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Abstract: A direct rational exponential scheme is proposed to construct exact multi-soliton nonlinear partial differential equations.
As an example we consider the well-known nonlinear Hirota-Ramani equation to investigate one-soliton, two-soliton and three-soliton
solutions. This work is motivated by the fact that the directrational exponential method provides completely non-elastic multi-soliton
solution although soliton should remain their shape and size unchanged after and before collision. Furthermore, the properties of the
acquired multiple soliton solutions are shown by three-dimensional profiles. All solutions are stable and might have applications in
physics.
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1 Introduction

Nonlinear wave equations have a significant role in some
technical and engineering fields. These equations appear
in population models, propagation of fluxons in
Josephson junctions, fluid mechanics, solid-state physics,
plasma physics, plasma waves and biology etc. However,
in recent years, A variety of numerical and analytical
methods have been developed to obtain accurate analytic
solutions for problems, such as, the Sumudu transform
method [1,2,3], the exp(−Φ(η)) -expansion method [4,
5,6], the (G/́G) -expansion method [7,8,9,10,11,12,13],
inverse scattering transform [14], Backlund
transformation [15], Darboux transformation [16],
analytical methods [17], the exp-function method [18],
the Wronskian technique [19], the multiple exp-function
method [20], the Hirota’s bilinear method [21], the Jacobi
elliptic function expansion method [22], the symmetry
algebra method [23], etc.
We know that the mainly notable property of faithfully
integrable equations is the occurrence of exact solitonic
solutions and the existence of one-soliton solution is not
itself a precise property of integrable nonlinear partial
differential equations, many non-integrable equations also
possess simple localized solutions that may be called
one-solitonic. On the other hand,there are integrable
equations only, which posses exact multi-soliton solutions

which describe purely elastic interactions between
individual solitons and the KdV equation is one of these
integrable equations. Furthermore, some models exist in
the literature are completely nonelastic, depending
conditions between the wave vectors and velocities.
Wazwaz [24,25,26,27] investigated multiple soliton
solutions such type of elastic and non-elastic phenomena.

Our aim in this paper is to present an application of the
direct rational exponential scheme to non-linear
Hirota-Ramani equations to be solved one-soliton,
two-soliton and three-soliton solutions by this method for
the first time.

2 Multi-Soliton Solution of Hirota-Ramani
Equation

In this section, we bring to bear the proposed approach to
explain the both elastic and nonelastic interaction clearly
to the simplest non-linear Hirota-Ramani equation [28,29,
30,31,32],

ut − uxxt + aux(1− ut) = 0, (1)

whereu(x, t) is the amplitude of the relevant wave mode
and a 6= 0 is a real constant. This equation was first
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introduced by Hirota and Ramani in [29]. Ji established
some soliton solutions of this equation by Exp-function
method [30]. This equation is completely integrable by
using the inverse scattering method. Equation (1) is
considered in [28,29,30,31,32], where new kind of
solutions were obtained. This equation is commonly used
in different brushwood of physics such as plasma physics,
fluid physics, and quantum field theory. It also describes a
range of wave phenomena in plasma and solid state [29].
For single soliton solution we first consider solution as

u(x, t) = r
k1c1exp(k1x+w1t)

ao + c1exp(k1x+w1t)
. (2)

Inserting (2) and (1), and then equating the coefficients of
different powers of
(exp(k1x + w1t))i,(i = · · · · ·,2,1,0,1,2, · · ··) to zero,
yields a system of algebraic equations abouta0,c1,w1 and
k1 as follows:

a2
0(w1k2

1− ak1,w1) = 0,
a0(ark2

1c1w1−2ak1c1−2w1c1−4k2
1w1c1) = 0,

c2
1(k

2
1w1− ak1−w1) = 0.

Solving the above system of algebraic equations for a ,w
,r 0 1 with the aid Maple 13, we achieve the following
solution set:
a0 = const.,w1 =

ak1
k2
1−1

,r = 6/a, and thus the solution is

u(x, t) =
6k1c1exp(k1(x+

a
k2
1−1

t))

a[a0+ c1exp(k1(x+
a

k2
1−1

t))]
. (3)

and corresponding potential function is read as

v(x, t) =
6k2

1c2
1exp(2k1(x+

a
k2
1−1

t))

a[a0+ c1exp(k1(x+
a

k2
1−1

t))]2

−
6k2

1c1exp(k1(x+ a
k2
1−1

t))

a[a0+ c1exp(k1(x+ a
k2
1−1

t))]
. (4)

To obtain interaction of two soliton solutions we just
suppose

u(x, t) = r
ϒ1

ϒ2
, (5)

where ϒ1 = k1c1exp(ξ1) + k2c2exp(ξ2) + a12(k1 +
k2)c1c2exp(ξ1 + ξ2),ϒ2 = ao + c1exp(ξ1) + c2exp(ξ2) +
a12c1c2exp(ξ1 + ξ2),ξ1 = k1x +w1t,ξ2 = k2x + w2t and
the corresponding potential field readsv =−ux.
Inserting Eq.(5) in the equation Eq. (1) via commercial
software Maple-13, and setting the coefficients of
different power of exponential to zero, we achieve a
system of algebraic equation in terms of
r,k1,k2,w1,w2,c1,c2 and a12. Solving this system of
algebraic equations forr,k1,k2,w1,w2 and a12 with the
software, we achieve the following solution of the

Fig. 1: (a) Profile of the single solitary wave solution Eq. (3) of
H-R equation, (b) Potential field Eq. (4) withk1 = 0.5,a = a0 =
c1 = 1.

unknown parameters.
Now according to the cases in the method we have

Set-1: r = 6
a ,a0 = const.,a12=

(k2
1+k2

2−k1k2−3)(k1−k2)
2

(k2
1+k2

2+k1k2−3)(k1+k2)2
,

w1 =
ak1

k2
1−1

,w2 =
ak2

k2
2−1

then

u(x, t) =
6
a
·
ϒ1

ϒ2
, (6)

where ϒ1 = k1c1exp(ξ1) + k2c2exp(ξ2) + a12(k1 +
k2)c1c2exp(ξ1 + ξ2),ϒ2 = ao + c1exp(ξ1) + c2exp(ξ2) +

a12c1c2exp(ξ1 + ξ2),a12 =
(k2

1+k2
2−k1k2−3)(k1−k2)

2

(k2
1+k2

2+k1k2−3)(k1+k2)2
,ξ1 =

k1(x + ak1
k2
1−1

t),ξ2 = k2(x + ak2
k2
2−1

t) and

a,a0,c1,c2,k1 6=±1,k2 6=±1 are arbitrary constants.
The corresponding potential field readsv =−ux.

From careful analyses of Eq. (6) as Fig. 2 and
corresponding potential energy shows that two soliton
with different wave height (before collision i.e.,t < 0),
interact at (t = 0) and scatter (after collosion i.e.,t > 0)
with different wave height. It is conclude that for all the
ranges of two arbitrary parametersk1,k2 , soliton changes
their shape and size and a non-elastic scatter occurs.
Set-2: r = 6

a ,a0 = a12 = 0,w2 = const.,w1 =
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Fig. 2: (a) Profile of two non-elastic soliton solution Eq. (6) of
H-R equation, (b) Potential field witha = c1 = c2 = 1,a0 = k1 =
2,k2 =−1.5.

w2(k1−k2)
2−w2−a(k1−k2)

(k1−k2)2−1
then

u(x, t) =
6
a
·

k1c1exp(ξ1)+ k2c2exp(ξ2)

c1exp(ξ1)+ c2exp(ξ2)
, (7)

whereξ1 = k1x+ w2(k1−k2)
2−w2−a(k1−k2)

(k1−k2)2−1
t,ξ2 = k2x +w2t

anda,w2,c1,c2,k1,k2 are arbitrary constants.
The corresponding potential field readsv =−ux.

From careful analyses of Eq. (7) as Fig. 3 and
corresponding potential energy shows that two soliton
with different wave height (before collision i.e.,t < 0),
interact at (t = 0) and elastic scatter (after collosion i.e.,
t > 0) with same shape, size of wave. It is conclude that
for all the ranges of two arbitrary parametersk1,k2 ,
soliton remain unchanges their shape and size and a
elastic scatter occurs.

To obtain interaction of three soliton solutions we just
suppose

u(x, t) = r
ϒ1

ϒ2
, (8)

whereϒ1 = k1c1exp(ξ1) + k2c2exp(ξ2) + k3c3exp(ξ3) +
a12(k1 + k2)c1c2exp(ξ1+ ξ2)+ a23(k2 + k3)c2c3exp(ξ2 +
ξ3) + a13(k1 + k3)c1c3exp(ξ1 + ξ3) + a123(k1 + k2 +

Fig. 3: (a) Profile of interaction of two soliton solution Eq. (7)
of H-R equation, (b) Corresponding potential fieldv(x, t) with
k1 = 2,k2 = 1.5,c1 = c2 = a = 1,w2 = 8.

k3)c1c2c3exp(ξ1 + ξ2 + ξ3),ϒ2 =
a0 + c1exp(ξ1) + c2exp(ξ2) + c3exp(ξ3) +
a12c1c2exp(ξ1 + ξ2) + a23c2c3exp(ξ2 + ξ3) +
a13c1c3exp(ξ1 + ξ3) + a123c1c2c3exp(ξ1 + ξ2 + ξ3),ξ1 =
k1x + w1t,ξ2 = k2x + w2t,ξ3 = k3x + w3t and and the
corresponding potential field readsv = −ux. Inserting (8)
in the equation (1) via commercial software Maple-13,
and setting the coefficients of different power of
exponential to zero, we achieve a system of algebraic and
solving the system of algebraic equations via software,
we achieve the following solution of the unknown
parameters. Set-1: r = 6

a ,a0 = const.,a12 =
(k2

1+k2
2−k1k2−3)(k1−k2)

2

(k2
1+k2

2+k1k2−3)(k1+k2)2
,a23 =

(k2
2+k2

3−k2k3−3)(k2−k3)
2

(k2
2+k2

3+k2k3−3)(k2+k3)2
,a13 =

(k2
1+k2

3−k1k3−3)(k1−k3)
2

(k2
1+k2

3+k1k3−3)(k1+k3)2
,a123= a12a23a13,

w1 =
ak1

k2
1−1

,w2 =
ak2

k2
2−1

,w3 =
ak3

k2
3−1

then

u(x, t) =
6
a
·
ϒ1

ϒ2
, (9)

where
ϒ1 = k1c1exp(ξ1)+ k2c2exp(ξ2)+ k3c3exp(ξ3)+a12(k1+
k2)c1c2exp(ξ1 + ξ2) + a23(k2 + k3)c2c3exp(ξ2 + ξ3) +
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a13(k1+ k3)c1c3exp(ξ1+ ξ3)
+ a123(k1 + k2 + k3)c1c2c3exp(ξ1 + ξ2 + ξ3)ϒ ,ϒ2 =
a0 + c1exp(ξ1) + c2exp(ξ2) + c3exp(ξ3) +
a12c1c2exp(ξ1 + ξ2) + a23c2c3exp(ξ2 + ξ3) +
a13c1c3exp(ξ1+ ξ3)+ a123c1c2c3exp(ξ1+ ξ2+ ξ3),a12 =
(k2

1+k2
2−k1k2−3)(k1−k2)

2

(k2
1+k2

2+k1k2−3)(k1+k2)2
,a23 =

(k2
2+k2

3−k2k3−3)(k2−k3)
2

(k2
2+k2

3+k2k3−3)(k2+k3)2
,a13 =

(k2
1+k2

3−k1k3−3)(k1−k3)
2

(k2
1+k2

3+k1k3−3)(k1+k3)2
,

ξ1 = k1(x+
ak1

k2
1−1

t),ξ2 = k2(x+
ak2

k2
2−1

t),ξ3 = k3(x+
ak3

k2
3−1

t)

anda0,c1,c2,c3,k1,k2,k3 are arbitrary constants.
The corresponding potential field readsv =−ux 6=.

Fig. 4: (a) Profile of three solitary wave fusion solution Eq. (9)
of H-R equation, (b) Corresponding potential fieldv(x, t) with
k1 = 1.5,k2 = 2.5,k3 = 3,c1 = c2 = c3 = 1,a = a0 = 2.

From careful analyses of Eq. (9) as Fig. 4 and
corresponding potential energy shows that two soliton
with different wave height (before collision i.e.,t < 0),
interact at (t = 0) and scatter (after collosion i.e.,t > 0)
with different wave height. It is conclude that for all the
ranges of two arbitrary parametersk1,k2,k3 , soliton
changes their shape and size and a non-elastic scatter
occurs.

3 Conclusion

The direct rational exponential scheme offers a simple
and straightforward way to study exact solutions to
NLPDEs. The method has been applied to the
Hirota-Ramani equation and onewave, two-wave and
three-wave solutions have been obtained in this paper.
The 3D profiles of obtained solutions are given to
visualize the shape, size of wave solutions and both
elastic and non-elastic interactions are found.
Overcoming the difficulties of calculations by some
simple techniques via Maple-13 softwere, we finally
construct some new explicit two soliton and three-soliton
solutions for the Hirota-Ramani equation. It is point out
that the procedure is very easy, any examiner can easily
realized the idea of the scheme and can be applied to
obtain the multi-soliton solutions of other nonlinear
partial differential equations.
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