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Abstract: In this paper, a new concept of bounded radius rotation is introduced to define a new class of generalizedq-starlike
functions using the quantum calculus. Some geometric properties of linear combinations of such functions are studied in this paper.
The techniques of this paper may motivate further research activities.
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1 Introduction

Let A denote the class of analytic functionsf (z) defined
in the open unit discE = {z : |z| < 1} with the
normalization f (0) = 0, f ′(0) = 1. One-one analytic
functions in this class are usually called univalent analytic
functions. A functionf ∈ A is called starlike( f ∈ S∗) if

ℜ
{ z f′(z)

f (z)

}

> 0, z∈ E. Also f is convex( f ∈ C), if and

only if, z f′ ∈ S∗.
In 1990, aq-analogue of starlike functions was introduced
by Ismail et. al. [2] by usingq-difference operatorDq f ,
0< q< 1. This operator is defined by the equation

(Dq f )(z) =
f (z)− f (qz)

z(1−q)
, z 6= 0, (Dq f )(0) = f ′(0).(1)

From (1.1), we can deduce that

Dq f (z) = 1+
∞

∑
n=2

[n]qanzn
, (2)

where

[n]q =
(1−qn)

1−q
(3)

As q→ 1−, [n]q → n.

The setB⊂ C is defined asµ-geometric, if it contains
all geometric sequences{zµ}∞

n=0 for z∈ B, µ ∈ E.

A function f ∈ A is said to belong to the classS∗q of
q-starlike functions, if
∣

∣

∣

∣

z
f (z)

(Dq f (z))− 1
1−q

∣

∣

∣

∣

≤ 1
1−q

, z∈ E, (4)

where Dq f (z) is defined by (1.1) on aq-geometric set
with q∈ (0,1).
As q → 1−, the closed dics|w− (1− q)−1| ≤ (1− q)−1

becomes the right half plane and the classS∗q reduces to
classS∗ of starlike function.

It is known [3,6] that (1.4) holds if and only if

zDq f (z)
f (z)

≺ 1+ z
1−qz

, (5)

where≺ denotes subordination.
From (1.5), it can be seen that the linear transformation
1+z
1−qz maps|z|= r onto the circle with centerC(r) = 1+qr2

1−q2r2

and the radiusσ(r) = (1+q)r
1−q2r2 . Thus, using Subordination

principle, we can write
∣

∣

∣

∣

zDq f (z)

f (z)
− 1+qr2

1−q2r2

∣

∣

∣

∣

≤ (1+q)r
1−q2r2 . (6)

We can define a related classC∗ as follows.

Let f = z f′1, f1 ∈ A. Then f1 ∈ C∗
q, if and only if,

f ∈ S∗.

Whenq→ 1−, C∗
q reduces to classC of convex univalent
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functions.

For the following definitions, we refer to [3].

Definition 1.Let p(z) be analytic in E with p(0) = 1. Then
p∈ Pm(q), if and only if,

p(z) =

(

m
4
+

1
2

)

p1(z)−
(

m
4
− 1

2

)

p2(z),

where

pi(z)≺
1+ z
1−qz

, i = 1,2, q∈ (0,1), m≥ 2.

For m = 2, P2(q) = P(q) consists of all functions
subordinate to1+z

1−qz, z∈ E. Also, limq→1− P(q) = P, the
class of functions with positive real part.

Definition 2.Let f ∈ A. Then f∈ R∗
q(m), if and only if,

zDq f
f ∈ Pm(q), z∈ E.

f , in this case, is called a function ofq-bounded radius
rotation.

We note that R∗
q(2) = S∗q and as

q → 1−, R∗
q(m) = Rm, the class of functions with

bounded radius rotation.

Following the technique of Robertson [4], the
inequality (1.6) can easily be generalized for the class
R∗

q(m) of function of q-bounded radius rotation as
follows.

Lemma 1.Let f ∈ R∗
q(m). Then, for m≥ 2, q∈ (0,1),

∣

∣

∣

∣

zDq f (z)

f (z)
− 1+qr2

1−q2r2

∣

∣

∣

∣

≤
m
2 (1+q)r

1−q2r2 . (7)

We shall need the following lemmas to prove our main
results.

Lemma 2.[5]. Let a, d, k, ρ be reals with a> d≥ 0, k> 0
andρ ∈ (0,π). Suppose|u−a| ≤ d and|v−a| ≤ d and set

w=
u

1+ keiρ +
v

1+ k−1e−iρ .

Then
ℜ(w) ≥ a−d(sec

ρ
2
).

Lemma 3.[3]. Let f ∈ R∗
q(m). Then f∈ S∗q in |z| < r∗q,

where

r∗q =
4

m(1+q)+
√

m2(1+q)2−16q
. (8)

From Lemma 1.1 and a modified version of well known
result due to Brannan [1], we have:

Lemma 4.Let f ∈ R∗
q(m). Then

|argf (z)| ≤ m
2
(1+q)sin−1 r.

In our discussion, throughout this paper, we will take
m≥ 2 andq∈ (0,1) unless otherwise stated.

2 Main Results

Theorem 1.Let f,g∈ R∗
q(m) and let

F(z) = γ f (z)+ (1− γ)g(z),

where0 ≤ arg γ
1−γ ≤ σ < π . Then F∈ S∗q in |z| < rq,m

where rq,m is the smallest positive value of r satisfying the
equation

T(r) = (1+qr2)cos

(

σ
2
+

m
2
(1+q)sin−1

)

−m
2
(1+q)r = 0.

Proof.q-difference operator ofF gives us

DqF(z) = γDq f (z)+ (1− γ)Dqg(z),

and therefore

zDqF(z)
F(z)

=
γzDq f (z)+ (1− γ)Dqg(z)

γ f (z)+ (1− γ)g(z)

=
zDq f (z)

f (z)

[

1+

(

γ
1− γ

· f (z)
g(z)

)−1]−1

+
zDqg(z)

g(z)

[

1+

(

γ
1− γ

· f (z)
g(z)

)]−1

. (9)

Let

u=
zDqg(z)

g(z)
, v=

zDq f (z)

f (z)
, k=

∣

∣

∣

∣

γ
1− γ

· f (z)
g(z)

∣

∣

∣

∣

. (10)

From (2.1) and (2.2), we have

w(z) =
zDqF(z)

F(z)
=

u
1+ keiρ +

v
1+ k−1e−iρ . (11)

We now apply Lemma 1.1 and Lemma 1.2 to (2.3) and
have

ℜ
{

zDqF(z)
F(z)

}

≥ 1+qr2

1−q2r2 −
m
2 (1+q)r

1−q2r2 sec

(

ρ
2

)

, (12)

where

ρ = arg(
γ

1− γ
· f (z)

g(z)
)

= 2nπ +arg(
γ

1− γ
)+argf (z)−argg(z).

This gives us

|ρ |= σ +m(1+q)sin−1 r.

Therefore

ℜ
{

zDqF(z)

F(z)

}

> 0,

if

T(r) = (1+qr2)cos

(

σ
2
+

m
2
(1+q)sin−1 r

)

−m
2
(1+q)r > 0.
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We note that

T(r) = cos
σ
2
, f or r = 0,

and

T(r) = −m
2
(1+q)sin

π −σ
m(1+q)

< 0

when r= sin

(

π −σ
m(1+q)

)

.

This implies thatT(r) = 0 has a root in the interval
(0,sin( π−σ

m(1+q))) and right hand side of (2.4) is positive in
the disc|z|< rq,m, whererq,m is the least positive value of
r satisfyingT(r) = 0. This completes the proof.

We note the following special cases as:

Corollary 1.For q → 1−, f ,g ∈ Rm are the functions of
bounded radius rotation and it follows, from Theorem 2.1,
that F = γ f +(1− γ)g is starlike in|z| < r∗m, where r∗m is
the least positive root of

T∗
m(r) = A(1+ r2)−mr= 0, A= cos

(

σ
2
+msin−1 r

)

.

This gives us

r∗m =
m+

√
m2−4A2

2A
.

As a special case of Corollary 2.1, we takem= 2. Then

A= A2 = cos(
σ
2
+2sin−1 r), and lim

q→1−
R∗

q(2) = S∗.

From these observations, we deduce the radius of
starlikeness of linear combination of two starlike

functions is given byr∗2 =
1−
√

1−A2
2

A2 .

Corollary 2.Let m= 2. Then, in Theorem 2.1, f,g ∈ S∗q
and it follows that

ℜ{zDqF(z)
F(z)

}> 0 in |z|< r∗q,

where r∗q is the least positive root of

T∗
q (r) = B1qr2− (1+q)r +B1 = 0,

B1 = cos(
σ
2
+(1+q)sin−1 r).

This gives us

r∗q =
(1+q)−

√

(1+q)2−4qB2
1

2qB1
.

Theorem 2.Let f,g∈ ⋂

0<q<1S∗q and let

F = γg+(1− γ)g, with 0≤ arg(
γ

1− γ
)≤ σ < π .

Then F maps the disc|z|< rσ onto a convex domain, where
rσ is the least positive value of r that satisfies the equation

Tσ (r) = Br2−2r1r +Br2
1, r1 = 2−

√
3,

B = cos

(

σ
2
+2sin−1

(

r
r1

))

.

Proof.It has been shown in [2] that
⋂

0<q<1

S∗q = S∗.

It is well known that f ∈ S∗ is convex in the disc
|z|< r1 = 2−

√
3.

With these facts, we proceed to find the radius of
convexity for the functionF following the technique used
in Theorem 2.1.
We can write

(zF′(z))′

F ′(z)
=

(z f′(z))′

f ′(z)

[

1+

(

γ
1− γ

· f ′(z)
g′(z)

)−1]−1

+
(zg′(z))′

g′(z)

[

1+

(

γ
1− γ

· f ′(z)
g′(z)

)]−1

.

We take

k= | γ
1− γ

· f ′(z)
g′(z)

|, ρ = arg(
γ

1− γ
· f ′(z)

g′(z)
)

and

v=
(z f′(z))′

f ′(z)
, u=

(zg′(z))′

g′(z)
.

Now, for r1 = 2
√

3, we have
∣

∣

∣

∣

u− r2
1 + r2

r2
1 − r2

∣

∣

∣

∣

≤ 2rr1

r2
1 − r2

,

∣

∣

∣

∣

v− r2
1 + r2

r2
1 − r2

∣

∣

∣

∣

≤ 2rr1

r2
1 − r2

.

We formulate

w(z) =
(zF′(z))′

F ′(z)
=

u
1+ keiρ +

v
1+ k−1e−iρ (13)

with

ρ = arg

(

γ
1− γ

· f ′(z)
g′(z)

)

= 2nπ +arg

(

γ
1− γ

)

+argf ′(z)−argg′(z).

This gives us

|ρ |= σ +4sin−1
(

r
r1

)

.
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Therefore

ℜ
{

(zF′(z))′

F ′(z)

}

> 0,

if

Tσ (r) =

[

(r2
1 + r2)cos

(

σ
2
+2sin−1

(

r
r1

)

−2r1r

)]

= 0,

where

r1 = 2−
√

3.

That is

Tσ (r) = Br2−2r1r +Br2
1, B= cos

(

σ
2
+2sin−1

(

r
r1

))

.

This gives us

rσ =
r1−

√

r2
1 −B2r2

1

B
. (14)

We note thatrσ ∈ (0, r1sin(π−σ
4 )). HenceF maps the dics

|z|< rσ onto a convex domain, whererσ is given by (2.6).
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