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Abstract: The point at issue of this paper is to deliberate point andriai estimations of the stress - strength functiBn;The
maximum likelihood, Bayes, and parametric bootstrap edtins are obtained as point estimations Rf Based on the maximum
likelihood estimate (MLE) oR, the distribution of R is determined and hence its confidence interval (Cl) is eg@oh The variance

of R has been got in a closed form. Furthermore, four bootstrapoER have been obtained. The results of Bayes estimation are
computed under the squared error loss (SEL) and the LINEXflosctions. The acceptance rejection principle algorithapplied to
obtain the credible Cl oR. Finally, two explanatory examples are introduced to exiche precision of the obtained estimators .

Keywords: Stress-strength model, progressive type Il censoringtstrap bias corrected confidence interval (Boot-BC), Boajs
accelerated bias corrected confidence interval (Boot-BBajesian estimation.

1 Introduction and the cumulative distribution function (CDF) is

AN

The stress strength model has been known in thé (H)=1— (1+ (5) ) t>0,0,6,>0. (2

mechanical as follows, the stress is the mechanical loads

and forces, while the strength is the physical effort that For more detials about WG distribution and its

can resist the loads to perform its required function.properties see2[3,4]. Let X ~ WG(a,0,1) andY ~

When the stress exceeds the strength, the failure occurs. WG(a, 8, 32) be independent random variables and

X represents the strength a¥idepresents the stress, the y 8

main theme of statisticians is to estimate the probability o [ _ 2

of failure or reliability of this model. Since the relialtyi R=P(¥ <X)= ./o ./o F(x)g(y)dydx= B+ B’ ®)

concept is general, so the stress strength model can be

applied in different fields outside of the scope of wheref (x) andg(y) are the pdf of the strenth variab¥e

mechanics, for more details sed.[The WG distribution and the stress variabl¥ respectively. The data or

is appropriate for phenomenon of loss of signals inobservations are assumed to be progressively Type-ll

telecommunications which is called fading when censored (PROG-II-C) from the two WG distributions

multipath is superimposed on shadowing. with two commonly known parameters 6 and different

A random variabldl is said to have WG distribution, shape parametefl andf,. The PROG-II-C scheme can

with scale parametar and two shape parametefsand be described as follows. First, the experimenter places

B, if its probability density function (pdf) is given by: independent and identical units on the life test. When the
first failure occurs, say at timey),r1 of the surviving
units are randomly selected and) removed from the test.

6B /ty0-1 t 6\ (A1) Whe_n. the s_econd failure occurs at timg),r, of the
f(t;a,0,B) = — (_) <1+ (_) ) , surviving units are randomly selected and removed from
a \a a the test. The test is continued and when the— 1)th
t> 0;a,0,8 >0, (1) failure occurs at timéy,_1),'m-1 of the surviving units
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are randomly selected and removed from the test. This The log-likelihood function may then be written as
experiment terminates when tme th failure occurs at )

time tn, and the remaining surviving units INL(B1,B2) = Inci+Incz+(m+ n)ln( )+m|nﬁl+n|nﬁz
rm=nN—(ry+r2+...+rm_1) —mare all removed from m _ '

the test. For more information on progressive censoring, +(6-1) Zln <ﬁ) +(6-1) z In (ﬁ)

we refer the reader t05[6,7,8,9]. The estimation ofR i= a = @

has been studied by several authors, based on different m %\ 0
populations and various observations, s&g(,11,12]. —.Z(Bﬂi +B1+1)In (1+ (5) )—
The remainder of this paper is organized as follows: n':

Section 2 gives the MLE of R in addition to the Z (Bt + B2 +1) In (1+ (W) )7
corresponding Cl. Section 3 concerns with four types of =

bootstrap confidence intervals. In Section 4 the Bayesia
estimation of R is computed under the SEL and the
LINEX loss functions and the credible Cl &t is also

hus we have the likelihood equations f@§ and 3,
respectively, as

obtained, using the acceptance rejection principle dnL m Xi\ 0
algorithm. Two illustrative examples, one of them is 9B = E_-Z(ri+1)ln< + (—) >=0,
simulated and the other represents a real life data, are =
developed to explain the theoretical results in Section 5.
Eventually, conclusion is inserted in Section 6. omk n 2 < Yj >
—_— == fi+1)In{1+ =0.
B B gl(l ) (a)
2 Maximum Likelihood Estimation _ Then "
Br=
SupposeX = (Xi:m,Xom, -, Xmm) iS a progressively 1(i+1) ”( +(3) )
Type Il censored sample from W@,6,3;) with N n
censored schemer = (ry,rp,....,fm) and Y 2 =
= (Y1n, YN, ---, YN IS @ progressively Type Il censored 21 1 (fj+ 1)1 ( )
sample from WGa,6,3,) with censored scheme 5
£ — (f1.fa,....fn). Hence, the likelihood function gfand "0 the MLE ofR sayR, can be written as
B2 is given by . Bz
R= (6)
31+B2
m
L (B1,Bz|a,6,%y) = c1 rl{f (x)[1—F (x)]"} x To find the PDF oR, the following lemma is needed
= Lemma 2.1. If the ragdom variable
n ‘- X ~WGa,0,B:),thenT =Ln(1+ (2)”) ~Ex .
e[ {omi-co}. @ G(a. 6. 1) hen = Ln(1+ (5)") ~ Exly)
= Proof. The proof is omitted.
Also, the following transformation can be considered:
where S = MT,,
c=MM-1-r;))(M—=2—-r1—r2)...x S=M-R—-1)(T,-Ty),

(M—m+21—-ry..—rm-1),
Co = N(N—l—fl)(N—Z—fl—fz)...X

(N—n+1—Ff1..—Fn1), Sn=M=Rp...—Rp-1— (M—=1)) (Tm—Tm-1).-

[5] has proved that§ 's are independent and

for more detials, seé]. identically distributed exponential random variables,
Then L (1. Bo|a, 8,x,y) or L(B1,Bz), for notation i.eS ~ ExXp(B),i=1,...,m Furthermore,
simplicity, can be written as follows: m m
S=5(R+1T
2,57 2RI
LB ) =il (&) m X\
1L,P2) = U2P1 P2 | :Z(Ri+1)Ln<1+<E> ):U.
n 1 %\ 0\ ~(BuritALt) =
r! () (1+ (2) ) x Accordingly,U has a gamma distribution with the
= shape parameten and the scale paramet@y, then
yj\0-1 yi\ 0 7(ﬁ2fi+ﬁ2+l) ~ ~
M () © pu= D andfo= 0.
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where V. has a gamma distribution with the shape 3 Bootstrap confidence intervals
parameten and the scale parametgy.

Hence, The confidence intervals are proposed based on the
parameteric bootstrap methods where the parametric
R 1 _ 1 model for the data is known ag (x;a,6,8:) and
1+ (m/n)(V/U) 1+ (B/B1)Z’ g(y;a,6,B2) up to the unknown parametefgs, ;).

The bootstraping data are sampled from
wherZ =mp1V /nBU has a F distribution with degrees of ¢ (x; a,6, Bl) and g (y; a.6. Bz) where (Bl,ﬁz) the
freedom 2 and 2n,, taking into account the independence |, \_ h iqinal d | dealt onl
of the two gamma random variablés andV MLEs from the original data. A lot of papers dealt only

The pdf ofR be obtained ' with percentile bootstrap method ( Boot-p) based on the
€ patotik can be obtained as idea of Efron [L4] and bootstrap-t method ( Boot-t) based
on the idea of Hall {5, such as, 7,16 and among

n
fa(r) = (%) <&)n % others. In this article, additional two types of Bootstrap
R B(mn) \ B Cls, Boot-BC and Boot-BCa based on the idea of
(1_r)n71 DiCiccio and Efron 17], are discussed. The following
. 0<r <1 (7 algorithm is followed to obtain bootstraping samples for
P+l (1+% (%)) the four methods:

(1)Based on the original PROG-II-C samples,

To calculate the variance @&, The expectation and Xam < Xom < .. < Xmm and

the second moment &t can be obtained, respectively, as v, < Y,y < ... < Ypn,computedy, 3> andR from (6).

follows: (2)Use Brand B, to generate a bootstrap samples,
S LN v N S P S especndh wit
== = Y* =Yy < Yo < - < Yjin.respectively, wi e
F(m+n+1)in A same values of;, i = 1,2, .r?.,mandr’j,j =12,..,n
. .1 MP2 using the algorithm presented ihq].
Fr{m+nm+1m+n+1;1———= |, 8 .
2 ( + * T nBl> ® (3)As in Stepl based gk*andY* compute the bootstrap

data estimates ¢8;, 3, andR sayf3;, 35 andR* .
m (4)Repeat the previous steps 2 anBl Bmes and arrange
) all R*in ascending order to obtain the bootstrap sample

(Ii*[l],li*[z],...,li*[B]) :

E[IQZ} _ m(m+ 1) (m+n) (m)m<Bz

Fm+n+2) \n/ \B

oF1 (m+n,m+2;m+n+2;1—m—ﬁz>, 9)
nB.
where,F; is the hypergeometric function given by, 3.1 Bootstrap-p confidence interval
___TI(9 Let ®(z2) = P(R* < 2) be the cumulative distribution
2h1(a,b,cW) T (c—b) function of R*. Define Ry, = @~ %(2) for given z. The
1 b1 approximate bootstrap-p 10D {)% confidence interval
[ a0 a-tw)fdt  of R isgivenby
cf. [13]' p.llO. " [ﬁaoot(%) ’ IQEoot(l_ %)
Hence, the variance & can be calculated.

Since

IR R B mv 3.2 Bootstrap-t confidence inteval

R X1 a=g Xy =Z~F@n.2m.  (10)
1-R fp U Consider the order statistics

, _ , i < @ < < pBwhere

the 10Q1— y)% confidence interval dRis

o - VBRI -R)

1-R 1-R —— . j=12..,B
—_— , s . Var (Relil)
(1-R)+RF(2n.2m)" (1-R) +RF_y(2n,2m)
(11) A _ _
The following is the interval estimation f&t based on ~ Where Var(R m) is obtained using § and @). Let
bootstrap confidence intervals. W(z) = P(u*<z), be the cumulative distribution
(@© 2017 NSP
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function of u*. For more details seelf] and [20]. If a; = a, = 0,
For a giverz, define Equation (4) reduces to equation1®). Then, the
A N _ approximate bootstrap-BCa 10— {)% confidence
Rioor_t = R+B7Z y/Var(R)W 1 (2). interval of RS o, _pcaiS given by
Thus, the approximate bootstrap-t Ry (5) R; (1— 5)}
100(1 - ¢)% confidence interval dR* is given by oot—BCal 2/ > "Boot-BCa\™ 2/ |
R 4 R _< . . .
Reoot-(3) » Raoor+(1 2)} ' 4 Bayesian Estimation ofR

The Bayesian approach deals with the parameters as
random, and uncertainties on the parameters are described
by a joint prior distribution, which is developed before the
distribution function, withz, = ®~1(7). Define the failure data are collected, and is based on historical data,
bias-correction const'am; from the following probability experience }N'th. s_|m|lar produ.c_ts, dg5|gn specllflcatpns,
P(IQ* < FAQ) — G(z,) where G(.) is the CDF of the and experts’ opinions. The ability of incorporating prior
bootstrap distribution and knowledge in the analysis makes the Bayesian approach
very helpful in the reliability analysis because one of the

3.3 Bootstrap bias corrected confidence interval

Let ®(z) = ¢ be the standard normal cumulative

Ao #{ﬁ*m < ﬁ} . main challenges associated with the reliability analysis i
PR<R=—F—i=12..B the limited availability of data.
Let the prior knowledge of parameteBs and 3, be
thus described by the following independent prior distribution
7z — @1 (#{If{*[l] < F‘e}) j=12..,B. (12
B

A -1
m(By) = A B Ye P By, A >0,

For a givenZ, and the bias-correction constamithen (k)

(15)
Sk -1 H2
RBOOthC =G [(D (220 + ZZ):I : (13) T[(BZ) = [-)‘(2“2) 2“2_1e—32)\2’ B27 “27)\2 >0
Thus, the approximate bootstrap-BC o .
100(1 - )% confidence interval dR,., _gc is given by Hence, the joint prior of the parametgisand 3, can
be written as follow
Sk 4 Sk 4
g 1—%) 1.
[RBOOthC(Z) Y RBOOt*BC( 2) :| T[(B]JBZ) _ )\{11 AZHZ B{Ililﬁzﬁlzil ef(ﬁl)‘l“rpz)\Z)

I (p1) I (H2) (16)
3.4 Bootstrap bias corrected accelerated The joint posterior density function o, and B,
confidence interval denoted byr* (B1, Bo|a. 6,%,y) can be written as

Let ®(z) = ¢ be the standard normal cumulative 1 (B, Bola, 6,%,Y) =
distribution function, with z; = ®~1({) and the ’ R P

bias-correction constaat which'is defined in12). Then L (B, B2|a, 8,x%,y) x 1(B1, B2) (7)
. - [cD ( z+7 )} ” o Jo L (B1,Bzla,8,x,y) x 1(B1, B2) dBrd B2
RBoothCa_ Z + 1_ a(zo + ZZ) ’ Then

whereais called the acceleration factor which is estimated it (B8y, By| a, 8, x,y) O B H 1 py e tem (Bhatheda)

by. g simple jac.k-knn‘(.a method. Lg{ and;_/j repr.esent.the . " Bl n yinG a(f+1)
original data with theéth point omitted and théth point l_l (1+ (_) ) % I—I1 (1+ (_J) ) (18)
omitted, sayX, = X1m < Xam < ... < XmM, Y, = YN < i a = a

yan < .. < Yun. Assume thafd; = Q1(x) Q; = Qa(y;) The conditional posterior densities 8f and3, can be
be the MLE estimate 02, = 3; andQ; = 3;,constructed given as

from this data. Let2; andQ> be the mean of th@;’s and

Qés respectively . Thea = a; + a, is estimated by 1% (B1|B2, 4, 0,%,y) =
_ \3 — i3
m (Q,-0) n (-0 < i
gy — M, (Q1-0y) + anday = 51 (2-9)) . gamma[m+ IJl,)\l‘Flzl{ (ri+1)In (1+ (%)9) }] ,
— ~i\2]2 n — ~i\2]2 1=
6{2{11(91—91) } 6{21-:1(92—9%) } (19)
(@© 2017 NSP
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% (B2|B1. a,6,x,y) =

gamma{n+ H2, A2+ él{ (fi+1)In (1+ (%)9) }] .

(20)

In some cases, it is not easy to obtain the estmation of
R from (23) and @4), so the acceptance rejection
principle can be used to obtain the Bayesian point
estimates ofR and also to obtain the corresponding
credible interval. The acceptance rejection principle is a
simulation procedure and used to generate samples from
the posterior distribution. The algorithm of this proceslur
is introduced and proven by2]] and the steps for

Applying transformation techniques, the posterior Bayesian estimation d? are described in]

PDF ofRis

1—r\™H
fripata(r) = K x (T) X

D1(ri, A1, %)
1+ ~
( @o(fj,A2,Yj)

where

tDl(ri,)\l,xi)z)\1+m (ri+1)In 1+(§)9 ;
3 {n+vin(

Do(fj,A2,Yj) = )\2+J§1{(fj +1)In (1—|— (%J)G)}

1- —(Mn-py o)
( ; r)) ,0<r <1,

(21)

5 Applications

In this section, two examples are introduced one of them
is simulated and the other is a real data set. At first the
following lemma is introduced to make the corresponding
known parameters in two populations are the same, in case
of application our model to a real life data.
Lemma 2. If the  random
T~WG(a,6,B).thenY = ()" ~WG(1,1,B).
Proof. The proof is easy to obtain.
Example 1(Simulated data)
In this example, two PROG-II-C samples from WG
distributions are generated. The algorithm of generaton i

variable

and performed according to the algorithm described in
B 1 Oy (ri A, x) \ ™A Balakrishnan and Sandhug] as the following:
© B(M+ p,n+ o) \ @2(Fj,A2,Yj) ' (1)Specify the values dfl, N,m andn.
) . (2)Specify the values ofrj,i = 1,2,...m and
The Bayes estimate @& using the squared error loss fi,j=12,..,n

function, sayResei, can be obtained by calculating the (3)Specify the values of the parameters®, 81 and ..
posterior mean oR as follows (4)Generate a random sample with sMeand censoring
sizemfrom the random variabl¥ , the set of data can

A 1 :
RBSEL:/ rfR‘Data(r)dr (22) be considered as:
0

1 _ My
_ K/ r(l r)
0 r
. ' _ —(M+n+py + o)
% <1+ (Dl(,rla)\lvxl) <1 r)) dl’
CDZ(rja)\27yj) r
- (q’z(ﬁ,)\z,yj))“*“z (M-t pi1) (N+ ) (N+ o +1)
D1(ri, A1, %) AA+1)(A+2)

q’z(fj,)\z,YJ))
Fi{A,n+up+2A+3;1————-"—" ), 23
2 1( U2 NGRS (23)

Xl;m’M < X2;m’|\/| <. < Xm;m7|\/|.

(5)Generate a random sample with si¢eand censoring
sizen from the random variablg , the set of data can
be considered as:

YinN <Y2nN < ... <YnnN-

(6)Use the two preceding PROG-II-C samples to compute
the MLEs of the stress strength parameter.

(6)Compute the 95% bootstrap conidence intervalRfor
using the steps described in Section 3.

(7)Compute the Baye estimates of the model parameters
based on acceptance rejection principle.

whereA = m+-n+ py + Hp. The Bayes estimate &t
using the LINEX loss function, saig| N, can be obtained
by calculating the posterior median dRfrom the

following equation A simulation data for two PROG-II-C samples from

WG distributions with true valuesr = 6, 6 = 5.85

/RBLN frpata(r)dr = 0.5. (24) B =5 andf; =3, so R=0.375 Using progressive

0 censoring schemesM = 30, m = 10 with
A , N r=(1,00,1,0,0,1,0,1,16) andN = 26,n = 10 with

Then,RaLy is the solution Offgpaia(Reun) =0, after ¢ _ 01101,0,1,1,0,11), data have been

differentiation the both sides of Equati@d] with respect 5,5 6yimated to two decimal places and they have been
to Rg.n- The mode of the posterior distribution can be presented in Table 1 and Table 2.

obtained numerically by maximizing the PDFRf

(@© 2017 NSP
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Table 1: Simulated PROG-II-C strength data
1.6505 24991 31526 36722 39882
24604 28343 35303 36857 40938

Table 2: Simulated PROG-II-C stress data
1.9338 29807 36396 36823 40124
2.6914 35425 36490 38957 43085

Table 3: Different point estimates fdR

(')BLN
0482

()BsEL
0502

(-)Boot —t
0482

(~)Boot—p
Q494

(ML
0.494

Table 4: 95% confidence intervals fd&.

Method R Length
ACI 0.28240.7050 0.42258
Boot -p ClI 0.26790.6891 0.42116
Boot -t Cl 0.4807,0.4840 0.00328
Boot-BC ClI  [0.26790.688§ 0.42067
Boot-BCa Cl [0.18880.6660 0.47717
CRI 0.0297,0.978§ 0.94911

Table 5: Values ofa, 8, 3,K-S and p - values

Data set 1 2
a 533184 103809
°] 1.62514 136076
B 274111 212826
K-S 0.1058 01490
p-value 08553 04730

Table 6: Transformed Data Set 1.

0.01 0065 Q126 025 0517 Q86
0.012 Q073 Q172 Q29 056 088
0.038 Q082 Q18 0319 066 088
0.043 Q094 Q021 0329 Q75 093
0.052 Q099 Q23 0384 Q82 104.

Table 7: Transformed Data Set 2.

0.02 0078 Q16 033 0795 1031

0.03 0094 Q18 043 0.86 1085
0.029 Q097 Q19 048 0.86 113

0.05 0101 Q20 0553 Q87 124
0.062 Q13 027 0621 0889 125

Table 8: Values ofa, 6, 3,K-S and p - values to transformed data
Sets

The following figure shows the posterior density Data set 1 2
function of R, where the prior knowledge parameters are a 10000 10000
U1 = 2 =A1=2A,=0.001 0 1.0000 10000

B 274111 212826
K-S 0.1058 01490
p-value 08553 04730

0.8

=
o

L)
-

ZRipata ()

0.6 0.8 1.0

Fig. 1: The posterior density function of R

Example 2 (Real-life data)
The data of Xia et al.42] can be used as application

Table 5. shows the Kolmogorov-Smirnov (KS)
distance between the empirical and the fitted distribution
functions for two data sets separately. Also Mathematica
9 program is used to find the distribution parameters in
two cases.

Since the p-value is quite high in two cases, it is
evident to accept the null hypothesis that the data is
coming from the WG distribution. From Table 5, it is
noted that the values af and 6 are different in the data
sets, so Lemma 2 can be used.

Where the data in Table 6 and Table 7 are multiplied by
10~3. From the transformed data sets, the following results
have been obtained in Table 8.

Using progressive censoring schenvks- 30, m= 15
with r = (1,0,0,1,0,0,1,0,1,0,0,0,0,0,11) and
N =30,n= 10 withr = (2,2,2,0,1,0,2,1,0,10) , data
have been presented in Table 9.

The results about the statistical inferenc&afre given
in Table 10 and Table 11.

of stress strength model under PROG-II-C, where thesdrigure 2 shows the posterior density functiorRyfvhere

data represent the ordered breaking strengths of jute fibre

at gauge lengths 10 mm and 20 mm.

the prior knowledge parameters are
M=t =A1=2A2=0.

(@© 2017 NSP
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Table 9: Generated PROG-II-C data References
X1:1530 < X2:1530 < ... < X15:1530¥1:1030 < ¥2:1030 < .. < ¥10;1030
0.00001 0000065 0000178 000002 0000078 o . . . .
0.000012 (000073 000021 0000027 _ 0000097 [1] B. Saragoglu, I. Kinaci, D. Kundu, On estimation of
S e e LN R=P(Y<X) for exponential distribution under progressive
0.000052 0000099 0000288 0000062 0000157 type-1l censoring, J. Stat. Comput. SirB2,5, 729-744
(2012).
[2] P.S. Bithas, Weibull-gamma composite distribution: An
Table 10: Different point estimates fdr . alternative multipath/shadowing fading model, Electron.

(ML Osoot—p  (eoot—t  (Jeser  (Jen Lett. 45,749-751(2009). .
0545 0557 0534 0486 0464 [38] G. Molenberghs and G. Verbeke, On the Weibull-gamma

frailty model, its infinite moments, and its connection

to generalized log-logistic, logistic, Cauchy, and exteem

value distributions, J. Stat. Plan. Inféd1, 861-868 (2011).
[4] M.A.W. Mahmoud, Y. Abdel-Aty, N. M. Mohamed,

Table 11:95% confidence intervals fd.

Method R Length G. G. Hamedani, Recurrence relations for moments of
ACI 0.34700.743§ 0.396776 dual generalized order statistics from Weibull-Gamma
Boot -p CI 0.34330.7463  0.403022 distribution and its characterizations, Journal of Stiags
Boot -t Cl 0.53350.5364 0.002880 Applications & Probability3, 189-199 (2014).
Boot-BC CI  [0.33850.7364 0.397832 [5] N. Balakrishnan and R. Aggarwala, Progressive Cengorin
Boot-BCa Cl 10.29940.7161 0.416684 Theory, Methods and Applications, Birlihser, Boston
CRI 0.02860.9829 0.954277 2000.

[6] N. Balakrishnan, Progressive censoring methodology: A
appraisal, Test6, 211-296 (2007) (with discussions).

[7]1 R. M. EL-Sagheer and Ahsanullah M, Statistical infeenc
for A step - stress partially accelerated life test model
based on progressively type - Il censored data from Lomax

08 1 distribution, Journal of Applied Statistical Scien2g 307-
323 (2015).
[B]R. M. EL-Sagheer, Inferences in constant-partially
e accelerated life tests based on progressive type-II cienggor
F Bulletin of the Malaysian Mathematical Sciences Society
& g (2016), doi:10.1007/s40840-016-0311-9.

[9] R. M. EL-Sagheer, Estimation of parameters of Weibull-
gamma distribution based on progressively censored data,

02 ] Stat. Pap. (2016), doi:10.1007/s00362-016-0787-2.

[10] M.A.W. Mahmoud, On stress-strength model in Weibull
case, The Egyptian Statistical Jourd8) 119-126 (1996).

00 n 1 [11] M.A.W. Mahmoud, R. M. EL-Sagheer, A. A. Soliman, A.
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