applying Theorem1

lim
n→∞

Vn(η2(s, t;x,y);x,y) = 0

Fig. 1: The convergence ofV20( f ;x,y) (blue) to f (x,y) (red)

uniformly in (x,y) ∈ S. From (vii) and (viii) of Lemma3,
we have

Vn((s− x)4;x,y) = O

(

1
n2

)

,

and

Vn((t − y)4;x,y) = O

(

1
n2

)

, uniformly in S.

Thus,

nVn

(

η(s, t;x,y){(s− x)2

+(t − y)2};x,y

)

→ 0, asn → ∞. uniformly in S. (7)

By using Lemma3 and (7), we obtain
limn→∞ n(Vn( f ;x,y)− f (x,y))

= f ′x(x,y)(1−3x)+ f ′y(x,y)(1−3y)

+ f ′′xx(x,y)x(1− x)−2 f ′′xy(x,y)xy

+ f ′′yy(x,y)y(1− y), uniformly in S.

Thus, the proof is completed.

Numerical Examples

Let us consider
f : S → R, f (x,y) = x2 −

√
7(1− x − y)2 − 10xy. The

convergence of bivariate Bernstein-Durrmeyer operators
Vn( f ;x,y) to the function f is illustrated in Examples 1
and 2.

Example 1. Forn= 20,50 the convergence of the operators
Vn( f ;x,y) (blue) to the function (red) is demonstrated in
figures 1 and 2 respectively. We notice that the error in the
approximation of the function by the operators becomes
smaller asn increases.

Example 2. For n = 20,50 the comparison of the
convergence of bivariate Bernstein-Durrmeyer operators
Vn( f ;x,y) (blue) and bivariate Bernstein-Kantorovich
operators Un( f ;x,y) (green) to the function
f (x,y) = x2−

√
7(1− x− y)2−10xy (red) is illustrated in

figures 3 and 4 respectively. It is observed that the error in
the approximation off by the operatorsVn is smaller than
the operatorsUn.
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Fig. 2: The convergence ofV50( f ;x,y) (blue) to f (x,y) (red)

Fig. 3: The comparison of bivariate Bernstein-
Kantorovich U20( f ;x,y) (green) and bivariateBernstein −
Durrmeyer V20( f ;x,y) (blue) to f (x,y) (red)

Fig. 4: The comparison of bivariate Bernstein-
KantorovichU50( f ;x,y) (green) and bivariateBernstein −
DurrmeyerV50( f ;x,y) (blue) to f (x,y) (red)

4 Simultaneous approximation

In this section we study the simultaneous approximation
property of the operatorsVn(·;x,y).

Theorem 7 Let f ∈C1(S). Then for every (x,y) ∈ S◦ (the
interior of S),

lim
n→∞

(

∂
∂ω

Vn( f ;ω ,y)

)

ω=x
=

∂ f
∂x

(x,y), (8)

and

lim
n→∞

(

∂
∂ν

Vn( f ;x,ν)
)

ν=y
=

∂ f
∂y

(x,y). (9)

Proof.We shall prove only (8) because the proof of (9) is
similar.
By the Taylor formula forf ∈C1(S), we have

f (s, t) = f (x,y)+ fx(x,y)(s− x)+ fy(x,y)(t − y)

+ψ(s, t;x,y)
√

(s− x)2+(t − y)2 for (s, t) ∈ S,

whereψ(s, t;x,y) ≡ ψ(·, ·) ∈C(S) andψ(x,y) = 0.
OperatingVn(·; ·,y) to the above inequality and then by
using Lemma1, we get
(

∂
∂ω Vn( f (s, t);ω ,y)

)

ω=x

= f (x,y)

(

∂
∂ω

Vn(1;ω ,y)

)

ω=x

+ fx(x,y)

(

∂
∂ω

Vn(s− x;ω ,y)

)

ω=x

+ fy(x,y)

(

∂
∂ω

Vn(t − y;ω ,y)

)

ω=x

+

(

∂
∂ω

Vn(ψ(s, t;x,y)

√

(s− x)2+(t − y)2;ω ,y)

)

ω=x
, f or (s, t) ∈ S

= fx(x,y)

{

∂
∂ω

(

1+ nω
n+3

)}

ω=x

+ fy(x,y)

{

∂
∂ω

(

1+ ny
n+3

))}

ω=x

+

(

∂
∂ω

Vn(ψ(s, t;x,y)
√

(s− x)2+(t − y)2;ω ,y)

)

ω=x

= fx(x,y)

(

n
n+3

)

+E, (say).

Hence, it is sufficient to prove thatE → 0, for every(x,y)∈
S◦, asn → ∞.

E = (n+1)(n+2)
n

∑
k=0

n−k

∑
l=0

(

∂
∂ω

bn,k,l(ω,y)

)

ω=x

×
∫ 1

0

∫ 1−t

0
ψ(s, t;x,y)

√

(s−x)2+(t −y)2dsdt

= (n+1)(n+2)
n

∑
k=0

n−k

∑
l=0

{(k−nx)(1−y)+x(l −ny)}
x(1−x−y)2

×bn,k,l(x,y)
∫ 1

0

∫ 1−t

0
ψ(s, t;x,y)

√

(s−x)2+(t −y)2dsdt

=
(n+1)(n+2)(1−y)

x(1−x−y)2

n

∑
k=0

n−k

∑
l=0

(k−nx)bn,k,l(x,y)

×
∫ 1

0

∫ 1−t

0
ψ(s, t;x,y)

√

(s−x)2+(t −y)2dsdt

+
(n+1)(n+2)
(1−x−y)2

n

∑
k=0

n−k

∑
l=0

(l −ny)bn,k,l (x,y)

×
∫ 1

0

∫ 1−t

0
ψ(s, t;x,y)

√

(s−x)2+(t −y)2dsdt

= E1+E2, (say).
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First, we estimate E1. Applying Cauchy-Schwarz
inequality, we have

E1 ≤ (1−y)

x(1−x−y)2

( n

∑
k=0

n−k

∑
l=0

bn,k,l(x,y)(k−nx)2
)1/2

×
(

(n+1)(n+2)
n

∑
k=0

n−k

∑
l=0

bn,k,l(x,y)

×
∫ 1

0

∫ 1−t

0
ψ2(s, t;x,y)((s−x)2+(t −y)2)dsdt

)1/2

≤ n(1−y)

x(1−x−y)2

(

n

∑
k=0

n−k

∑
l=0

bn,k,l(x,y)

(

k
n
−x

)2
)1/2

×
(

Vn

(

ψ2(s, t;x,y)
(

(s−x)2+(t −y)2
)

;x,y
))1/2

=
n(1−y)

x(1−x−y)2

(

n

∑
k=0

n−k

∑
l=0

bn,k,l(x,y)

(

k
n
−x

)2
)1/2

×
{

Vn

(

ψ2(s, t;x,y)(s−x)2;x,y
)

+Vn

(

ψ2(s, t;x,y)(t −y)2;x,y
)

}1/2

≤ n(1−y)

x(1−x−y)2

(

Mn((s−x)2;x,y
)1/2

×
(

{

Vn(ψ4(s, t;x,y);x,y)
}1/4

×
{

(Vn((s−x)4;x,y))1/2+(Vn((t −y)4;x,y))1/2
}

)1/2

.

By making use of ([5], Lemma (2.5)), for every(x,y) ∈ S◦,

we haveMn((s− x)2;x,y) = O

(

1
n

)

, asn → ∞.

Thus, we get

|E1| ≤ M(x,y){Vn(ψ4(s, t;x,y);x,y)}1/4,

in view of Lemma3 ((vii) and(viii)).

From Theorem1, for every(x,y) ∈ S◦, we obtain

lim
n→∞

Vn(ψ4(s, t;x,y);x,y) = ψ4(x,y) = 0.

To estimateE2, proceeding in a manner similar to the
estimate ofE1, for every(x,y) ∈ S◦, we getE2 → 0, as
n → ∞.
Combining the estimates ofE1 andE2, it follows that for
every (x,y) ∈ S◦, E → 0, as n → ∞. Hence the proof is
completed.

Similarly, we can prove the following theorem:

Theorem 8 Let f ∈ C3(S). Then for every (x,y) ∈ S◦, we
have

lim
n→∞

n

{(

∂
∂ω

Vn( f ;ω ,y)

)

ω=x
− ∂ f

∂x
(x,y)

}

= −3 fx(x,y)+ (2−5x) fxx(x,y)+ (1−5y) fxy(x,y)

+x(1− x) fxxx(x,y)−2xy fxxy(x,y)+ y(1− y) fxyy(x,y)

and

lim
n→∞

n

{(

∂
∂ν

Vn( f ;x,ν)
)

ν=y
− ∂ f

∂y
(x,y)

}

= −3 fy(x,y)+ (2−5y) fyy(x,y)+ (1−5x) fxy(x,y)

+y(1− y) fxxx(x,y)−2xy fxyy(x,y)+ x(1− x) fxxy(x,y).

5 Shape preserving properties

In this section, we study convexity properties of the
operatorsVn by proving that the operatorsVn is convex of
order (i, j) if f (x,y) is convex of order (i, j) for
0< i+ j ≤ r.
We first recall the usual definition of convexity for
bivariate functions.
For f ∈C(S),(x,y) ∈ S andh ∈R,△(i, j)

h is defined by

△(1,0)
h f (x,y) = f (x+h,y)− f (x,y),

△(0,1)
h f (x,y) = f (x,y+h)− f (x,y),

△(1,1)
h f (x,y) = f (x+h,y+h)+ f (x,y)− f (x+h,y)− f (x,y+h),

△(2,0)
h f (x,y) = f (x+2h,y)−2 f (x+h,y)+ f (x,y),

△(0,2)
h f (x,y) = f (x,y+2h)−2 f (x,y+h)+ f (x,y),

△(r,0)
h f (x,y) =

r

∑
i=0

(−1)i
(

r
i

)

f (x+(r− i)h,y),

△(0,r)
h f (x,y) =

r

∑
i=0

(−1)i
(

r
i

)

f (x,y+(r− i)h).

Definition 1. f (x,y) is convex of order (i, j), i, j ∈ N
0, 0<

i+ j ≤ r, if for h ∈R,△(i, j)
h f ≥ 0.

Remark.Let i, j ∈ N
0, 0< i+ j ≤ r. If f ∈Ci+ j(S) and for

all (x,y) ∈ S,
∂ i+ j f
∂xi∂y j (x,y) ≥ 0, then f (x,y) is convex of

order(i, j).

Lemma 5. For r = 0,1,2· · · , ∂ r

∂xr Vn( f ;x,y) and

∂ r

∂yr Vn( f ;x,y) can be put in the form

(a)
∂ r

∂xr Vn( f ;x,y) =
(n+2)!n!

(n− r)!(n+ r)!

n−r

∑
k=0

n−k−r

∑
l=0

bn−r,k,l(x,y)

×
∫ 1

0

∫ 1−t

0
bn+r,k+r,l(s, t)

∂ r

∂ sr f (s, t)dsdt.

(b)
∂ r

∂yr Vn( f ;x,y) =
(n+2)!n!

(n− r)!(n+ r)!

n−r

∑
k=0

n−k−r

∑
l=0

bn−r,k,l(x,y)

×
∫ 1

0

∫ 1−t

0
bn+r,k,l+r(s, t)

∂ r

∂ tr f (s, t)dsdt.
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Proof.(a) By Leibnitz theorem, we get
∂ r

∂xr Vn( f ;x,y)

= (n+1)(n+2)
n

∑
k=0

n−k

∑
l=0

(

n
k

)(

n− k
l

)

yl
r

∑
j=0

(

r
j

)

× (−1)r− jk!(n− k− l)!xk− j(1− x− y)n−k−l−r+ j

(k− j)!(n− k− l− r+ j)!

×
∫ 1

0

∫ 1−t

0
bn,k,l(s, t) f (s, t)dsdt

= (n+1)(n+2)
r

∑
j=0

n

∑
k= j

n−k−r+ j

∑
l=0

(

r
j

)

× (−1)r− jn!xk− jyl(1− x− y)n−k−l−r+ j

l!(k− j)!(n− k− l− r+ j)!

×
∫ 1

0

∫ 1−t

0
bn,k,l(s, t) f (s, t)dsdt

=
(n+2)!
(n− r)!

n−r

∑
k=0

n−k−r

∑
l=0

bn−r,k,l(x,y)

×
∫ 1

0

∫ 1−t

0

r

∑
j=0

(−1)r− j
(

r
j

)

bn,k+ j,l(s, t) f (s, t)dsdt.

Again by Leibnitz theorem, we have
∂ r

∂xr bn+r,k+r,l(x,y)

=
∂ r

∂xr

((

n+ r
k+ r

)(

n− k
l

)

xk+ryl(1− x− y)n−k−l
)

=
(n+ r)!

l!

r

∑
j=0

(

r
j

)

(−1)r− jylxk+r− j(1− x− y)n−k−l−r+ j

(k+ r− j)!(n− k− l− r+ j)!

=
(n+ r)!

n!

r

∑
j=0

(

r
j

)(

n
k+ r− j

)(

n− k− r+ j
l

)

×(−1)r− jylxk+r− j(1− x− y)n−k−l−r+ j

=
(n+ r)!

n!

r

∑
j=0

(

r
j

)

(−1) jbn,k+ j,l(x,y).

Thus, we get

∂ r

∂xr Vn( f ;x,y) =
(n+2)!n!

(n− r)!(n+ r)!

n−r

∑
k=0

n−k−r

∑
l=0

bn−r,k,l(x,y)

×
∫ 1

0

∫ 1−t

0
(−1)r ∂ r

∂ sr bn+r,k+r,l(s, t)

× f (s, t)dsdt. (10)

Now,

∫ 1

0

∫ 1−t

0

∂ r

∂ sr bn+r,k+r,l(s, t) f (s, t)dsdt

=

∫ 1

0

∫ 1−t

0
(−1)rbn+r,k+r,l(s, t)

∂ r

∂ sr f (s, t)dsdt. (11)

From (10) and (11), we obtain

∂ r

∂xr Vn( f ;x,y) =
(n+2)!n!

(n− r)!(n+ r)!

n−r

∑
k=0

n−k−r

∑
l=0

bn−r,k,l(x,y)

×
∫ 1

0

∫ 1−t

0
bn+r,k+r,l(s, t)

∂ r

∂ sr f (s, t)dsdt.

The proof of(b) is similar to the proof of(a). Hence it is
omitted.

Based on definition1, Remark5 and using Lemma5, we
give the following theorem:

Theorem 9 Let f ∈ Ci+ j(S) such that i, j ∈ N
0 and

0< i+ j ≤ r. Then the following statement holds:
If f (x,y) is convex of order (r,0) (resp. (0,r)), then
Vn( f ;x,y) is also convex of order (r,0) (resp. (0,r)).

Algorithm:

For the purpose of clarity we mention below the algorithm
for one of the figures e.g. figure 4. The domain used in the
graphics is{(x,y) : x+ y ≤ 1,x,y ≥ 0}.

Plot3D

[{

x2−
√

7(1−x−y)2−10∗x∗y,

50∗49∗x2 +4∗50∗x+2
(50+3)∗ (50+4)

−
√

7∗ 1
(50+3)∗ (50+4)

∗ [50∗ (50−1)∗ (x+y)2

−2∗50∗ (50+1)∗ (x+y)+(502 +3∗50+2)]

−10∗ (50∗ (50−1)∗x∗ y+50∗ (x+y)+1)
(50+3)∗ (50+4)

,

502 ∗x2+2∗50∗x−50∗x2 + 1
3

(50+1)2

−
√

7∗
(

1+
1

(50+1)2
∗ [502 ∗x2+502 ∗y2+2∗50∗ (x+y)

−50∗ (x2+y2)+
2
3
]

−2∗x−2∗y+
4∗50∗ (50−1)∗x∗ y+2∗ x+2∗ y+1

2∗ (50+1)2

)

−10∗ (4∗50∗ (50−1)∗ x∗y+2∗ (x+y)+1)
4∗ (50+1)2

}

,

{x,0,1},{y,0,1}, PlotStyle→ {Red, Blue, Green},

RegionFunction→ Function[{x,y,z},0≤ x+y ≤ 1],

Mesh→ None

]

Conclusion: The rate of convergence of the bivariate
Bernstein-Durrmeyer type operators introduced by Zhou
[11] is obtained in terms of theK−functional and moduli
of continuity. We estimate the order of approximation by
Voronovskaja type result and illustrate the convergence of
these operators to a certain function through graphics
using Mathematica algorithm. We also discuss the
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comparison of the convergence of the bivariate
Bernstein-Durrmeyer operators and the bivariate
Bernstein-Kantorovich operators to the function through
illustrations using Mathematica. Furthermore, we study
the simultaneous approximation for first order partial
derivatives and the shape preserving properties of these
operators.
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