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1 Introduction

In the last four decades, the used of mathematical
methods for iterative numerical modeling of large-scale
air monitoring in the area, which is slow in the
convergence of physical and mathematical equations
consisting climatic phenomena solutions. In recent years,
the use of alternative methods is fast to solve these
equations, one of these methods is Galerkin method. In
this project, we will use the finite element method which
belongs to the family in general methods of Galerkin.
These are used instead of the style differences limited
(considered simplistic) to resolve the horizontal and
vertical fields in numerical models. Galerkin method can
be used in solving systems of equations and partial
differential equations and the problems of border free
evolutionary (see reference [6], [1], [2],[7], [8] [9], [5])
do not use this method directly in the field of values at
grid points after the partition of scale, so as to improve
the accuracy of ordinary differential equations systems
solutions. There are two methods in this process: the
specific elements of the functions of the zero-way, and the
spectral way. Galerkin method is one of the ways of
Applied Mathematics. And put it in space by using the

principles inherited from the transformative formulation,
separate mathematical algorithm to find approximate
solution in the free boundary problem (see [3]). Galerkin
methods differ from the spectral methods because it is not
exhaustive, but rather than to determine local values.
However, it is a roughly distinct function defined on the
whole region and not just separate points (see [2]).

This paper is organized as follows: In the first part, we
lay down some assumptions and notations needed
throughout the paper. In addition, we study the estimates
behavior of the semi discrete problem and prove the
stability analysis in Sobolev spaces of Galerkin method
for transport equation. In the second section, we apply
this model to the hypothetical example and compare the
results of this model with a virtual experience for which
we will deal with the concentration of certain pollutant
and their speed diffusion in air and water.
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2 Finite element methods for hyperbolic
equations

We consider the following the advection diffusion
equation: find u(x, t) such that
u ∈ L2

(
0,T,H1

)
,ut ∈ L2

(
0,T,L2 (Ω)

)







∂u
∂ t

− (D∆u+−→v ∇u) = f on Σ ,

u = 0 in Γ × [0,T ] ,

u(.,0) = u0 in Ω ,

(1)

whereD is a diffusion coefficient satisfies and−→v is
the average velocity satisfies

v̄ ∈ L2 (0,T,L∞ (Ω))∩C 0(0,T,H−1(Ω)
)
.

Σ is a set inRN ×R defined asΣ =Ω × [0,T ]with T <+∞
, andΩ is a smooth bounded domain ofR

N with boundary
Γ and the right hand sidef is a regular function satisfies

f ∈ L2 (0,T,L∞ (Ω))∩C1(0,T,H−1(Ω)
)

. (2)

It can be reformulated the equation (1) by the
following weak formulation: find
u ∈ L2

(
0,T,H1 (Ω)

)
,ut ∈ L2

(
0,T,L2 (Ω)

)







(ut ,v)+ a(u,v)Ω = ( f ,v)Ω ,

u(.,0) = u0, v ∈ H1 (Ω) ,

u = 0 in Γ × [0,T ] ,

(3)

where

a(u,v) = D(∇u,∇v)Ω +
1
2
((−→v ∇u,v)Ω − (−→v ∇v,u)Ω ) .

(4)
The symbol(., .)Ω signifies the inner product inL2 (Ω)

and〈., .〉Γ indicate the inner product ofL2 (Γi).
We discretize the problem (3) with respect to the time

using Euler scheme, then we have







(
uk − uk−1

∆ t
,v

)

+ a
(
uk,v

)

Ω =
(

f k,v
)

Ω in Ω ,

u0 (x) = u0 in Ω , u = 0 on∂Ω

. (5)

implies






(
uk

∆ t
,v

)

+ a
(
uk,v

)

Ω =

(

f k +
uk−1

∆ t
,v

)

Ω
in Ω ,

u0(x) = u0 in Ω , u = 0 on∂Ω .

(6)

It can be reformulated (5) to the following coercive
system of elliptic variational equation







b
(
uk,v

)
=
(

f k +λ uk−1,v
)
=
(
F
(
uk−1

)
,v
)
,

u0 (x) = u0 in Ω , u = 0 on∂Ω ,
(7)

such that







b
(
uk,v

)
= λ

(
uk,v

)
+ a
(
uk,v

)
, uk ∈ H1

0 (Ω) ,

λ =
1

∆ t
=

1
k
=

T
n
, k = 1, ...,n.

. (8)

In our paper we will interest by the experiment side of
the one-dimensional of transport equations

2.1 One-dimensional of transport equations

Consider the following one-dimensional of transport
equations







∂u
∂ t

+ a
∂u
∂x

+ a0u = f in Qt = ]α,β [× ]0,T [

u(α, t) = ϕ (t) , t ∈ ]0,T [ ,

u(x,0) = u(x) x ∈ Ω .

(9)

We multiply (9) by υ ∈ H1
0 (Ω) and integrate on

]α,β [⊂ R,then we have for allx ∈ H1
0 (Ω) :

∫

Ω

∂u
∂ t

υdx+
∫

Ω

a
∂u
∂x

υdx+
∫

Ω

a0uvdx =
∫

Ω

f υdx. (10)

Using the Green formula we have

∫

Ω

(
∂u
∂ t

v− a
∂u
∂x

∂v
∂x

+ a0uv

)

dx+
∫

Γ

∂u
∂η

vdσ =

∫

Ω

f υdx.

(11)
Problem (11) becomes:

b(u,v) = l (v) , for all v ∈ H1
0 (Ω) , (12)

where

b(u,υ) =
∫

Ω

(
∂u
∂ t

v−a
∂u
∂x

∂v
∂x

+a0uv

)

dx and l (υ) =
∫

Ω

f υdx

By using theorem of Lax-Milgram, it can be easily to
prove the problem (3) admits a unique solution.
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2.1.1 The discrete problem

We introduce a subspaceV h of finite dimensional spaceV ,
then we define the approximate solutionuh of the solution
u as the solution of the following problem:: finduh ∈ V h

solution of

b(uh,υh) = l (υh) , for all υh ∈V h (13)

where

V h =







vh ∈C2 (Ω)∩H1 (Ω) ,

vh |I=[a,b]∈ P1 in Ω , u(α) = 0






(14)

2.1.2 The space discretization

We defined the following space:

V 1
h =

{
vh ∈ c0 [α,β ] : vh \ I j ∈ P1(I j) ,∀I j ∈ τh

}
. (15)

We have







β∫

α

∂uh

∂ t
vhdx+

β∫

α

(

a
∂uh

∂x
+ a0uh

)

vhdx =
β∫

α
f vhdx ∀vh ∈V 1

h ,

uh (t) = ϕh (t) ,x = α,

uh (0) = u0,h,
(16)

2.2 Existence and uniqueness of the solution

We have for allvh ∈V
1

h
,







β∫

α

∂uh
∂ t vhdx+

β∫

α

(

a ∂uh
∂x + a0 (t)

)

uhvhdx =
β∫

α
f (t)vhdx

u
h(t) = ϕh (t) en x = α,

uh (0) = u0.
(17)

We can setvh = uh (t), we get

β∫

α

∂uh

∂ t
uh +

β∫

α








a
∂uh

∂x
uh

︸ ︷︷ ︸

ζ

+ a0u2
h








dx =

β∫

α

f (t)uhdx.

(18)
Then

β∫

α

a(x)
∂uh

∂x
uhdx =

[
1
2

a(x)u
2

h

]β

α
−

1
2

β∫

α

a′(x)u2
hdx.

so

β∫

α

a(x)
∂uh

∂x
uhdx =

[
1
2

a(x)u
2

h

]β

α
−

1
2

β∫

α

a′(x)u2
hdx.

Then

β∫

α

a(x)
∂uh

∂x
uhdx =

1
2

a(β )u
2

h
(β )

−
1
2

a(α)u2
h (α)
︸ ︷︷ ︸

=0

−
1
2

β∫

α

a′(x)u
2

h
dx

Therefore,

β∫

α

a(x)
∂uh

∂x
uhdx =

1
2

a(β )u
2

h
(β )−

1
2

β∫

α

a′(x)u
2

h
dx (19)

Equation (18) becomes

1
2

∂
∂ t

∫ β

α
u2

hdx− 1
2a(β )u2

h (β )

+
β∫

α

(
a0 (t)u2

h −
1
2a′(x)u2

h

)
dx =

β∫

α
f (t)uhdx.

(20)

We set

I =
1
2

∂
∂ t

β∫

α

u2
hdx−

1
2

a(β )u2
h (β )

+

β∫

α

(

a0 (t)−
1
2

a′(x)

)

u2
hdx

and

II =

β∫

α

f (t)uhdx.

Suppose

0≤ µ0 ≤

(

a0(t)−
1
2

a′(x)

)

. (21)

By using Young inequality

β∫

α

f (t)uhdx ≤
‖ f (t)‖l2

2
+

∥
∥uh

∥
∥

l2

2
. (22)

We can write
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1
2

∂
∂ t

‖uh‖
2
l2 +

1
2

a(β )u2
h (β )+

β∫

α

µ0u2
hdx ≤ I

and

II ≤
‖ f (t)‖2

l2

2
+

∥
∥uh

∥
∥2

l2

2
.

Using (20) we have

1
2

∂
∂ t

‖uh‖
2
l2 +

1
2a(β )u2

h (β )+ µ0‖uh‖
2
l2

≤ I

and

II ≤
‖ f (t)‖

l 2

2
+

‖ f (t)‖
l 2

2

Integrating on[0, t]

1
2

[

‖uh (t)‖
2
l2 −‖uh 0‖

2
l2

]

− 1
2a(β )

t∫

0
u2

h (β ,τ)dτ

+
t∫

0
µ0‖uh (t)‖

2
l2 dτ ≤

t∫

0
f (τ)u(τ)dτdx.

Then

‖uh (t)‖
2
l2 −‖uh 0‖

2
l2 − a(β )

t∫

0
u2

h (β ,τ)dτ

+2
t∫

0
µ0‖uh‖

2
l2 ≤ 2

t∫

0

β∫

α
f (τ)u(τ)dxdτ,

thus

‖uh (t)‖
2
l2 +

t∫

0
2µ0‖uh (τ)‖2

l2 dτ

−a(β )
t∫

0
u2

h (β ,τ)dτ ≤ 2
t∫

0

β∫

α
f (τ)u(τ)dxdτ + ‖uh 0‖

2
l2 ,

or

‖uh (t)‖
2
l2 +2

t∫

0
µ0‖uh (τ)‖2

l2 d (t)

−a(β )
t∫

0
u2

h (β ,τ)dτ ≤ 2
t∫

0

β∫

α
f (τ)u(τ)dxdτ + ‖uh 0‖

2
l2

implies

‖uh‖
2
l2 +2

t∫

0
µ0‖uh (τ)‖2

l2 d (τ)

−a(β )
t∫

0
u2

h (β ,τ)dτ ≤ 2
t∫

0

β∫

α
f (τ)u(τ)dxdτ + ‖uh0‖

2
l2 .

Then

‖uh‖
2
l2 +2

t∫

0
µ0‖uh (τ)‖2

l2 d (τ)

−a(β )
t∫

0
u2

h (β ,τ)dτ ≤ 2
t∫

0

β∫

α
f (τ)u(τ)dxdτ
︸ ︷︷ ︸

A

+ ‖uh 0‖
2
l2 .

(23)
By Using Cauchy Schwarz inequality

A =

t∫

0

β∫

α

f (τ)u(τ)dxdτ

=

t∫

0

‖ f (τ)‖l2 ‖uh (τ)‖l2 d (τ) .

Using Young inequality, we have for alln ∈ R and
ε ∈R

∗
+

m× n ≤ εm2+
n2

4ε

A =

t∫

0

‖ f (τ)‖2
l ‖uh (τ)‖l2 d (τ)

≤

t∫

0

(

ε ‖uh (τ)‖2
l2 +

‖ f (τ)‖2

4ε

)

dτ.

We putε = 1
2µ0. Then

A ≤

t∫

0

(

1
2

µ0‖uh (τ)‖2
l2 +

‖ f (τ)‖2
l2

4µ0

)

dτ

Probelm (23) equivalent to

‖uh (t)‖
2
l2 + µ0

∫ t

0
‖uh (τ)‖2

l2 d (τ)

+a(β )
t∫

0

u2
h (β ,τ)dτ

≤

t∫

0

(

‖ f (τ)‖2
l2

µ0
+ µ0‖uh (τ)‖2

l2

)

d (τ)+ ‖uh 0‖
2
l2

c© 2017 NSP
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‖uh (t)‖
2
l2 +

t∫

0

(

2µ0‖uh (τ)‖2
l2 − µ0‖uh (τ)‖2

l2

)

dτ

+a(β )
t∫

0
u2

h (β ,τ)dτ

≤
1
µ0

‖ f (τ)‖2
l2 dx+ ‖uh 0‖

2
l2 ,

thus, we have

‖uh (t)‖
2
l2 +

t∫

0
µ0‖uh (τ)‖2

l2 d (τ)+
t∫

0
a(β )u2

h (β ,τ)dτ

≤
t∫

0

1
µ0

‖ f (τ)‖2
l2 dx+ ‖uh0‖

2
l2

If we have in particular cases off anda0 are null, we
get

‖uh (t)‖
2
l2(Ω) ≤ ‖u0h‖

2
l2
(Ω)

which reflects the stability of the energy of the system.

2.3 The time discretization

By sing Euler time method of the problem (12). The
problem can be reformulated, for alln ≥ 0 : find un

h ∈Vh

1
∆ t

β∫

α

(
un

h − un−1
h

)
vhdx+

β∫

α
a(x)

∂un
h

∂ (x)vhdx

+
β∫

α
an

0vhdx =
β∫

α
f nvhdx

(24)

with un
h (α) =ϕn and u0

h = u0h if f = 0 and τ = 0,we
set vh = un

h in (24) we find

1
∆ t

β∫

α

(
un

h − un−1
h

)
un

hdx

+
β∫

α
a(x)

∂un
h

∂ (x)un
hdx +

β∫

α
an

0

(
un

h

)2
dx = 0

(25)

The left hand of (25) less than

1
∆ t

‖un
h‖

2
l2(Ω)−

1
∆ t








β∫

α

(
un

h

)2

2
+

β∫

α

(
un−1

h

)2

2








+

β∫

α

a(x)
∂un

h

∂ (x)
un

hdx+

β∫

α

an
0(u

n
h)

2 dx,

≤
1

∆ t
‖un

h‖
2
l2(Ω)−

1
∆ t





∥
∥un

h

∥
∥2

l2(Ω)

2
+

∥
∥un−1

h

∥
∥

2
l2(Ω)

2





+

β∫

α

a(x)
∂un

h

∂ (x)
un

hdx+

β∫

α

an
0(u

n
h)

2 dx

≤
1

2∆ t
‖un

h‖
2
l2(Ω)−

1
2∆ t

∥
∥un−1

h

∥
∥

2
l2(Ω)

+

β∫

α

a(x)
∂un

h

∂ (x)
un

hdx+

β∫

α

an
0(u

n
h)

2 dx

︸ ︷︷ ︸

B′′

≤
1

2∆ t
‖un

h‖
2
l2(Ω)−

1
2∆ t

∥
∥un−1

h

∥
∥

2
l2(Ω)

+B′

calculation ofB”

B” =

β∫

α

a(x)
∂un

h

∂ (x)
un

hdx+

β∫

α

an
0(u

n
h)

2 dx

thus, we have

B” =
1
2

a(β )(un
h)

2 (β )

+

β∫

α

(

an
0−

1
2

a′ (x)

)

(un
h)

2 dx

Using (21)

µ0 ≤ a0(x, t)−
1
2

a′ (x) ,

then

B” =
1
2

a(β )(un
h)

2 (β )+
β∫

α

(

an
0−

1
2

a′ (x)

)

(un
h)

2

≥
1
2

a(β )(un
h)

2 (β )+ µ0‖un
h‖

2
l2 .
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Then, we deduce

1
2∆ t

(∥
∥un+1

∥
∥2

l2 −
∥
∥un

h

∥
∥2

l2

)

+a(β )un (β )+ µ0
∥
∥un+1

∥
∥2

l2 ≤ 0.

(26)

We Sum from 0 tom−1, we get, form ≥ 1,

‖um‖2
l2

+2∆ t

(
m
∑
j=1

∥
∥
∥u j

h

∥
∥
∥

2

l2
+

m
∑

i=1
a(β )u j+1(β )

)2

≤
∥
∥u0

h

∥
∥2

l2 .

In particular, we can conclude that for allm ≥ 0.

‖um
h ‖l2 ≤

∥
∥u0

h

∥
∥

2
l2

2.4 Matrix form

We have:






β
1

∆ t

∫

α

(
un+1

h − un
h

)
vhdx+

β∫

α
a

∂uh

∂x
vhdx

+
β∫

α
a0un+1vhdx =

β∫

α
f n+1vhdx,

(27)

un+1
(α)

= ϕn+1,

u0
h = u0h

thus

1
∆ t

β∫

α

un+1
h vhdx−

1
∆ t

β∫

α

un
hvhdx

+

β∫

α

a
∂un+1

h

∂x
vhdx+

β∫

α

a0un+1vhdx

β

=
∫

α

f n+1vhdx

or (Π) implies

υh =
N−1
∑
j=1

v jϕ j,

uh =
N−1
∑

i=1
uiϕi,

We can write

un+1
h = ∑n

i=0 un+1
i ϕi;

ϕh = ∑n
j=0 v jϕi

(28)

and we have

β∫

α
un+1

h vhdx−
β∫

α
un

hvhdx

+∆ t
β∫

α
a(x)

∂un+1
h

∂x
vhdx

+∆ t
β∫

α
a0 (x)un+1

h vhdx

= ∆ t
∫ β

α
f n+1 (x)vhdx.

We set

A′=

β∫

α

un+1
h vhdx−

β∫

α

un
hvhdx ,

B′= ∆ t
β∫

α
a(x)

∂un+1
h

∂x
vhdx

+∆ t
β∫

α
a0 (x)un+1

h vhdx

and

C′= ∆ t
∫ β

α

f n+1 (x)vhdx.

Using (28), we have

A′=
∫

suppϕi∩suppϕ j





∑n
i=1un+1

ϕi ∑n
j=1v jϕi



dx (29)

−

∫

supp ϕi∩ suppϕ j





∑n
i=1 unϕi.

∑n
j=1 v jϕi



dx

with

B′= ∆ t
∫

suppϕi∩supportϕ j








(

∑n
i=1

∂
∂x

un+1
i ϕi

)

(

∑n
j=1 v jϕi

)

a0(x)








dx

+∆ t
∫

suppϕi∩suppϕ j

an+1
0 (x)





(∑n
i=1 un

i ϕi)

(∑n
i=1 v jϕi)



dx
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and

C′= ∆ t
n

∑
j=1

∫

suppϕ j

f n+1 (x)v jϕ jdx

if |i− j| ≥ 2, we have

(suppϕi ∩suppϕ j) 6= Φ

We consider






a(x) = δ ,

a0 (x, t) =Ψ (t) .

whereδ is a constant.
(29) becomes

A′=
n

∑
j=1

v j







∑n
i=1 un+1

i

∫

suppϕi∩suppϕ j

ϕiϕ jdx

−∑n
i=1 un

i

∫

suppϕi∩suppϕ j

ϕiϕ jdx






,

B′= δ∆ t





n

∑
j=1

v j





n

∑
i=1

un+1
i

∫

suppϕi∩suppϕ j

ϕi′ϕ jdx









+Ψn+1∆ t

(
n

∑
j=1

v j

[
∫

suppϕi∩suppϕ j

n

∑
i=1

un+1
i ϕiϕ jdx

])

and

C′=
n

∑
j=1

v j

[∫

suppϕ j

f n+1 (x)ϕ jdx

]

,

thus, the equationA′+B′=C′ equivalent to

n

∑
j=1

v j





n

∑
i=1

un+1
i

∫

suppϕi∩suppϕ j

ϕiϕ jdx



 (30)

−
n

∑
j=1

v j





n

∑
i=1

un
i

∫

suppϕi∩suppϕ j

ϕiϕ jdx





+δ∆ t ∑n
j=1 v j

[

∑n
i=1 un+1

i

∫

ϕii∩ϕ j
ϕi′ϕ jdx

]

+
(
Ψ n+1∆ t

) n

∑
j=1

v j

[
n

∑
i=1

un+1
i

∫

ϕii∩ϕ j
ϕiϕ jdx

]

=
n

∑
j=1

v j





∫

ϕii∩ϕ j

f n+1 (x)ϕ jdx



 .

(30) gives

n

∑
i=1

un+1
i

∫

suppϕi∩suppϕ j

ϕiϕ jdx

︸ ︷︷ ︸

K

−
n

∑
i=1

un
i

∫

suppϕi∩suppϕ j

ϕiϕ jdx

+∆ tδ
n

∑
i=1

un+1
i

∫

suppϕi∩suppϕ j

ϕ ′iϕ j

︸ ︷︷ ︸

R

dx

+Ψn+1∆ t
n

∑
i=1

un+1
i

∫

suppϕi∩suppϕ j

ϕiϕ jdx

︸ ︷︷ ︸

K

=

∫

suppϕi∩suppϕ j

f n+1 (x) ϕ jdx

︸ ︷︷ ︸

F

Therefore, we can write (30) as
[
K+(δ∆ t ·R)+

(
Ψn+1∆ t ·K

)]
·Un+1

− [K ·Un] = F,
(31)

where
K(ϕi,ϕ j) andR(ϕ ′

i ,ϕ j) are symmetric three diagonal
matrices of dimension(N −1)× (N −1)

K(ϕi,ϕ j) =

∫

suppϕi∩suppϕ j
ϕi(x) ·ϕ j(x)dx

and

R(ϕ ′
i ,ϕ j) =

∫

suppϕ ′
i∩suppϕ j

ϕ ′
i (x) · ϕ j(x) dx

It can be easily calculatedR(ϕ ′
i ,ϕ j) , K(ϕi,ϕ j) as

follow:
First case: i = j







∫

suppϕi∩suppϕ j
ϕiϕ jdx =

∫

suppϕi∩suppϕ j

(ϕi)
2 dx

=
∫ xi

xi−1

[
x−xi−1

h

]2
dx+

∫ xi+1
xi

[
xi+1−X

h

]2
dx

= h
∫ 0
−1 [1+ s]2 dx+ h

∫ 1
0 [1− s]2 dx = 2h

3

or
∫

suppϕi∩suppϕ j

ϕiϕ jdx =
2h
3
, (32)
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∫

suppϕi∩suppϕ j

ϕ ′iϕ jdx =
h
2

[

(ϕ0)
2
]0

−1

+
h
2

[

(ϕ0)
2
]1

0
= 0

and
∫

suppϕi∩suppϕ j
ϕ ′iϕ j dx = 0. (33)

Second case: j = i−1
We have

∫

suppϕi∩suppϕ j

ϕiϕ jdx

=

∫

suppϕi∩suppϕ j−1

ϕiϕ j−1dx = ϕ0ϕ−1

=
h
6
,

thus

∫

suppϕi∩suppϕ j

ϕiϕ jdx =
h
6

, (34)

∫

suppϕi∩suppϕ j

ϕiϕ ′ jdx

=
∫

suppϕi∩suppϕ j−1

ϕ ′iϕ jdx

= h
∫

suppϕ0∩suppϕ−1

ϕ0′ϕ−1ds =
h
2
.

Thus, we find

∫

suppϕi∩suppϕ j
ϕiϕ ′ jdx =

h
2

. (35)

Third case: j = i+1
We have

∫

suppϕi∩suppϕ j

ϕiϕ jdx

=
∫

suppϕi∩suppϕ j+1

ϕiϕ j+1dx

=

∫

suppϕ0∩suppϕ1

ϕ0ϕ+1ds =
h
6
,

∫

suppϕi∩suppϕ j

ϕiϕ jdx =
h
6

(36)

∫

suppϕi∩suppϕ j
ϕ

i
ϕ ′

j
dx

=

∫

suppϕi∩suppϕ j−1

ϕ ′iϕ jdx

= h
∫

suppϕi∩suppϕ j
ϕ0′ϕ−1dx =

h
2

and for j = i+1

∫

suppϕi∩suppϕ j
ϕiϕ ′ jdx =

h
2

. (37)

3 Application

We give pollutant transport by the following equation
based on simplifying assumptions including neglecting
dispersion phenomena vertical transverse and longitudinal
dispersion:

∂C
∂ t

+ u
∂C
∂x

= 0, (38)

where
C pollutant concentration (mg/L);vU : velocity flow

(m/s).
For the application of our model, we pick out a virtual

experience from Qassim Cities, Qassim city is one of the
thirteen administrative regions of Kingdom of Saudi
Arabia. Located at the heart of the country, and almost in
the center of the Arabian Peninsula, it has a population of
1,370,727 and an area of 58,046 km2. It is known to be
the ”alimental basket” of the country, for its agricultural
assets.

It knows that equation (38) is a hyperbolic equation,
here it would be wise to use Euler time scheme
discretization combined with Galerkin spatial
discretization with respect to the following assumptions:
(1)-An nitial conditions knowledge and boundary
conditions, (2)-The pollutant concentrations related only
to distance time. (3)-The velocity is constant and
independent of time.

Considering that the concentrations are zero
regardless of the distance downstream of the sampling
point such that:

C(x,0) = 0 for x > 0 (39)

and for boundary conditions as follows:
The pollutant is considered passive conservative, and

the principle of mass conservation is taken into account:

∫ ∞

−∞
A(x)C(x, t)dx = M.
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After an infinite distance downstream from the point of
sample collection of concentrations are considered zero:

C(∞, t) = 0 for t ≥ 0,

with

∂C
∂x

−→ 0 whent tends to∞,

where:
A is the river section (m2); C is the pollutant

concentration(mg/L); M is the rejection mass (Kg).
It can be calculated velocity folw which given by the

following formula:

U = Q/S, (40)

where:
S : mesh section (m2); U : flow velocity (m/s); Q is

adaily flow of the river average (m3/s).
Since several phenomena have been neglected, the

choice of using one-dimensional models can be
detrimental in terms of the accuracy of predictions.
Moreover, the importance lies in the small number of data
required making a tool in line with the issue of emergency
data as follow: Flood discharge (m3/s) - wet section (m2)
main floo -length (m) - Raw slope (m/m)-high flood.

In our work, the choice fell on 2 pollutants:NH4 and
NO2 and we have a large dilution in water, and its
harmfulness and toxicity to living beings. Moreover, a
plant that manufactures detergents discharges infected
material into a stream. The detergents manufacture is
based on products of this type. For this, the laboratories
service of any agency of water resources can perform
measurements of the chemical composition of the water
regularly and in different places. For that our
demonstrating problem can enter the input parameters
according to the following assumptions:

Insert theU velocity calculated using the formula in
section 4 [u = Q/S] and we insert theAT = 10min and
h = 2m with (h = maxhi). These 2 parameters are chosen
arbitrarily. Because it is unconditionally stable according
to Euler time discertization. For a maturity of 12h, we
obtain 72 iterations.

Introduction of a number of points: our choice was
focused on 5 points due to the low concentration of the
pollutant treated to avoid that other phenomenon
outweighs the transportation

Read initial data from the file container. (The data are
from NET collection of 16 November 2016).

Matrices are calculated according to the previous steps
of the later section, and we find the following system:

(A+∆ tUB)Cn+1 = ACn,

whereCn+1 is the forecast. We can give our results by
the following graph:

Comment The graphs show the temporal evolution of
pollutant concentrations ofNO2 at differing distances

Fig. 1: Concentrations ofNO2 (mg\l).

with respect to the chose a flow velocity of 0.64m/s.
Because higher speeds cause greater dilution, and
therefore very low concentrations. In addition the
pollutant diffusion has been eliminated and is interested
only by the advection.

4 Conclusion

In this paper, a convergence and the stability of discetized
transport is established by using Euler time scheme
combined with a finite element spatial approximation and
we have applied this model to a hypothetical example and
compare the calculated results of this model with a virtual
experience taken from NET which deals with the
concentration of certain pollutants and their speed
diffusion in the water.
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