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Abstract: A direct rational exponential scheme is proposed to coosexact multi-soliton nonlinear partial differential exdions.
As an example we consider the well-known nonlinear Hirotariani equation to investigate one-soliton, two-solitod #mee-soliton
solutions. This work is motivated by the fact that the dimational exponential method provides completely nontlasulti-soliton
solution although soliton should remain their shape and sichanged after and before collision. Furthermore, thpegties of the
acquired multiple soliton solutions are shown by threedtisional profiles. All solutions are stable and might havglieations in
physics.
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1 Introduction which describe purely elastic interactions between
individual solitons and the KdV equation is one of these

Nonlinear wave equations have a significant role in soméntégrable equations. Furthermore, some models exist in
technical and engineering fields. These equations appedP€ literature are completely nonelastic, depending
in population models, propagation of fluxons in conditions between the wave vectors and velocities.
Josephson junctions, fluid mechanics, solid-state physicaV@zwaz P4,25,26,27] investigated multiple soliton
plasma physics, plasma waves and biology etc. However?c"unons such type of elastic and non-elastic phenomena.
in recent years, A variety of numerical and analytical . . L
methods have been developed to obtain accurate analy’:gur aim in this paper is to present an application of the
solutions for problems, such as, the Sumudu transfornflir€ct rational ~ exponential scheme to non-linear
method [L,2,3], the exp(— ®(n)) -expansion method4] Hirota-Ramani equations to be solved one-soliton,
5,6], the (G]G) _expansion method’[8,9,10,11,12,13] two-soliton and three-soliton solutions by this method for
oD : 1T T B the first time.

inverse  scattering  transform 14],  Backlund

transformation 15, Darboux transformation 1[],

analytical methods1[7], the exp-function method1f], . . . . .

the Wronskian techniquel], the multiple exp-function 2 Multi-Soliton Solution of Hirota-Ramani

method 0], the Hirota’s bilinear method?[1], the Jacobi  Equation

elliptic function expansion method2®], the symmetry

algebra method3], etc. _ In this section, we bring to bear the proposed approach to
We know that the mainly notable property of faithfully explain the both elastic and nonelastic interaction cearl

integrable equations is the occurrence of exact solitoniqo the simplest non-linear Hirota-Ramani equati®8 9,
solutions and the existence of one-soliton solution is not3Q, 31,37,

itself a precise property of integrable nonlinear partial

differential equations, many non-integrable equatioss al U — Ugy +aux(1—w) =0, (1)
possess simple localized solutions that may be called

one-solitonic. On the other hand,there are integrablevhereu(x,t) is the amplitude of the relevant wave mode
equations only, which posses exact multi-soliton soligion and a # 0 is a real constant. This equation was first
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introduced by Hirota and Ramani i29]. Ji established
some soliton solutions of this equation by Exp-function
method B(Q]. This equation is completely integrable by
using the inverse scattering method. Equation (1) is
considered in 2829,30,31,32, where new kind of
solutions were obtained. This equation is commonly used
in different brushwood of physics such as plasma physics,
fluid physics, and quantum field theory. It also describes a
range of wave phenomena in plasma and solid sg#e [

For single soliton solution we first consider solution as

kiciexp(kiX -+ wit)
a0+ crexp(kgx+wat)

)

u(x,t) =

Inserting (2) and (1), and then equating the coefficients of
different _ powers of
(exp(kax + wat))', (i = - - - - - ,2,1,0,1,2,-- ) to zero,
yields a system of algebraic equations abayt;,w; and

ky as follows:

ag(wlkf — akl,wl) = 07

ap(arkZcywy — 2aky ¢y — 2w cy — 4k3wicy) = 0,

c2(k2wy — aky —wq) = 0.

Solving the above system of algebraic equations for a ,w .
,F 0 1 with the aid Maple 13, we achieve the following g 0 Ty
solution set:

ag = const.,wy = k%ijl,r = 6/a, and thus the solution is

(b)

6kicrexp(ky (X + kz;a—lt)) Fig. 1. (a) Profile of the single solitary wave solution Eq. (3) of
1

u(x,t) = ] (3) H-R equation, (b) Potential field Eq. (4) wikh = 0.5,a=ag =
alao+ caexp(ky (X + 25t))] c1=1
and corresponding potential function is read as
6k2c2exp(2ky (X + k%lt) ) unknown parameters.
v(x,t) = [ eI L e Now according to the cases in the method we have
alap + C1eXp(K (X + 77 A S _ (Ke+kE—kiko—3)(k1—kp)?
, 1 Set-1: 1 = 2,80 = condt., a0 = (i rkake—3) (ko)
BikZcrexp(ka (x+ 51)) @ Wy = ék?ll,wz = ék_il then
aao + crexp(ke (X + 2+1))]” 6 v
1 ux,t) = = - —, (6)
a Y

To obtain interaction of two soliton solutions we just
suppose where Y1 = kiciexp(&1) + kocoexp(&2) + aia(ki +

ko)cicoexp(&1 + &€2), Yo = ap + ciexp(&1) + coexp(é2) +

(KB —kiko—3) (ki—kp)? _

Y;
:|"—l7

u(x,t) Y (5)

where Y] = kiciexp(&1) + koCoexp(&2) + ara(ky +
ko)cicoexp(&1 + &2), Yo = ao + ciexp(&1) + coexp(&2) +
a12C1CoeXP(€1 + €2), &1 = kax +wat, &2 = kox + wot and
the corresponding potential field reads —uy.

ki(X + k%ijlt),fz ka(X + %t) and

a,ap,C1,C,ky # +1,ky £ +1 are arbitrary constants.
The corresponding potential field reads —uy.
From careful analyses of Eq. (6) as Fig. 2 and

Inserting Eq.(5) in the equation Eq. (1) via commercial corresponding potential energy shows that two soliton
software Maple-13, and setting the coefficients ofwith different wave height (before collision i.g.,< 0),
different power of exponential to zero, we achieve ainteract at { = 0) and scatter (after collosion i.&.;> 0)

system of algebraic equation in terms
r ki, ko,wi,Wp,c1,co and ajp. Solving this system of
algebraic equations for ki, ko, w1, W, and a;> with the

software, we achieve the following solution of the

of with different wave height. It is conclude that for all the

ranges of two arbitrary parameteesk, , soliton changes
their shape and size and a non-elastic scatter occurs.
Set-2: r S ag ap = Ow, = condt.,wy =
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Fig. 2: (a) Profile of two non-elastic soliton solution Eq. (6) of
H-R equation, (b) Potential field with=c; = c, =1,a0 =k; =
2.k, =—15.

Wy (kg —kp)2—wp—a(ky —kp)

o then
6 kiciexp(&1) + kacoexp(&2)
_ . 7
M) = T (&) T el .

k1 —ko)2—wo—a(kq —k;
where&; = kx -+ "2 (ELKZ;LT 17k)t £ — ko Wit

anda,ws, ¢1,Cp, k1, ko are arbitrary constants.
The corresponding potential field reads —uy.

From careful analyses of Eq. (7) as Fig. 3 and
corresponding potential energy shows that two soliton
with different wave height (before collision i.&.,< 0),
interact at { = 0) and elastic scatter (after collosion i.e.,

t > 0) with same shape, size of wave. It is conclude that(kz

for all the ranges of two arbitrary parametdqs ko ,
soliton remain unchanges their shape and size and
elastic scatter occurs.

To obtain interaction of three soliton solutions we just
suppose

Y
= r—l,

u(x,t) (8)

2
where Y1 = kyciexp(&1) + koCoexp(&2) + kaczexp(&3) +
a1o(ky 4 ko)crCoexp(&y + &2) 4 aza(ka + ka)coczexp(é2 +
&3) + aga(ky + ka)crczexp(€1 + &3) + arpa(ke + ko +

(b)

Fig. 3: (a) Profile of interaction of two soliton solution Eq. (7)
of H-R equation, (b) Corresponding potential fieltk,t) with
k1:2,|(2 =15c=c=a=1w =8.

ks)cicocaexp(&s + &+ &)Y =
a + ciexp(§1) + coexp(&2) + caexp(&3) +
apCieexp(ér + &) + apatoczexp(és + &3) +

a13C1C3eXP(&1 + &3) + a123C1CoC3eXP(€1 + &2 + €3), &1 =
kix + wit, & = koX + Wot, &3 = kex + wst and and the
corresponding potential field reads= —uy. Inserting (8)

in the equation (1) via commercial software Maple-13,
and setting the coefficients of different power of
exponential to zero, we achieve a system of algebraic and
solving the system of algebraic equations via software,
we achieve the following solution of the unknown

arameters. Set-1. r = Q,ao = cond.,a;p =
a
(KE+KE—kiky—3) (ky —ko)? apz — (KB+KE—koka—3) (kp—kg)? _
T3 Tkike—3 )(k1+k2) 23 T (k3 1KE Thoks—3) (ko k)27 13
<k2+k2 kiks—3) (k1—ks)? _
AT Thiks—3)(ky +k3) » 8123 = 812823813,
aky aky aks
W=t We = gy W = oy then
6 V1
U(X,t):a 727 (9)

where
Y1 = kycrexp(&1) + koCoexp(&2) + kaczexp(€3) + aga(ky +
kz)C1Coexp(€1 + &2) + apa(ke + Ks)coczexp(éz + &€3) +
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a13(ky + kg)ciczexp(é1 + &3)

+ agza(ky + ko + ks)cicoczexp(é1 + & + &3)YL %%
a + cexp(é1) + coexp(é2) 4+ caexp(és)
ajpcicexp(ér + &2) + axcoczexp(éy + &3)

a13C1C3exXp(&1 + &3) + a123c1CoC3exp(&1 + &2 + &3), a12
(K3+kZ—koka—3) (kp—k3)?

=+ + 1

N

(K5 —kiko—3) (ki—ko) _ _
(k§+k§+k1k2—3)(k1+k2>2’a23 = (k§+k§+k2k3—3)(k2+k3>2’a13 =
(k-+k3—kiks—3) (ki —ks)?
(K2+K3+kg k3—3) (ky+k3)2’

&1 =ka(x+ 3%450), & = k(X + 541, &5 = ko(x+ 3%t
andap, c1, C, C3, K1, ko, k3 are arbitrary constants.
The corresponding potential field reads —uy #.

Fig. 4: (a) Profile of three solitary wave fusion solution Eq. (9)
of H-R equation, (b) Corresponding potential fielg,t) with
kl = 1.57|(2 = 2.57|(3 =3, Cci=C=C3= la=ay= 2.

From careful analyses of Eq. (9) as Fig. 4 and
corresponding potential energy shows that two soliton

with different wave height (before collision i.g.,< 0),
interact at { = 0) and scatter (after collosion i.&.;> 0)
with different wave height. It is conclude that for all the
ranges of two arbitrary parameteks, ky, ks , soliton

3 Conclusion

The direct rational exponential scheme offers a simple
and straightforward way to study exact solutions to

NLPDEs. The method has been applied to the
Hirota-Ramani equation and onewave, two-wave and
three-wave solutions have been obtained in this paper.
The 3D profiles of obtained solutions are given to

visualize the shape, size of wave solutions and both
elastic and non-elastic interactions are found.

Overcoming the difficulties of calculations by some

simple techniques via Maple-13 softwere, we finally

construct some new explicit two soliton and three-soliton
solutions for the Hirota-Ramani equation. It is point out

that the procedure is very easy, any examiner can easily
realized the idea of the scheme and can be applied to
obtain the multi-soliton solutions of other nonlinear

partial differential equations.
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