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Abstract: Inthe present paper, we obtain some approximation preseidr the bivariate Bernstein-Durrmeyer operators oreagle.
We characterize the rate of convergence in terms-efunctional and the usual and second order modulus of cahtillle estimate
the order of approximation by Voronovskaja type result dhustrate the convergence of these operators to a certaatiéun through
graphics using Mathematica algorithm. We also discuss timeparison of the convergence of the bivariate BernsteirriDeyer
operators and the bivariate Bernstein-Kantorovich opeséb the function through illustrations using Mathemeticastly, we study
the simultaneous approximation for first order partial\ives and the shape preserving properties of these opgrat
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k I
derived the rate of convergence in terms of complete
Let (x,y) be a continuous function in a closed regRn  modulus of continuity foMp(f;X,y).
0<x<1,0<y<1 Kingsley[7] introduced the Bernstein Pop and Farcas9] discussed the convergence and

1 introduction wherebp | (X,y) = (n) (n - k) Xy (1—x—y)" " He

polynomials for functions of two variables as approximation properties of the Bernstein-Kantorovich
0o - type operators defined as
Bm,n(w;xv)/) = w <_7 _> )\n,k(x)/\m,l (y)a n n-k
k;é nm Un(fixy) = (n+1)? bk (X.Y)
K=01=
iy — (TN ir =i - (SIS
whereA;(x) = (i>x (1-x)""",x € [0,1]. He studied the y /kﬁ /lﬂ f (s t)dsdt

simultaneous approximation for these operators. Butzer 1 YA

[3] also discussed the simultaneous approximation in &nq the associated GBS operators on the triadglén

direct manner. In §|, Pop obtained the rate of |1 Acar and Aral studied the approximation properties
convergence in terms of the modulus of continuity andof o  dimensional  Bernstein-Stancu-Chlodowsky
established the Voronovskaja type asymptotic theorem fopserators on a triangular domain with mobile boundaries,

the operatorﬁm,n(w;gaY)- o ~and gave shape preserving properties and also obtained

Stancu [0 defined another bivariate Bernstein \eighted approximation properties of these operators.
operators on the triangle  Derrienic 6] studied multivariate Bernstein polynomials
A=8={(xy) 1 x+y<10<xy< 1} for functions  defined for integral functions on a triangle and proved the
f:S—R,as convergence of theses operators and its derivativiepin

0ok ‘| Epaces.. InD1992, Zhod]] defipgd fche tv;;o(—?imt;nsi.or?al
o K1 ernstein-Durrmeyer operators, : f — 74(f;.,.) wit

Mn(Tixy) = Z l;b”’k" eyt <n’ n)’ (xy) €S f € C(S)(the space of all continuous functions @),
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endowed with the norry f ||= sup |f(x,y)], as () 7n(hoo; %, y) = 1;
(xy)es . ] _1-3x,
N ok (i) 7/n(hoixy) = ﬁ
Ta(fixy) = (n+1)(n+2) kZm;bn,k,l (x,y) (i) % (hos; X, y) = n:— 3y;
11t . o 2{(6—n)x24 (n—4)x+1}
></0 /O bk (S,t) f (s t)dsdt (V)7 (h2oyx,y) = (n13)n+a) ;

and obtained the rate of convergence in terms of the () .y vy 2{(6—n)y*+ (n—4y+1}
K—functional and the smoothness of the functions jn mroz (n+3)(n+4)

spaces. Deo and Bhardwdj] [also studied some direct

theorems and established an inverse theorem for thgemmaB For the bivariate operators 7n(f;Xy), w

the order of approximation for the operators in

operators/n onS. have
The aim of this paper is to study the approximation (j)lim n#((s—x);x,y) = 1— 3x;
properties of bivariate Bernstein-Durrmeyer operatays ';H°° ot — _1_3y
on the triangleS. We obtain the rate of convergence by (||)nm°n n((t=y)ixy) =1-3y,
means oK —functional, usual and second order modulus (iii) lim n¥x((s—x)2;x,y) = 2x(1 —X)
of continuity and establish the asymptotic formula to find , "7

(V) lim n7a((t —y)%xy) = 2y(1-y)
continuous function spaces. We demonstrate the (v)Ilm N/A((s—x)(t—Y);X.Y) = —2xy;
convergence of the operators to a certain function and 2 1ou2 2
the comparison of the convergence with the bivariate (V')Ml)n Ya((s=x)%xy) = 12¢(x—1)
Benstein-Kantorovich operators to the function using (vii)lim n?#,((t —y)% xy) = 12y*(y — 1)?

Mathematica. We also study the simultaneous "%

approximation for first order partial derivatives and shapeproof.The proof of this lemma easily follows. Hence we
preserving properties of these operators. omit the details.

Lemma 4. For every x € [0,1] and n € N, we have

2 Preliminary results 2 2
ety + (T —x) < o2 (Fo0+ S0

Lemma 1. For gj = st (i, ) € N’ x N°, N® = NU {0}, n+3 n+3
We. have where @(x) = /x(1—X).
‘?)%(eooj xY) = 1’+ X Proof.From Lemma2, we have
(i) 7 (€10 %,y) = nr3’ Yal(s—X)Z%,Y) + (1n-|J-rrg<_X)2
(i) (eonxy) = . 2 2
n(€o1; X, nr3’ _ 2{(6—n)x°+ (n—4)x+1} + (1—3x)
()i x.y) = n(n—1)x2+ 4nx+ 2, (n+3)2
n{€20:%.¥) = (nF3)nia) (21— 20)+ (20— 14)x+ 3
] n(n—1)y“+4ny+2 - (n+3)2
(V)7 (€02 X, Y) = ;
() ] (n(ﬁ)?’)(i:(il V41 (20— 14x(1—X) + P+ 3
OVACTRSIE s YT a (n+3)?
(n+3)(n+4) )
) o 1 o - i(zqo?(x)+27x —20x+3)
ViaE0ixY) = gy Ames)nee) " n+3 n+3
n®x3(16 — 6x) + N?x?(72 — 48x + 11x?) + nx(96 — 3 ) 1+9x2
72X+ 32 — 6x3) + 24}; 5m< ) n+3)
Wil)fa(eosxy) = g amismie Y
ny3(16 — By) + n?y?(72 — 48y + 11y?) + ny(96 — 3 Main results

72y +32y% — 6y°) + 24}

The momentsi) — (vi) are given in §]. The proof of(vii)

and(viii) can be obtained by a simple computation. Hence .
the ((:ieta)ils are omitted. Theorem 1[12] Let 74 :C(S) — C(R), n€ N, belinear

_ _ positive operators. |f
Lemma 2[5] For hjj = (s—x)'(t —y)J, (i, ) € N0 x N, ' o
we have A@m%(al) =&, (Iv J) € {(070)7 (170)7 (07 1)}

Basic convergence theorem
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and
lim 74 (€20+ €02) = €20+ €02

uniformly in S, then the sequence ¥, (f) converges to f
uniformly in S, for any f € C(S).

Estimates of rate of convergence

For f € C(S), the complete modulus of continuity for the
bivariate case is defined as follows:

w(f;01,0)
=sup{[f(st) - f(xy)|:[s—x <o, [ty < &},

where &, & > 0. Taking into account that on triang®
we have

(s = fxy)| < w([s=x|, [t —y)) < w(f;d1,)

whenevels—x| < &, t—y| < &, >0,8, >0
and

W(f;A101,A28) < (1+A1+A2)w(f;81,8),A1 > 0,A2 > 0.

Further, the partial moduli of continuity with respect to

x andy is defined as
wi(f;0) = sup{lf(xl,y)— f(x2,y)| 1y €[0,1] and

|X1_X2| < 675>0}7

w(f;0) = sup{|f(x,y1)— f(x,y2)| : x € [0,1] and

Iy1—Yo| < 5,5>0}-

It is clear that they satisfy the properties of the usual
modulus of continuity. The details of the modulus of

continuity for the bivariate case can be found2h [

In what follows,dn(x) =
a(Y) = VAt =y)%xY).

Theorem 2 Let f be continuouson S, then we have
[a(fixy) — F(xy)[ < 3w(f; 8(X), d(y)).
Proof. Applying Lemma 2 and the Cauchy-Schwarz

Ta((s=X)%%,),

inequality, the proof of this theorem is straightforward.

Hence the details are omitted.

Theorem 3 Let f € C(S). Then, we have the following
inequality

Ta(F(80:%y) = (6 Y)| < 2(cn(f; (X)) + @2 (F; n(y)))-

Proof. The definition of partial moduli of continuity and

Local approximation

For f € C(S), let C%(S) = {f e C(§) : {1 € C(9),0<
i+ j <2}, where f() is (i, j)th-order partial derivative
with respect tok,y of f, endowed with the norm

o'f

f f 2 o'f
|| ||(32(s):|| ||+|;<HW +HWH>

The Peetre’sK—functional of the functionf € C(S) is
given by

H(6:8)= inf {110l +8lgllg 6> 0}

Itis also known that the following inequality
A (£;8) < Mi{@p(f;v/8) +min(L,8)|| ]|}, 1)

holds for all & > 0 ([4], page 192). The constaM; is
independent ob andf anday( f;/d) is the second order
modulus of continuity.

Now, we find the order of approximation of the
sequence¥yf;xy) to the function f(x,y) € C(S) by
Peetre’s K-functional.

Theorem 4 For the function f € C(S), the following
inequality

[70(fixy) — F(XY)| < 4 (F;dn(XY))
o) (53)+ (53))
< M{@(f;m)
minL (<)l |
o (32 (22))

holds. The constant M > Qisindependent of f and J(X,Y),
where

1
In(xy) = T3

(&m+

14 9x2 1
n+3 n+3

(wz(y)+ 1+9y2)

n+3
and @(x) = /x(1—Xx).

Proof. We define the auxiliary operators as follows:
Yn(f;Xy)

B ] 1+nx 14+ny
Sty - (RS ik, @
Then, from Lemm&, we have
TaLixy) = 1, V(s — Xixy) = 0 and

using Cauchy-Schwarz inequality, proof of this theorem?n((t —y);xy) =0.

easily follows.

Let g € C2(S) and(s,t) € S. Using the Taylor’s theorem,
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we have

g(s,t) —g(x.y)
6gxysx+/sa )da
0gxy 02 xB)
LAYy +/t— S5 b

Operating by? , on the equationd), we get
7n(gxy) —9(xy)

:7,1(/:(5—0)023( 5 )da xy)
7o [ -5 2% gy

= n(/xs(s—a)a g( : )da xy)
[ ()P
wn( /yta—m—‘?zg(gf) dB;x,y)
7 ()P

Hence,

7 n(gix.y) —g(x.y)]

<%<

029(a,y)

a ;X7Y>

2
9°g(a, y)‘da‘

da?
)

o901 6)
.

14+nx

n+ 1+nx
n+3

(/|t—rs|

1+ny
N+

dB

02
0[32

1+ny

1+nx z
< {%((s—x)z;x,y)+ (55 %) Hlillas

1+ny \?
2.
sty + (527 ) Hallers

(a5
L8 <<p2(y) MRS gy2) }||9||02(s>

n+3 n+3

Also,

— 1+nx 1+ny
. < .
7/n(fyX7Y)||7/n(va7Y)|+‘f<n+37 n+3

Y <3Iflles

Now, for everyg € C2(S) and from equatiord), we get
7a(fixy) — f(xy)]

< a(f=gx Y|+ n(gixy) —

1+nx 1+ny
+‘f (5 i3~ ”X’”’

2
R R P ()

n+3

ta2s (7 5 gl

n+3 n+3

1+nx 1+ny
+‘f (5 i3 - ”X’”’

axy)+1a(xy) — f(xy)]

(4|\f—g|\c T 3hxy)llollers )

C[/1=3x\? [1-3y\?

ol (52)+(52))

Taking the infimum on the right hand side over glE
C?(S) and using 1), we obtain

[Ta(ixy) = T(XY)| < 42 (f,In(XY))
o (2 (52))
< M{@(f;\/m)

+min{17~]n(x7)’)}|\chZ(S)}

oy (2 (52))

whereM = 4M;. Hence, the proof is completed.

Theorem 5 Let f € C1(S) and (x,y) € S. Then, we have
[Pa(Fxy) = FCY)] <] ] a0+ || £y [l n(y)-

Proof.Let (X,y) € Sbe a fixed point. Then, we may write

S t
F(x,y) = /X £ (u,t)du+ /y #(x,v)dv.

Now, applying #»(.;X,y) on both sides of the above
equation,
)

t
/ fo (%, v)dv ;x,y).
y

Ta(Hs % y) — FxY)] < % (\ [ fiud

+7/n<

By using the inequalities,

S
[ titutdul <| £ s
and
t
@ /y fLoovav] <[ 1t -y,
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we get il

[a(f(st)ixy) — Fxy) < || fx [l #a(ls—x;x,y)
+ 1 1y [l (it =ylix,y).

Now, by applying Cauchy-Schwarz inequality, we obtain

| PR e

Pa(f(s,0:%y) — FY)] < || fell (Fal(s— %)%, y)Y? 00
+ 1l (alt—y)Zxy)Y?
= ||t 300+ [| £ [| Suly).

This completes the proof.

Fig. 1: The convergence dfyo( f;X,y) (blue) tof(x,y) (red)

uniformly in (x,y) € S. From (vii) and (viii) of Lemma3,

we have
\Voronovskaja type theorem Fa((s— X% xy) = O (iz) ,
n
Theorem 6 Let f € C2(S). Then, we have and

liMnse N(7A(F;Xy) — F(X,Y))

Y((t—y)*xy) =0 (12) , uniformly in S.
= f(xy)(1-3x) + fy(xy)(1 :
(

3y) + f(x y)x(1—x)

—2hy (Y)Y + fy(xy)y(1-y), Thus,
. 2
uniformly in (x,y) € S. n”n <’7(57th7)’){(3—><)
Proof.Let (x,y) € S. By the Taylor’s theorem, we have +(t _y)Z};X’y) — 0, asn— . uniformly inS.  (7)
f(st) = F00y) + () (s—X) + x y)(t =) By using Lemma3 and (7), we obtain

liMnse N(7A(F;Xy) — F(X,Y))

} " )2 U _ —
+5{ fa ) (5= X)2 + 2fg (x.Y) (s X)(t - Y) — £16Y)(1—3%) + F(x,y)(1—3y)

" 2
+ iy y)(t—y)%} 2 i + (X Y)X(1 = X) — 20 (x,y)xy
+n(stxy){(s—x)+(t—-y)}, (5) + 16 y)y(1—y), uniformly in S
wheren (s,t;x,y) — 0, as(s,t) — (x,y). Thus, the proof is completed.
Operating#n(.;x,y) on both sides off), we get
Ta(fixy) = F(xy) + KX y) 7a((s—X)ix.y) Numerical Examples
LX) 7a((t—Y): X,
+1y( Ya(E=y)ixy) Let us consider
ST (5= 2% xY) fiS— R fxy = —v7(l—x—y° 10y The
2 convergence of bivariate Bernstein-Durrmeyer operators
+2f;’y(x,y)%((s—x)(t—y);x,y) n(f;x,y) to the functionf is illustrated in Examples 1
and 2

AP A(E= Y] Example 1. Forn= 20,50 th fth t
_ 5 . xample 1. Forn = 20, e convergence of the operators
+/R(N(SLEXY{(S—X) "+ (t—Y)“}:X,Y)(6) 74(f;x,y) (blue) to the function (red) is demonstrated in

Now, by applying Cauchy-Schwarz inequality to the last figures 1 and 2 respectively. We notice that the error in the
term of 6), we have approximation of the function by the operators becomes

A (n(s,t;x,y){(s—x)2+ (t —y)z};x,y) smaller as1increases.
) 12 Example2. For n = 20,50 the comparison of the
< {7 (stxy)ixy) oy Ta((s—x)%x.y) convergence of bivariate Bernstein-Durrmeyer operators
Z Yn(f;xy) (blue) and bivariate Bernstein-Kantorovich
+/ At =y)5xy)} operators “%(f;x,y) (green) to the function

f(xy) =x2 —V7(1—x—y)?— 10xy (red) is illustrated in
figures 3 and 4 respectively. It is observed that the error in
the approximation of by the operator¥; is smaller than
the operatoré.

Sincen(.,.;x,y) € C(S) andn(s,t;x,y) — 0,
as(s,t) — (x,y), applying Theoreni

. 2 . . _
Amoy/n(n (S,t,X,y),X,y) =0

(@© 2017 NSP
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0z L9 where(s t;xy) = @(-,) € C(S) and(x,y) =
i 1 Operating#(-;-,y) to the above inequality and then by
o using Lemmél, we get
A (At 0i0y)
_a wW=X
T 05 j 10
Fig. 2: The convergence dfgg( f;x,y) (blue) tof(x,y) (red) f(x, y)( 4 (10 y))
w=X
+ fx(x y)(i“f/(s—xw y))
X\ Ny aw n 1 9 o
7}
+f (x,y)(—”f/(t—y;w,y)>
g oo " wW=X

4 :
—|—<%%(W(S,t,x,y)

(s—x)2+(t—y)2;w,y)> , for (st)eS

Fig. 3: The comparison of bivariate Bernstein- w=x
Kantorovich %»o(f;x,y) (green) and bivariateBernstein — — (X ){i<1+nw)}
wW=X

Durrmeyer ¥20( f;x,y) (blue) tof(x,y) (red) dw\ n+3

+fy(x, Y){ ai) (::1—:2/)) ?w=x

. +<%"//n(qj(s,t;x,y) (s—x)2+(t—Y)2:w,Y)>

w=X

=i = fx(x,y)( )+E (say)

+3

oo 0.5 1.0

Hence, itis sufficient to prove th&t— O, for every(x,y) €

Fig. 4. The comparison of bivariate Bernstein- S, asn— o,

KantorovichZso(f;x,y) (green) and  bivariateBernstein  —
Durrmeyer ¥50( f;x,y) (blue) tof(x,y) (red)

n n-k
. . . E=(n+1)(n+2) < b (@ y)
4 Simultaneous approximation Z; Z; " w=x

1-t
In this section we study the simultaneous approximation ></ / (s t;x,y)y/ (s—x)2 + (t —y)2dsdt
property of the operators(-; X, y).

k
Theorem 7 Let f € CY(S). Then for every (x,y) € S° (the (n+1)(n+2) i;nZ){ (k=m)(1=y) +x(1 =)}
interior of §), X(1-x—y)?
; J . _of xbn k1 (X,Y) . ttp(st;x.y) (s—X)2+ (t —y)2dsdt
im (goration) =5y, ® 0oy [ [ wts ey
and _ (+1(n+2(-y) e kk )b ()

0 of X(1—-x-y)? k_0|Z) "
IirT(]° <0—”1/n(f;x,v)> = a—(x,y). 9) 1 1ot
s \ v vy Oy < [ wistixy)y/ (s—02+ (¢ —y)dset
Proof.We shall prove only&) because the proof 0B is N nek
similar. Lnn+2) (I =ny)bn ki (x.y)

1 1—x—y)>? ; S
By the Taylor formula forf € C*(S), we have ( M=
f(st) = F00y) + (6 y) (5= %) + fy(xy) t-y) [ wisty)y/is 02+ - yyzasar
+P(stixy)y/(s=x)?+(t—y)?for (st) € S, = E1 +Ep, (say).
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First, we estimate E;. Applying Cauchy-Schwarz and

inequality, we have im n{ (aiﬂ,/n(f;x"/)) B g—f(x,y)}
-y onk 12 LAY vy Y
E; < bk (X, y) (k—nx
LS x(1-x—y)? (Z Z) kel (%Y)( ) ) = —3fy(X,y) + (2—5y) fyy(X,y) + (1 = 5X) fry(X,y)
n n-k 1-y) fox(X,Y) — 2xy fryy (X X(1—X) fry (X, Y).
x((n—i—l J(n42) ZOZ)bnk' Xy FY(1=Y) Fox(X,Y) = 29 iy (X, ) +X(1 = X) froxy (X, Y)
ot s 2 2 12
X/o /0 PE(stXY)((s—Xx) "+ (t—y) )dsdt) 5 Shape preserving properties
n n—k 2\ 12
< (1 = y (Zo%b“k' X,y) (—— ) ) In this section, we study convexity properties of the
operators/y by proving that the operatof, is convex of
X<%<w2(s’t;x7y) ((S—X)2+(t—y)2);x7y>)l/2 8rd¢r+(!,i) if f(x)y) is convex of order(i,j) for
<i+j<r
n nek 1/2 We first recall the usual definition of convexity for
= 1 ( Z)bnkl X,Y) <7— ) ) bivariate functions. N
x(1-x-y)? y For f € C(S),(xy) € Sandh e R, A" is defined by

<[ (W (stxys-02ixy)

AR (xy) = f(x+hy)—f(xy),
1/2 (0,1)
+% (wz(&t:xy)(t —y)z;x7y) } Ay TGy) = Fxy+h) —f(xy),
(1) " APV E(y) = FOxHhy+h)+ F(xy) — F(x+hy) — f(xy+h),
< W (Mn((S_X)Z;X>Y) A<2"O)f B
y) poof(xy) = f(x+2hy) —2f(x+hy)+ f(xy),
x({%(w4(s7t;x7y);x7y)}l/4 ALPE(xy) = FOy+2h) — 2f (xy+h) + F(x),
r

/ AP xy) = 5 (=i (") ¢ —i)h,y),
{55y e a2} ) ) = 30§ et ey

r

ARV E(xy) = .zo(—l)i (T) Fooy+(r=ih).

By making use of (], Lemma (2.5)), for everyx,y) €
we haveM,((s—x)%;x,y) = O <%) ,asn — o,
Thus, we get Definition 1. (x,y) is convex of order (i, j),i,j € N°, 0 <

(i.,j)
[Ea| < MO T (s tx )i y) 4, +j<nitforhel Al >0

in view of Lemma3 ((vii) and(viii)). o
. RemarkLeti,j e N°, 0 <i+j<r.If f eC*)(S)and for
From Theoreni, for every(x,y) € S°, we obtain 9i+i

all (x,y) € S,
lim (s txy)ixy) = wh(xy) = order(i, ).

f
X ayl (x,y) > 0, then f(x,y) is convex of

To estimateE,, proceeding in a manner similar to the o
ﬁs_u;r:oate ofEy, for every(xy) € S, we getE; — 0,as | oymas5.  For r — 01,2 ’Wﬁj/(f.x y) and
Combining the estimates & andEy, it follows that for ‘9_r7/n

. f; tinthef
every (x,y) € S, E — 0, asn — «. Hence the proof is  dy' (F:x,y) can beput in the form

completed. .
0( (n+2 |n| n—rn— r
Similarly, we can prove the following theorem: (a)—%(f Xy) = h—nintnt Z Z Pn—r ki1 (X,Y)
3 1-t
;'gfeorem 8 Let f € C>(S). Thenfor every (x,y) € S, we X/O / .. k+r|(s,t)§—srf(st)dsdt.
. 7} of r n—rn—k—r
lim n{(—”i/(f;w,y)) ——(x,y)} " _ (n+2 )in!
e |\ dw " wx  OX (b)ﬁyr"f/n(faX,Y) =L 20 % Bn-rk1(X,Y)
- _ _ _ 1,1t
- 3fX(Xa y) + (2 5X) fXX(Xv y) + (1 5y) ny(Xv y) X / / bn+r,k Ir (S t)_r f (S,t)d&jt
XL =) (%) = 29 Frog (%, Y) + Y(L = Y) Froy(X.Y) ot
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Proof.(a) By Leibnitz theorem, we get
o' _
W“//n(f,X,Y)

n—k K r
(N+1)(n+2) kzmzo<2> <n| )VJ;G)
(1) Ik (n—k— )IXKT (1= x— y)n—k-t=rt]
(k=)' (n—k—=I—r+4j)!

1 1t
< [ bka(s ) f(s tydset
0 Jo o

n n—k—r+j
= (n+1)(n+2) Zo % ()
K=j

(_1)r ntyk— jy| 1_X_y)n K=l —r+j
k=) (n—K—T—r+])!

1 1t
< [ bka(s ) f(s tydset
0 Jo o

X

n_|_2|nrnkr

R AN
/ /1 S (j)bn-,kﬂ,l(svt)f(s,t)dsdt.

Again by Leibnitz theorem, we have
r

7]
N Brsrkr (X Y)

“ae () () o)

n_|_r| r (r) r Jylxk+r 1(1 X— y)n k—l—r+j
i (K+r—jHn—k—1—r+j)!

B n+r| r r n—k—r+j
N j k+r—J I

><( r Jylxk+r 1(1 X — y)n K—l—r+j

n+r| [
= () ank+JIXY)

Thus, we get
o (n+2|n| n—rn—k—r
—7/n(fxy) (n n+r % % bn rkIXy
1- t
/ / anrrkJrrI(S t)
x f(s,t)dsdt. (10)
Now,

1-t ar
/ / i (SO (s,t)dsdt

—//“

bn-&-rk-&-rl(S t) (Svt)det- (11)

os

From (10) and (L1), we obtain

(n+2|n| n—rn—k—r

(n— n_H,'z %bnrkIXy

' 1tb o f dsd
X/O 0 n+fk+f|(5t)asr (s,t)dsdt.

or
F”f/n(f X,y) =

The proof of(b) is similar to the proof ofa). Hence it is
omitted.

Based on definitiod, Remarks and using Lemm&, we
give the following theorem:

Theorem9 Let f € C*i(S) such that i,j € N° and
0 < i+ j <r. Then the following statement holds:

If f(x,y) is convex of order (r,0) (resp. (O,r)), then
Yn(f;Xxy) isalso convex of order (r,0) (resp. (0,r)).

Algorithm:

For the purpose of clarity we mention below the algorithm
for one of the figures e.g. figure 4. The domain used in the
graphicsis{(x,y) : x+y < 1,x,y > 0}.

Plot3D sz —V7(1—x—Yy)? — 105 XxY,

504 49% X2 + 4% 50% X+ 2
(504 3) * (50+ 4)

1
V7 (50+3)  (50+ 4)

—2%50% (50+ 1) * (X+Y) + (507 + 3% 50+ 2)]
10% (50% (50— 1) x X* y+50x (X+y) + 1)
B (50+3) % (50+4) ’
50P % X2 + 2% 50% X — 50+ X2 + 3
(50+1)2

—VTx <1+

#[50% (50— 1) x (X +y)?

ﬁ #[50% 4 + 5P  y2 + 250 (X +y)

50+ (0 +) +
450 (50— 1) x Xk y+ 2k X+2xy+1
2% (50+1)2 )
10% (4%50% (50— 1)« X*y+ 2% (X+y) + 1)
B 4% (50+1)2 }
{x,0,1},{y,0,1}, PlotStyle— {Red, Blue, Greeh
RegionFunction- Functiori{x,y,z},0 < x+y < 1],

—2%xX—2%xy+

Mesh— None

Conclusion: The rate of convergence of the bivariate
Bernstein-Durrmeyer type operators introduced by Zhou
[1]] is obtained in terms of th& —functional and moduli
of continuity. We estimate the order of approximation by
\Voronovskaja type result and illustrate the convergence of
these operators to a certain function through graphics
using Mathematica algorithm. We also discuss the
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comparison of the convergence of the bivariate
Bernstein-Durrmeyer operators and the bivariate
Bernstein-Kantorovich operators to the function through
illustrations using Mathematica. Furthermore, we study
the simultaneous approximation for first order partial
derivatives and the shape preserving properties of these
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