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Abstract: The limb motor dysfunction caused by cerebral injury bringsa heavy burden to the patients family and society. The scientific
rehabilitation training helps a lot in the recovery of limb motor function. The treatment of nerve rehabilitation is a hard work. At
present, it mainly relies on the hand operation of rehabilitation physician to take rehabilitation exercises. It limits the improvement
of rehabilitation. The combination of rehabilitation medicine and robot technology improves the efficiency of rehabilitation training
and ensures the strength of action training, which has created a new way for the research on new rehabilitation technology. With the
interdisciplinary development and integration, the rehabilitation medicine and the rehabilitation robot has been further studied and
explored. The sEMG signal is one of the most important data inthe limb rehabilitation, especially in upper limb rehabilitation robot.
In the development of rehabilitation robot, the extractionof sEMG signal in upper limb rehabilitation is investigateddeeply. The paper
focuses on the status of the extraction of sEMG signal. In theend, the development trend for the future is discussed.
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1 Introduction

With the improvement of social life and the progress
of modern medicine, more and more people have
opportunities to enjoy the life without worry about hunger
or sick. The better life promotes the longevity rising,
which results in the growing number of elderly people.
China is stepping into the aging society with many other
countries in the world. At the same time, with the
accelerated pace of modern life, the number of
hemiplegia people increases because of the cardiovascular
diseases and nervous system diseases. The age of onset
tends to be younger[1].Also, the number of physical
disabled people is increasing, especially those who have
upper limb disorders. Loss of upper limb movement or
hemiplegia greatly affects patients daily life. In the past
years, the rehabilitation largely depends on the physical
treatment [2,3,4,5,6]. This method is time-consuming
and laborious.

Nowadays, the development of robot technology
provides a good opportunity for the research on
rehabilitation training robots. This type of robot is used to
help limb dysfunction patients in completing limbs
motion. So that part of the patient’s movement can be
restored. The using of robotic technology improves the
scientific of the rehabilitation training. Meanwhile,
doctors are free from heavy manual labors and focus on
developing better rehabilitation programs to improve the
rehabilitation efficiency[7]. Some famous rehabilitation
robots are shown in the fig.1 to fig.3.

An important part of rehabilitation training robots is
the sEMG (surface electromyogram) signal. The
electrical activity of the human neuromuscular system
reflects the muscle movement, and it can be obtained by
measuring the sEMG signal at the surface of the skin.
Because it is convenient to be acquired and has no trauma
to the human body, the multi-channel sEMG signal is
used to achieve the myoelectric control of upper limb
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rehabilitation training robot. It has become a research
hotspot in the field of rehabilitation engineering. The
myoelectric control theory based on pattern recognition is
to extract signal characteristics of different upper limb
movements from the multi-channel sEMG signals [8].
Then, the pattern classifier recognizes the target action
mode to realize the motor control of upper limb
rehabilitation robot. For the study of sEMG control based
on pattern recognition, the evaluation index mainly
includes recognition accuracy and computational speed.
The research object of this paper is to take a review which
mainly focuses on the extraction of sEMG signal in upper
limb rehabilitation robot.

Figure. 1 Planar module of MIT-MANUS

Figure. 2 Assisted Rehabilitation and Measurement Guide

Figure. 3 Mirror-imaginable robot-assisted therapy workstation

2 OVERVIEW OF THE SEMG SIGNAL
EXTRACTION

A wide range of research on the rehabilitation
training robot has been carried out. In 1791, Galvani
confirmed that muscle contraction was closely related to
electricity. After that, the research on nerve impulse
conduction emerges in endlessly. In 1849, biologist Du
Bois-Reymond discovered that the electrical activity with
an activation of muscle contraction can be recorded.
Forty-one years later, Marey first recorded this electrical
activity which is electromyogram (EMG)[9]. Then,
people found that human bio electricity changes along
with the physiological function. According to this feature,
electroencephalogram (EEG), electrogastrogram (EGG),
surface electromyogram (sEMG) and other instruments
were invented. Among these instruments,sEMG signal
reflects the activity of nerve muscle in a certain extent,
which has characteristics of noninvasive, real-time and
multi-target measurement. As a result, sEMG technique is
widely used in the field of rehabilitation medicine, sports
science and so on.

At present, the research of sEMG signal can be
divided in two parts. One is to analyze and research the
physiological information of sEMG signal. This research
focuses on finding the relationship between muscle
internal physiological or biochemical processes and the
EMG signal changes. It is mostly applied in diagnosis and
motor function evaluation of neuromuscular diseases,
ergonomic analysis of muscle work, fatigue assessment in
sports science and so on [10]. Another part is to identify
sEMG signal corresponding to each limb movement. The
research findings are widely used in human-computer
interaction, clinical rehabilitation and so on. Also, sEMG
signal needs to be analyzed in each part. Traditional
methods include time domain analysis, frequency domain
analysis and time frequency analysis [11]. Some
characteristics are the classic indexes to evaluate the
fatigue characteristics of muscle movement, such as
average amplitude (AEMG), root mean square (RMS) in
time domain and mean power frequency (MPF), mean
frequency (MF) in frequency domain [12]. In recent
years, the continuous development of analysis technology
makes it possible to explore new methods in nonlinear
analysis of sEMG signal, such as fractal, Lyapunov
exponent, entropy, complexity and so on. These methods
provides new thinking in finding the relationship between
sEMG signal and upper limb motion [13,14,15].

The general process in autonomous training program
based on movement extraction of sEMG signal is divided
into five stages. The first stage is to judge the movement.
Surface electrodes are located on the upper limb to detect
the sEMG signal of movement before the judgment. The
judgment accords to the detected data, and this judgment
system is already set. After the effective movement is
recognized, the sEMG signal can be collected at the same
time. The second stage is to analyze the sEMG signal and
extract the characteristics. This step is mainly about
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extracting the feature vectors by effective analysis method
to realize the data dimension reduction. The third stage is
to create the supervised learning system by pattern
classifier. Pattern classifier should be set at the beginning.
Then, to program the movement reasonably. Next step is
to set the sEMG feature vectors according to the specific
movement as the input data. The movement program is
set to be output data. Last step is to train the supervised
learning system until the classifier is convergence. The
fourth stage is to recognize the pattern. The sEMG feature
vectors are inputted into trained pattern classifier to
recognize the current movement. The fifth stage is to
perform the movement [16,17,18,19,20].

3 THE EXTRACTION OF SEMG SIGNAL

The sEMG signal extraction is a very important part
in the recognition. The selection of characteristic vectoris
directly related to the extraction ability of the recognition
system [21,22,23,24,25]. For the multi-channel sEMG
control of rehabilitation robot, it is a fundamental
problem to find valid sEMG features to characterize
muscle movement. In recent years, the research on the
sEMG signal extraction is developing rapidly. On the
basis of research, variety of methods for the sEMG signal
extraction can be chosen. Then, feature vectors which are
extracted should be analyzed and compared to select the
optimal feature extraction method and the best feature
vector. The methods of feature extraction of sEMG signal
are divided into three categories: frequency-domain
analysis, time-domain analysis and time-frequency
analysis [26,27].

3.1 FREQUENCE-DOMAIN ANALYSIS

In the frequency-domain analysis, the main analysis
method is to carry on the fast Fourier transform (FFT) on
the sEMG signal to obtain the frequency spectrum or
power spectrum which reflects the change of the sEMG
signal in different frequency components. So it could
reflect the change of the sEMG signal in the frequency
dimension[28]. For the quantitative characterized of the
sEMG spectrum or power spectrum, the researchers use
the following two indicators to research, that is, mean
power frequency (MPF) and median frequency (MF). The
calculation can be shown as Equation (1)and Equation
(2). The frequency-domain description of EMG signal is
relatively stable, which directly leads to the stability of
frequency-domain characteristics extracted by the power
spectrum. So, the extracted frequency-domain
characteristics are favorable to the pattern extraction of
EMG signals [29,30,31].

MPF =

∫ ∞
0 f P ( f )d f
∫ ∞

0 P( f )d f
(1)

∫ MF

0
P( f )d f =

∫ ∞

MF
P( f )d f =

1
2

∫ ∞

0
P( f )d f (2)

3.2 TIME-DOMAIN ANALYSIS

In time-domain methods, the sEMG signal is recognized
as the time function which extracts its statistical
characteristics for the sEMG extraction. The
characteristics include the average value (AV), the
integral EMG (iEMG), the root mean square (RMS),
absolute value integration (IAV), zero crossing point
(ZC), variance (VAR), Willson amplitude (WAMP) and
so on. Time-domain analysis parameters are often used in
reflecting real-time and no injuries muscle activity states,
which has good real-time performance. Each value has its
own characteristics [32,33,34,35].

The separability of average value (AV) is not strong.
Because the EMG signal approximates a mean zero
random signal and the mean differences of each channel
is not obvious in all kinds of movements.

The classes distance between absolute value
integration (IAV) is very large. It has the considerable
separability and small standard deviation, which indicates
that the distance is larger within classes and clustering is
better. The absolute value integration is the sum of the
area under the sEMG signal curve in the unit time, which
reflects the changes of the sEMG signal over time.

The zero crossing point (ZC) is the number of positive
and negative crossings of zero, which takes the
distribution of different data points into account. The zero
crossing point reflects the frequency of the sEMG signal
which has small differences in characteristics. This shows
that the short time data sample has a very small distance
between the numbers of zero crossing point and
clustering is poor.

The IEMG and RMS are the most common, which
reflects the variation of muscle electrical signal amplitude
in the time dimension. The root mean square (RMS)
directly relates to the electric power of the sEMG signal,
which depends on the intrinsic connection between
muscle load factor and physiological and biochemical
process. So, the root mean square (RMS) has more direct
physical meaning. The calculation of IEMG and RMS are
as Equation (3)and Equation (4).

iEMG =
∫ t+T

t
|EMG(t)|dt (3)

RMS =

√

∫ t+T
t EMG2 (t)dt

T
(4)

3.3 TIME-FREQUENCE ANALYSIS

The traditional Fourier transform only describes the
global frequency characteristics of the signal, and the
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frequency information of the signal is not available in any
time-domain. The time-frequency domain analysis
method can be used to analyze the time domain and
frequency domain. The time-frequency analysis method
of the EMG signal is mainly concerned with the
short-term Fourier transform, Wigner-Ville transform and
wavelet transform [36,37,38].

3.3.1 SHORT-TERM FOURIER TRANSFORM

The short-term Fourier transform is put forward in 1946
by Gabor. The basic idea of the transformation is that the
non-stationary signal is regarded as the composition of a
series of short time stationary signals in the framework of
the Fourier transform. The character of short time can be
obtained by adding the window in time domain [39,40].

The short-term Fourier transform is defined as follows.
When the signal isf (t) ∈ L2 (R), the short-term Fourier
transform isG f (ϖ ,τ) =

∫ +∞
−∞ f (t)g(t − τ)e− jϖtdt.g(t) is

the window function.
Cai Liyu et al. analyze the sEMG signal using the

short-term Fourier transform, and extract feature vectors
by singular value decomposition to carry out the pattern
recognition of four hand motions[41].

3.3.2 WIGNER-VILLE TRANSFORM

Wigner-Ville distribution is the distribution of signal
energy in time and frequency. It has many advantages. For
example, it has the identity and the inversion property in
the definition domain, which makes it has the potential to
deal with the non-stationary signal [42].

The definition of Wigner-Ville transform is as

follows.WV (t,ω) =
∫ ∞
−∞ s

(

t +
τ
2

)

· s∗
(

t − τ
2

)

e− jωtdτ.

s(t)ands∗ (t)are the conjugate complex number.t refers to
time. f refers to frequency.τ refers to time delay.The
disadvantage of Wigner-Ville transform is that the
transformation is nonlinear, so when the signal
components are much, the different components is easy to
have the cross terms which causes the false image.

3.3.3 WAVELET TRANSFORM

The wavelet transform is put forward in the process of
seismic data analysis by Morlet J. and Grossmann A in
1984. In the analysis of the seismic wave, it is found that
the traditional Fourier transform is difficult to meet the
requirements, so as to introduce the concept of wavelet
[43,44].

When the signal isf (t) ∈ L2 (R),the wavelet
isW f (a,b) = 1√

|a|
∫+∞
−∞ f (t)ψ

(

t−b
a

)

dt.A very important

part of this formula isψa,b (t)=
1√
|a|

ψ
(

t−b
a

)

. That is the

generated continuous wavelet ofψ (t).

In the practical application, the discretization of signal
is needed. In the discretization, the equation changes to
(5).

ψ j,k (t) = a
− j
2

0 ψ
(

t−ka j
0b0

a j
0

)

= a
− j
2

0 ψ
(

a− j
0 t − kb0

)

a = a j
0,b = ka j

0b0

(5)

ψ j,k (t) = a
− j
2

0 ψ
(

2− jt − k
)

,a0 = 2,b0 = 1 (6)

W f ( j,k) =
∫ +∞

−∞
f (t)ψ j,k (t)dt (7)

The (6) is discrete dyadic wavelet function. The
corresponding discrete wavelet transform coefficients are
shown in (7).

The wavelet theory is based on the Fourier analysis
and it is the development of Fourier transform. The
traditional Fourier transform could not reflect the local
characteristics of signal, but the wavelet transform
can[45]. The wavelet has local characteristics in both
time-domain and frequency domain. The orthogonal
function system in wavelet analysis is used to generate the
wavelet, which is based on the different shifts and scale
changes. The wavelet analysis is like a mathematical
microscope, which has the function of amplifying,
reducing and translating. The function is equivalent to a
set of equal bandwidth and central frequency band pass
filter. Wavelet analysis uses short window in the high
frequency, and the wide window is the low frequency,
which provides a way for the real-time processing of
sEMG signal[46,47,48,49,50].

4 CONCLUSION

The main extraction methods of the sEMG signal
have their own characteristics, and it should be selected
according to the actual situation . Time-domain method is
applied to sEMG signal analysis from the beginning, but
it is not stable and easy to be interfered. Then, the
stability of the sEMG signal spectrum makes the
frequency-domain method become the first choice in
sEMG signal processing technology. As the representative
of the time-frequency analysis method, wavelet transform
combines the advantages of the time-domain and
frequency-domain, which is quite potential in the EMG
signal analysis. It becomes more and more popular. The
complexity of EMG signal determines that the singular
method may not make full use of the information in the
research. The rapid development of computer technology
and information processing technology provides the
possibility for the comprehensive application to deal with
the sEMG signal processing and lay the foundation for
the further research. Also, it provides good opportunity to
develop the upper limb rehabilitation robots.
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