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Abstract: The point at issue of this paper is to deliberate point and interval estimations of the stress - strength function,R. The
maximum likelihood, Bayes, and parametric bootstrap estimators are obtained as point estimations ofR. Based on the maximum
likelihood estimate (MLE) ofR, the distribution of R is determined and hence its confidence interval (CI) is estimated. The variance
of R̂ has been got in a closed form. Furthermore, four bootstrap CIs of R have been obtained. The results of Bayes estimation are
computed under the squared error loss (SEL) and the LINEX loss functions. The acceptance rejection principle algorithmis applied to
obtain the credible CI ofR. Finally, two explanatory examples are introduced to explicate the precision of the obtained estimators .
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1 Introduction

The stress strength model has been known in the
mechanical as follows, the stress is the mechanical loads
and forces, while the strength is the physical effort that
can resist the loads to perform its required function.
When the stress exceeds the strength, the failure occurs. If
X represents the strength andY represents the stress, the
main theme of statisticians is to estimate the probability
of failure or reliability of this model. Since the reliability
concept is general, so the stress strength model can be
applied in different fields outside of the scope of
mechanics, for more details see [1]. The WG distribution
is appropriate for phenomenon of loss of signals in
telecommunications which is called fading when
multipath is superimposed on shadowing.

A random variableT is said to have WG distribution,
with scale parameterα and two shape parametersθ and
β , if its probability density function (pdf) is given by:

f (t;α,θ ,β ) =
θβ
α

( t
α

)θ−1
(

1+
( t

α

)θ)−(β+1)

,

t > 0;α,θ ,β > 0, (1)

and the cumulative distribution function (CDF) is

F(t) = 1−
(

1+
( t

α

)θ)−β
, t > 0;α,θ ,β > 0. (2)

For more detials about WG distribution and its
properties see, [2,3,4]. Let X ∼ WG(α,θ ,β1) andY ∼
WG(α,θ ,β2) be independent random variables and

R= P(Y < X) =
∫ ∞

0

∫ x

0
f (x)g(y)dydx=

β2

β1+β2
, (3)

where f (x) andg(y) are the pdf of the strenth variableX
and the stress variableY respectively. The data or
observations are assumed to be progressively Type-II
censored (PROG-II-C) from the two WG distributions
with two commonly known parametersα,θ and different
shape parametersβ1 andβ2. The PROG-II-C scheme can
be described as follows. First, the experimenter placesn
independent and identical units on the life test. When the
first failure occurs, say at timet(1), r1 of the surviving
units are randomly selected and removed from the test.
When the second failure occurs at timet(2), r2 of the
surviving units are randomly selected and removed from
the test. The test is continued and when the(m− 1)th
failure occurs at timet(m−1), rm−1 of the surviving units
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are randomly selected and removed from the test. This
experiment terminates when them th failure occurs at
time tm, and the remaining surviving units
rm = n− (r1 + r2 + ...+ rm−1)−m are all removed from
the test. For more information on progressive censoring,
we refer the reader to [5,6,7,8,9]. The estimation ofR
has been studied by several authors, based on different
populations and various observations, see [1,10,11,12].
The remainder of this paper is organized as follows:
Section 2 gives the MLE of R in addition to the
corresponding CI. Section 3 concerns with four types of
bootstrap confidence intervals. In Section 4 the Bayesian
estimation of R is computed under the SEL and the
LINEX loss functions and the credible CI ofR is also
obtained, using the acceptance rejection principle
algorithm. Two illustrative examples, one of them is
simulated and the other represents a real life data, are
developed to explain the theoretical results in Section 5.
Eventually, conclusion is inserted in Section 6.

2 Maximum Likelihood Estimation

SupposeX = (X1:M,X2:M, ...,Xm:M) is a progressively
Type II censored sample from WG(α,θ ,β1) with
censored scheme r = (r1, r2, ..., rm) and Y
= (Y1:N,Y2:N, ...,Yn:N) is a progressively Type II censored
sample from WG(α,θ ,β2) with censored scheme
ŕ = (ŕ1, ŕ2, ..., ŕn). Hence, the likelihood function ofβ1and
β2 is given by

L
(

β1,β2|α,θ ,x,,,y
)

= c1

m

∏
i=1

{ f (xi) [1−F (xi)]
r i}×

c2

n

∏
j=1

{

g(y j) [1−G(y j)]
ŕ j
}

, (4)

where

c1 = M (M−1− r1) (M−2− r1− r2) ...×
(M−m+1− r1...− rm−1) ,

c2 = N (N−1− ŕ1)(N−2− ŕ1− ŕ2) ...×
(N−n+1− ŕ1...− ŕn−1) ,

for more detials, see [5].
Then L

(

β1,β2|α,θ ,x,,,y
)

or L(β1,β2), for notation
simplicity, can be written as follows:

L(β1,β2) = c1c2β m
1 β n

2

(

θ
α

)m+n

×
m

∏
i=1

{

( xi
α
)θ−1

(

1+
(xi

α
)θ
)−(β1r i+β1+1)

}

×

n

∏
j=1

{

( yj
α
)θ−1

(

1+
(yj

α
)θ
)−(β2ŕ j+β2+1)

}

. (5)

The log-likelihood function may then be written as

lnL (β1,β2) = lnc1+ lnc2+(m+n) ln

(

θ
α

)

+mlnβ1+nlnβ2

+(θ −1)
m

∑
i=1

ln
(xi

α

)

+(θ −1)
n

∑
j=1

ln
(y j

α

)

−
m

∑
i=1

(β1r i +β1+1) ln

(

1+
( xi

α

)θ
)

−

n

∑
j=1

(

β2ŕ j +β2+1
)

ln

(

1+
(y j

α

)θ
)

,

thus we have the likelihood equations forβ1 and β2
respectively, as

∂ lnL
∂β1

=
m
β1

−
m

∑
i=1

(r i +1) ln

(

1+
(xi

α

)θ
)

= 0,

∂ lnL
∂β2

=
n
β2

−
n

∑
j=1

(ŕ j +1) ln

(

1+
(y j

α

)θ
)

= 0.

Then

β̂1 =
m

∑m
i=1 (r i +1) ln

(

1+
(xi

α
)θ
) ,

β̂2 =
n

∑n
j=1(ŕ j +1) ln

(

1+
(yj

α
)θ
) ,

and the MLE ofR, sayR̂ , can be written as

R̂=
β̂2

β̂1+ β̂2
. (6)

To find the PDF ofR̂, the following lemma is needed
Lemma 2.1. If the random variable

X ∼WG(α,θ ,β1),thenT = Ln
(

1+
(

X
α
)θ
)

∼ Exp(β1).

Proof.The proof is omitted.
Also, the following transformation can be considered:

S1 = MT1,

S2 = (M−R1−1)(T2−T1) ,

...

Sm = (M−R1...−Rm−1− (m−1))(Tm−Tm−1) .

[5] has proved thatSi ’s are independent and
identically distributed exponential random variables,
i.e.Si ∼ Exp(β1), i = 1, ...,m. Furthermore,
m

∑
i=1

Si =
m

∑
i=1

(Ri +1)Ti

=
m

∑
i=1

(Ri +1)Ln

(

1+

(

Xi

α

)θ
)

=U.

Accordingly, U has a gamma distribution with the
shape parameterm and the scale parameterβ1, then

β̂1 =
m
U

andβ̂2 =
n
V
,
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where V has a gamma distribution with the shape
parametern and the scale parameterβ2.

Hence,

R̂=
1

1+(m/n)(V/U)
=

1
1+(β2/β1)Z

,

wherZ =mβ1V/nβ2U has a F distribution with degrees of
freedom 2n and 2m,, taking into account the independence
of the two gamma random variablesU andV.

The pdf ofR̂can be obtained as

fR̂(r) =

(

n
m

)n

β (m,n)

(

β1

β2

)n

×

(1− r)n−1

rn+1
(

1+ nβ1
mβ2

(

1−r
r

)

)m+n ,0< r < 1. (7)

To calculate the variance of̂R, The expectation and
the second moment of̂R can be obtained, respectively, as
follows:

E
[

R̂
]

=
mΓ (m+n)

Γ (m+n+1)

(m
n

)m
(

β2

β1

)m

×

2F1

(

m+n,m+1;m+n+1;1−mβ2

nβ1

)

, (8)

E
[

R̂2] =
m(m+1)Γ (m+n)

Γ (m+n+2)

(m
n

)m
(

β2

β1

)m

×

2F1

(

m+n,m+2;m+n+2;1−mβ2

nβ1

)

, (9)

where2F1 is the hypergeometric function given by,

2F1(a,b,c,w) =
Γ (c)

Γ (b)Γ (c−b)
×

∫ 1

0
tb−1(1− t)c−b−1 (1− tw)−adt,

cf. [13], p.110.
Hence, the variance of̂R can be calculated.
Since

1−R
R

× R̂

1− R̂
=

β1

β2
× mV

nU
= Z ∼ F(2n,2m), (10)

the 100(1− γ)% confidence interval ofR is

[

1− R̂
(

1− R̂
)

+ R̂ Fγ
2
(2n,2m)

,
1− R̂

(

1− R̂
)

+ R̂ F1− γ
2
(2n,2m)

]

.

(11)
The following is the interval estimation forRbased on

bootstrap confidence intervals.

3 Bootstrap confidence intervals

The confidence intervals are proposed based on the
parameteric bootstrap methods where the parametric
model for the data is known asf (x;α,θ ,β1) and
g
(

y;α,θ ,β2
)

up to the unknown parameters(β1,β2) .
The bootstraping data are sampled from

f
(

x;α,θ , β̂1

)

and g
(

y;α,θ , β̂2

)

,where
(

β̂1, β̂2

)

the

MLEs from the original data. A lot of papers dealt only
with percentile bootstrap method ( Boot-p) based on the
idea of Efron [14] and bootstrap-t method ( Boot-t) based
on the idea of Hall [15], such as, [7,16] and among
others. In this article, additional two types of Bootstrap
CIs, Boot-BC and Boot-BCa based on the idea of
DiCiccio and Efron [17], are discussed. The following
algorithm is followed to obtain bootstraping samples for
the four methods:

(1)Based on the original PROG-II-C samples,
X1:M < X2:M < ... < Xm:M and
Y1:N <Y2:N < ... <Yn:N,computêβ1, β̂2 andR̂ from (6).

(2)Use β̂1and β̂2 to generate a bootstrap samples,X∗

≡ X∗
1:M < X∗

2:M < ... < X∗
m:M and

Y∗ ≡ Y∗
1:N < Y∗

2:N < ... < Y∗
n:N,respectively, with the

same values ofr i , i = 1,2, ...,m and ´r j , j = 1,2, ...,n
using the algorithm presented in [18].

(3)As in Step1 based onX∗andY∗ compute the bootstrap
data estimates of̂β1, β̂2 andR̂sayβ̂ ∗

1 , β̂ ∗
2 andR̂∗ .

(4)Repeat the previous steps 2 and 3B times and arrange
all R̂∗ in ascending order to obtain the bootstrap sample
(

R̂∗[1], R̂∗[2], ..., R̂∗[B]
)

.

3.1 Bootstrap-p confidence interval

Let Φ(z) = P(R̂∗ ≤ z) be the cumulative distribution
function of R̂∗. Define R̂∗

Boot = Φ−1(z) for given z. The
approximate bootstrap-p 100(1− ζ )% confidence interval
of R̂∗ is given by

[

R̂∗
Boot(

ζ
2 ) , R̂∗

Boot(1− ζ
2 )
]

.

3.2 Bootstrap-t confidence inteval

Consider the order statistics
µ∗[1] < µ∗[2] < ... < µ∗[B] where

µ∗[p] =

√
B(R̂∗[ j ]− R̂)
√

Var
(

R̂∗[ j ])
, j = 1,2, ...,B.

where Var
(

R̂∗[ j ]
)

is obtained using (8) and (9). Let

W(z) = P(µ∗ < z) , be the cumulative distribution
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function ofµ∗.
For a givenz, define

R̂∗
Boot−t = R̂+B

−1
2

√

Var
(

R̂∗)W−1 (z) .

Thus, the approximate bootstrap-t
100(1− ζ )% confidence interval of̂R∗ is given by

[

R̂∗
Boot−t(

ζ
2 ) , R̂∗

Boot−t(1− ζ
2 )
]

.

3.3 Bootstrap bias corrected confidence interval

Let Φ(z) = ζ be the standard normal cumulative
distribution function, with zζ = Φ−1(ζ ). Define the
bias-correction constantz◦ from the following probability
P(R̂∗ ≤ R̂) = G(z◦) where G(.) is the CDF of the
bootstrap distribution and

P(R̂∗ ≤ R̂) =
#
{

R̂∗[ j ] < R̂
}

B
, j = 1,2, ...,B.

thus

z◦ = Φ−1
(

#
{

R̂∗[ j ] < R̂
}

B

)

, j = 1,2, ...,B. (12)

For a givenζ , and the bias-correction constantz◦,then

R̂∗
Boot−BC = G−1[Φ

(

2z◦+ zζ
)]

. (13)

Thus, the approximate bootstrap-BC
100(1− ζ )% confidence interval of̂R∗

Boot−BC is given by
[

R̂∗
Boot−BC(

ζ
2 ) , R̂∗

Boot−BC(1−
ζ
2 )
]

.

3.4 Bootstrap bias corrected accelerated
confidence interval

Let Φ(z) = ζ be the standard normal cumulative
distribution function, with zζ = Φ−1(ζ ) and the
bias-correction constantz◦ which is defined in (12). Then

R̂∗
Boot−BCa= G−1

[

Φ
(

z◦+
z◦+ zζ

1−a(z◦+ zζ )

)]

, (14)

wherea is called the acceleration factor which is estimated
by a simple jack-knife method. Letxi andy

j
represent the

original data with theith point omitted and thejth point
omitted, sayx2 = x1;M < x3;M < ... < xm:M, ,y

2
= y1;N <

y3;N < ... < yn:N. Assume thatΩ̂ i
1 = Ω̂1(xi) Ω̂ j

2 = Ω̂2(y j
)

be the MLE estimate of,Ω1 ≡ β1 andΩ2 ≡ β2,constructed
from this data. LetΩ̄1 andΩ̄2 be the mean of thêΩ i

1’s and
Ω̂ j

2’s, respectively . Thena= a1+a2 is estimated by

a1 =
∑m

i=1

(

Ω̄1−Ω̂ i,
1

)3

6

[

∑m
i=1

(

Ω̄1−Ω̂ i,
1

)2
]

3
2

anda2 =
∑n

i=1

(

Ω̄2−Ω̂ j
2

)3

6

[

∑n
j=1

(

Ω̄2−Ω̂ j
2

)2
]

3
2
.

For more details see [19] and [20]. If a1 = a2 = 0,
Equation (14) reduces to equation (13). Then, the
approximate bootstrap-BCa 100(1 − ζ )% confidence
interval ofR̂∗

Boot−BCa is given by

[

R̂∗
Boot−BCa(

ζ
2 ) , R̂∗

Boot−BCa(1−
ζ
2 )
]

.

4 Bayesian Estimation ofR

The Bayesian approach deals with the parameters as
random, and uncertainties on the parameters are described
by a joint prior distribution, which is developed before the
failure data are collected, and is based on historical data,
experience with similar products, design specifications,
and experts’ opinions. The ability of incorporating prior
knowledge in the analysis makes the Bayesian approach
very helpful in the reliability analysis because one of the
main challenges associated with the reliability analysis is
the limited availability of data.

Let the prior knowledge of parametersβ1 and,β2 be
described by the following independent prior distributions:

π (β1) =
λ µ1

1
Γ (µ1)

β µ1−1
1 e−β1λ1, β1,µ1,λ1 > 0,

π (β2) =
λ µ2

2
Γ (µ2)

β µ2−1
2 e−β2λ2, β2,µ2,λ2 > 0















. (15)

Hence, the joint prior of the parametersβ1 and,β2 can
be written as follow

π (β1,β2) =
λ µ1

1

Γ (µ1)

λ µ2
2

Γ (µ2)
β µ1−1

1 β µ2−1
2 e−(β1λ1+β2λ2)

(16)
The joint posterior density function ofβ1 and,β2,

denoted byπ∗(β1,β2|α,θ ,x,,,y) can be written as

π∗(β1,β2|α,θ ,x,,,y) =
L
(

β1,β2|α,θ ,x,,,y
)

×π (β1,β2)
∫ ∞

0

∫ ∞
0 L
(

β1,β2|α,θ ,x,,,y
)

×π (β1,β2)dβ1dβ2
.

(17)

Then

π∗(β1,β2|α,θ ,x,,,y) ∝ β n+µ1−1
1 β m+µ2−1

2 e−(β1λ1+β2λ2)×
m

∏
i=1

(

1+
(xi

α

)θ
)−β1(r i+1)

×
n

∏
j=1

(

1+
(y j

α

)θ
)−β2(ŕ j+1)

.(18)

The conditional posterior densities ofβ1 andβ2 can be
given as

π∗
1(β1|β2,α,θ ,x,,,y)≡

gamma

[

m+ µ1,λ1+
m

∑
i=1

{

(r i +1) ln
(

1+
(xi

α
)θ
)}

]

,

(19)
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π∗
2(β2|β1,α,θ ,x,,,y)≡

gamma

[

n+ µ2,λ2+
n

∑
j=1

{

(ŕ j +1) ln
(

1+
(yj

α
)θ
)}

]

.

(20)

Applying transformation techniques, the posterior
PDF ofR is

fR|Data(r) = K ×
(

1− r
r

)m+µ1

×
(

1+
Φ1(r i ,λ1,xi)

Φ2(ŕ j ,λ2,y j)

(

1− r
r

))−(m+n+µ1+µ2)

,0< r < 1,

(21)

where

Φ1(r i ,λ1,xi) = λ1+
m

∑
i=1

{

(r i +1) ln
(

1+
(xi

α
)θ
)}

,

Φ2(ŕ j ,λ2,y j) = λ2+
n

∑
j=1

{

(ŕ j +1) ln
(

1+
(yj

α
)θ
)}

and

K =
1

β (m+ µ1,n+ µ2)

(

Φ1(r i ,λ1,xi)

Φ2(ŕ j ,λ2,y j)

)m+µ1

.

The Bayes estimate ofR using the squared error loss
function, sayR̂BSEL, can be obtained by calculating the
posterior mean ofR as follows

R̂BSEL=
∫ 1

0
r fR|Data(r)dr (22)

= K
∫ 1

0
r

(

1− r
r

)m+µ1

×
(

1+
Φ1(r i ,λ1,xi)

Φ2(ŕ j ,λ2,y j)

(

1− r
r

))−(m+n+µ1+µ2)

dr

=

(

Φ2(ŕ j ,λ2,y j)

Φ1(r i ,λ1,xi)

)n+µ2 (m+ µ1)(n+ µ2)(n+ µ2+1)
λ (λ +1)(λ +2)

×

2F1

(

λ ,n+ µ2+2;λ +3;1− Φ2(ŕ j ,λ2,y j)

Φ1(r i ,λ1,xi)

)

, (23)

whereλ = m+n+ µ1+ µ2. The Bayes estimate ofR
using the LINEX loss function, saŷRBLN, can be obtained
by calculating the posterior median ofR,from the
following equation

∫ R̂BLN

0
fR|Data(r)dr = 0.5. (24)

Then,R̂BLN is the solution offR|Data(R̂BLN) = 0, after
differentiation the both sides of Equation(24) with respect
to R̂BLN. The mode of the posterior distribution can be
obtained numerically by maximizing the PDF ofR.

In some cases, it is not easy to obtain the estmation of
R from (23) and (24), so the acceptance rejection
principle can be used to obtain the Bayesian point
estimates ofR and also to obtain the corresponding
credible interval. The acceptance rejection principle is a
simulation procedure and used to generate samples from
the posterior distribution. The algorithm of this procedure
is introduced and proven by [21] and the steps for
Bayesian estimation ofRare described in [1]

5 Applications

In this section, two examples are introduced one of them
is simulated and the other is a real data set. At first the
following lemma is introduced to make the corresponding
known parameters in two populations are the same, in case
of application our model to a real life data.

Lemma 2. If the random variable
T ∼WG(α,θ ,β ),thenY =

(

T
α
)θ ∼WG(1,1,β ).

Proof.The proof is easy to obtain.
Example 1.(Simulated data)
In this example, two PROG-II-C samples from WG

distributions are generated. The algorithm of generation is
performed according to the algorithm described in
Balakrishnan and Sandhu [18] as the following:

(1)Specify the values ofM,N,m andn.
(2)Specify the values of r i , i = 1,2, ...,m and

ŕ j , j = 1,2, ...,n.
(3)Specify the values of the parametersα,θ ,β1 andβ2.
(4)Generate a random sample with sizeM and censoring

sizem from the random variableX , the set of data can
be considered as:

X1;m,M < X2;m,M < ... < Xm;m,M.

(5)Generate a random sample with sizeN and censoring
sizen from the random variableY , the set of data can
be considered as:

y1;n,N < y2;n,N < ... < yn;n,N.

(6)Use the two preceding PROG-II-C samples to compute
the MLEs of the stress strength parameter.

(6)Compute the 95% bootstrap conidence intervals forR,
using the steps described in Section 3.

(7)Compute the Baye estimates of the model parameters
based on acceptance rejection principle.

A simulation data for two PROG-II-C samples from
WG distributions with true valuesα = 6, θ = 5.85 ,
β1 = 5 and β2 = 3, so R = 0.375. Using progressive
censoring schemes M = 30, m = 10 with
r = (1,0,0,1,0,0,1,0,1,16) and N = 26,n = 10 with
ŕ = (0,1,1,0,1,0,1,1,0,11), data have been
approximated to two decimal places and they have been
presented in Table 1 and Table 2.
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Table 1: Simulated PROG-II-C strength data
1.6505 2.4991 3.1526 3.6722 3.9882
2.4604 2.8343 3.5303 3.6857 4.0938

Table 2: Simulated PROG-II-C stress data
1.9338 2.9807 3.6396 3.6823 4.0124
2.6914 3.5425 3.6490 3.8957 4.3085

Table 3: Different point estimates forR
(.)ML (.)Boot−p (.)Boot−t (.)BSEL (.)BLN
0.494 0.494 0.482 0.502 0.482

Table 4: 95% confidence intervals forR.

Method R Length
ACI [0.2824,0.7050] 0.42258

Boot -p CI [0.2679,0.6891] 0.42116
Boot -t CI [0.4807,0.4840] 0.00328

Boot-BC CI [0.2679,0.6886] 0.42067
Boot-BCa CI [0.1888,0.6660] 0.47717

CRI [0.0297,0.9788] 0.94911

The following figure shows the posterior density
function of R, where the prior knowledge parameters are
µ1 = µ2 = λ1 = λ2 = 0.001.

Fig. 1: The posterior density function of R

Example 2.(Real-life data)
The data of Xia et al. [22] can be used as application

of stress strength model under PROG-II-C, where these
data represent the ordered breaking strengths of jute fibre
at gauge lengths 10 mm and 20 mm.

Table 5: Values ofα,θ ,β ,K-S and p - values
Data set 1 2

α 53318.4 103809.0
θ 1.62514 1.36076
β 2741.11 2128.26

K-S 0.1058 0.1490
p - value 0.8553 0.4730

Table 6: Transformed Data Set 1.
0.01 0.065 0.126 0.25 0.517 0.86
0.012 0.073 0.172 0.29 0.56 0.88
0.038 0.082 0.18 0.319 0.66 0.88
0.043 0.094 0.21 0.329 0.75 0.93
0.052 0.099 0.23 0.384 0.82 1.04.

Table 7: Transformed Data Set 2.
0.02 0.078 0.16 0.33 0.795 1.031
0.03 0.094 0.18 0.43 0.86 1.085
0.029 0.097 0.19 0.48 0.86 1.13
0.05 0.101 0.20 0.553 0.87 1.24
0.062 0.13 0.27 0.621 0.889 1.25.

Table 8: Values ofα,θ ,β ,K-S and p - values to transformed data
Sets

Data set 1 2
α 1.0000 1.0000
θ 1.0000 1.0000
β 2741.11 2128.26

K-S 0.1058 0.1490
p - value 0.8553 0.4730

Table 5. shows the Kolmogorov-Smirnov (KS)
distance between the empirical and the fitted distribution
functions for two data sets separately. Also Mathematica
9 program is used to find the distribution parameters in
two cases.

Since the p-value is quite high in two cases, it is
evident to accept the null hypothesis that the data is
coming from the WG distribution. From Table 5, it is
noted that the values ofα andθ are different in the data
sets, so Lemma 2 can be used.

Where the data in Table 6 and Table 7 are multiplied by
10−3. From the transformed data sets, the following results
have been obtained in Table 8.

Using progressive censoring schemesM = 30, m= 15
with r = (1,0,0,1,0,0,1,0,1,0,0,0,0,0,11) and
N = 30,n = 10 with ŕ = (2,2,2,0,1,0,2,1,0,10) , data
have been presented in Table 9.

The results about the statistical inference ofRare given
in Table 10 and Table 11.

Figure 2 shows the posterior density function ofR, where
the prior knowledge parameters are

µ1 = µ2 = λ1 = λ2 = 0.

c© 2017 NSP
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Table 9: Generated PROG-II-C data
X1;15,30 < X2;15,30 < ... < X15;15,30y1;10,30 < y2;10,30 < ... < y10;10,30
0.00001 0.000065 0.000178 0.00002 0.000078
0.000012 0.000073 0.00021 0.000027 0.000097
0.000038 0.000082 0.000225 0.000029 0.000101
0.000043 0.000094 0.00025 0.00005 0.000132
0.000052 0.000099 0.000288 0.000062 0.000157

Table 10: Different point estimates forR .

(.)ML (.)Boot−p (.)Boot−t (.)BSEL (.)BLN
0.545 0.552 0.534 0.486 0.464

Table 11: 95% confidence intervals forR.

Method R Length
ACI [0.3470,0.7438] 0.396776

Boot -p CI [0.3433,0.7463] 0.403022
Boot -t CI [0.5335,0.5364] 0.002880

Boot-BC CI [0.3385,0.7364] 0.397832
Boot-BCa CI [0.2994,0.7161] 0.416684

CRI [0.0286,0.9829] 0.954277

Fig. 2: The posterior density function of R

6 Conclusion

In this paper, the estimation of the stress – strength
function for two WG distributions under progressive
censoring has been studied. The two WG distributions are
assumed to be have commonly known parameters, one of
them shape parameter and the other is scale,while the
third shape parameter is different in the both two
distributions. The MLE of the stress – strength parameter
is calculated. Four types of bootstrap CIs are used to
obtain 95% CIs forR. The acceptance rejection principle
is used to obtain the Bayes estimates ofR and the
corresponding credible interval. Two applications are
given to illustrate the proposed methods.
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