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Abstract: In this paper,backstep control is employed to a three species diseased biological system having two prey viz. susceptible and
infected prey and a predator. Using the back stepping control design, the controllability conditions are framed. The non-linear feedback
control approach is implemented to derive the global asymptotic stability conditions for the biological system. Diverse set of parametric
value are used and the corresponding chaotic behavior of thesystem is obtained. Finally numerical simulations by Matlab are executed
to explore the effect of back stepping control in the system.
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1 Introduction

Mathematical models have been widely in use to
exaggerate the ecological populations that is afflicted by
various infectious diseases. These diseases play a key role
in regulating the population size of the species. These
models are described by differential equations among
which the prey-predator model is of specific interest to
ecologists and mathematicians.

In the recent years, the study of the infected
prey-predator system has been the area of interest focused
.eco-epidemiology is the ultimate genre researches by
theoretical ecologists and epidemiologists. The influence
of epidemics on predation was first studied by Anderson
and May [20,21]. Arino et al [19]; Beltrami and Carroll
[5] and Venturino [6], [17] explaines that the ecosystem
of the disease spread population can be described by
eco-epidemic models. Anderson and May [21]. Hadeler
and Freedman [16] proved that the prey-predator
populations are destabilized by the invading diseases. The
infection in the predator species can experience a
stabilizing effect as explained by Hilker and Schmitz [8].
Majority of the eco-epidemiological models that exist
have an infected prey population. Chattopadhyay and
Arino [13] investigated the epidemics in the predator-prey
models with infected predator. Hsieh and Hsiao [24]
considered a predator-prey model with infection in both

populations to account for the possibility of a contagious
disease crossing species barrier from prey to predator.
Venturino [18] portrayed a similar idea on diseases in
interacting species model. In the subsequent time, many
authors Xiao et al [25], Bera et al [26] proposed and
studied different prey-predator models in the presence of
disease.

Though feedback controllers are powerful in
controlling linear,nonlinear and several uncertain
systems,it is more sophisticated. It is currently in trend to
investigate ecological systems with backstep controllers.
The controllability conditions for chaotic dynamics
control are determined using backstep controllers with the
expectation that this may improve the stability analysis of
the system. In control theory, backstepping is a technique
for designing stability controls for non-linear dynamical
system. This approach is a recursive method for
stabilizing the origin of a system. The control process
terminates when the final external control is reached.

Hwang et al [2] proposed a linear suitable to control
chaotic systems about the fixed points or limit cycles.
Chui and Cheng [3,4,10] analyzed and ensured the
possibility of applying the conventional feedback
controllers to chaotic systems. John J.K. and Amritkar
[14], Sorrentino et al[9] suggested an adaptive
synchronization and control method. Major worksin
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nonlinear systems related to chaotic control problems by
Wang et al[11]. An exclusive method have been suggested
by Wang [23] to control chaos.Awad Ei-Gohary [1]
proved that three species prey-predator population can be
asymptotically stabilized to its trivial equilibrium point
using feedback control. Pyragas [15] has discussed about
how to choose the feedback coefficient and delay time for
a system to be effective.

The rest of the paper is structured as follows. In
section 2, the mathematical model with of the biological
system has been investigated. The positivity and
boundedness of the system is explained in section 3. In
section 4, the Existence of equilibrium points with
feasibility conditions is analyzed. Local stability analysis
of all possible equilibrium points are discussed in section
5. Global stability analysis for the equilibrium points are
analyzed in section 6.The backstep controlled system is
explained in section 7. Numerical simulations are carried
out to illustrate the chaotic behavior and justify the
numerical manipulations prey -predator model in section
8.

2 Mathematical model

In this paper, a continuous time prey-predator system with
two prey viz. susceptible and infected prey and a predator
is taken into account. It is assumed that the susceptible
prey population is developed on the basis of logistic law
and only the infected prey is predated. Now to formulate
the mathematical model of a prey-predator system with
disease in prey population, we make the following
assumptions:

i) The prey population grows logistically with intrinsic
growth rater and environmental carrying capacityk

ii) In the presence of infection, the prey population is
divided into two groups namely susceptible prey denoted
by X(t) and infected prey denoted byY (t) at all time, the
total population isP(t) = X(t)+Y(t)

iii) The disease is spread among the prey population
alone and the disease is not genetically inherited. The
infected prey populations do not recover or become
immune.

iv) Assume that the disease transmission follows the
simple law of mass actionaX(t)Y (t) where a as the
transmission rate.

v) Assume that the predator population consumes
only on infected prey with Beddington-De angelis
functional response function is of the form

f (Y,Z) =
bZ

1+ bhY +Z

Whereb the total is attack rate for predator or predation
coefficient and is the handling time of predator to prey.

The model becomes:

dX
dT

= rX

(

1−
X
k

)

− aXY −H1X

dY
dT

= aXY −
bYZ

1+ bhY + z
−H2Y (1)

dZ
dT

=
ebYZ

1+ bhY +Z
− dZ

Here the parametersX(t),Y (t),Z(t) denote the
susceptible, infected prey and predator population
respectively. The parametersr,k,a,d,e,H1,H2 denotes the
growth rate of susceptible prey population, the
environmental carrying capacity, the rate of transmission
from susceptible to infected prey population, death rate of
predator, the conversion efficiency rate and harvesting
rate of susceptible and infected prey respectively.

To minimize the number of parameters involved with
the model system, it is extremely useful to write the system
in non-dimensionalzed form. For this purpose introduce
the variablesX ,Y andT as follow

x →
X
k
,y →

Y
k
,z →

Z
bhk

and t → Tr (2)

In terms of the non-dimensionalized variables the model
system (1) become

dx
dt

= x(1− x)−αxy− h1x ≡ xp(x,y)

dy
dt

= αxy−
β yz

c+ y+ z
− h2y ≡ yq(x,y,z) (3)

dz
dt

=
δyz

c+ y+ z
− yz ≡ zr(x,y,z)

Where the relation between the dimensional and
non-dimensional parameters are given by:

α =
ak
r
,β =

b
r
,e =

e
rh

,h1 =
H1

r
,h2 =

H2

r
,γ =

d
r

Subject to the positive initial conditions:

x(0)≥ 0, y(0)≥ 0, z(0)≥ 0 (4)

The system (3) is defined on the set

R3
+ =

{

(x,y,z) ∈ R3/x ≥ 0,y ≥ 0,z ≥ 0
}

(5)

3 Positivity and boundedness of solution:

It is important to show positivity and boundedness for the
system (3) as they represent populations. Positivity
implies that the population survives and boundedness
may be interpreted as a natural restriction to growth as a
consequence of limited resources.

In the following theorem, we show that solution of
system (3) together with initial condition (4) is positive
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and bounded to establish that the model formulation is
ecologically meaningful.
Theorem 3.1.

All solution of (x(t),y(t),z(t)) of the system (3) with
initial condition (4) are positive for allt ≥ 0
Proof. Equation (3) together with initial condition (4)
gives

x(t) = x(0)exp

t
∫

0

p(x(s),y(s))ds > 0

y(t) = y(0)exp

t
∫

0

q(x(s),y(s),z(s))ds > 0

z(t) = z(0)exp

t
∫

0

r(x(s),y(s),z(s))ds > 0

Hence all solutions starting from interior of the first
octant(IntR3

+) remain in it for future time.
Theorem 3.2.

All the non-negative solutions of the model system (3)
that state inR3

+ are uniformly bounded
Proof. Let x(t),y(t),z(t) be any solution of the system (3)
Since from the first equation of model (3)

dx
dt

≤ x(1− x)

we have lim
t→∞

sup x(t)≤ 1

Let ξ = x+ y+
β
δ

z

Therefore
dξ
dt

=
dx
dt

+
dy
dt

+
β
δ

dz
dt

(6)

Substituting (3) in equation (6),we get

dξ
dt

+mξ = x((1+m− h1)− x)+ (m− h2)y

β z
δ
(m− γ)

≤ x((1+m− h1)− x)

dξ
dt

+mξ ≤ µ since(1+m− h1) = µ (say))

Applying Lemma on differential inequalities Birkoff [12],
we obtain

0≤ ξ (x,y,z) ≤
µ
m

(

1− e−m
)

+
ξ (x(0),y(0),z(0))

em

and fort → ∞ we have

0≤ ξ (x,y,z)≤
µ
m

Thus all solutions of system (3) enter into the region

Γ =
{

(x,y,z) ∈ R3
+ : 0≤ ξ ≤

µ
m
+ ε,∀ε > 0

}

(7)

This completes the proof.

4 Existence of equilibrium points with
feasibility conditions

The system (3) may have the following equilibrium points.
i) The trivial equilibrium point E0(0,0,0) always

exists.
ii) The disease and predator free equilibrium point

E1(x,0,0) exists wherex = 1− h1 provided with the
condition.

1− h1 > 0 (8)

iii) In the absence of predator species the susceptible and
infected prey species can survive. The predator free
equilibrium pointE2(x,y,0) exists where(x,y) are given

asx =
h2

α
,y =

α(1− h1)− h2

α2

Provided with the conditions

α(1− h1)> h2 (9)

iv) The co-existence positive equilibrium point
E3(x∗,y∗,z∗) exists in the interior of the first octant if and
only if there is a positive solution to the following
algebraic non-linear system

1− x−αy− h1 = 0 (10)

αx− h2−
β z

c+ y+ z
= 0 (11)

δy
c+ y+ z

− γ = 0 (12)

Solving the above set of equation, we get

x∗ = 1−αy∗− h1

y∗ =
δ (c+ z∗)

δ − γ

z∗ =
(αx∗− h2)(c+ y∗)

β − (αx∗− h2)
(13)

Provided with the conditions

αx∗ > h2,δ > γ andβ > (ax∗− h2) (14)

5 Local and Global stability analysis:

In this section, we shall examine the stability of the
system (3) at all the possible equilibrium points by using
the Jacobian matrix.

Theorem 5.1.
The trivial equilibrium point E0 is locally

asymptotically stable in thex − y − z direction, if
h1 > 1.otherwise unstable.

Proof
The Jacobian matrix associated with the equilibrium

point atE0(0,0,0) is
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V (E0)=





(−1+ h1) 0 0
0 −h2 0
0 0 −γ





The eigenvalues ofE0 are

λ1 = 1− h1,λ2 =−h2,λ3 =−γ

If h1 > 1 in this caseλ1,λ2,λ3 are negative, hence is
locally asymptotically stable in the direction.

If h1 < 1 in this case two of the eigen value is negative
and one of them is positive. SoE0 is asymptotically stable
in they− z direction and unstable inx direction.

This completes the proof.
Theorem 5.2.

The disease and predator free equilibrium pointE1 is
locally asymptotically stable in thex−y−z plane ifh1 < 1
andα(1− h1)< h2.

But if h1 > 1 andα(1−h1)> h2 in this case it is stable
in z direction and unstable inx− y direction.
Proof:

The Jacobian matrix associated with the equilibrium
point atE1(1− h1,0,0) is

V (E1) =





(−1+ h1) −α(1− h1) 0
0 α(1− h1)− h2 0
0 0 −γ





The eigenvalues ofE1 areλ1 = −1+ h1, λ2 = α(1−
h1)−h2, λ3 =−γ If h1 < 1 andα(1−h1)< h2 in this case
all the eigenvalues are negative.

Hence E1 is asymptotically stable in thex − y − z
direction. But if h1 > 1 andα(1− h1) > h2 in this case
one of the eigenvalue is negative and two of them is
positive so it is stable inz direction and unstable inx− y
direction.

This completes the proof.
Theorem 5.3.

The predator free equilibrium pointE2 is
asymptotically stable in thex − y − z plane if
α < (αh1+ h2) and(cα2+α)< (αh1+ h2)

Proof:
The Jacobian matrix associated with the equilibrium

point atE2 is

V (E2) =







−h2
α −h2 0

α−(αh1+h2)
α 0 β (α−(αh1+h2))

cα2+α−(αh1+h2)

0 0 δ (α−(αh1+h2))
cα2+α−(αh1+h2)

− γ






The

corresponding characteristic equation forE2 is

λ 3+ p1λ 2+ p2λ + p3 = 0 (15)

where

p1 =
h1

α
−

δ (α − (αh1+ h2))

cα2+α − (αh1+ h2)
+ γ

p2 =

[

(h2)

(

α − (αh1+ h2)

α

)]

+

[(

−h2

α

)(

δ (α − (αh1+ h2))

cα2+α − (αh1+ h2)
− γ

)]

p3 = h2

(

1−

(

h1+
h2

α

))(

δ ((αh−1+ h2)−α)

cα2+α − (αh1+ h2)
+ γ

)

By using Routh-Hurwitz criteria Ifp1 > 0, p3 > 0 and
p1p2 − p3 > 0 then E2 is locally asymptotically stable.
Now the straight forward calculation gives
α < (αh1+ h2) and(α2+α)< (αh1+ h2), impliesE2 is
locally asymptotically stable.
Theorem 5.4.

The co-existence equilibrium point of the system (3)
exists, if is locally asymptotically stable if following
conditions hold

(ax∗− h2)<
β (cz∗+ z∗2

(c+ y∗+ z∗)2 ,

δ ((cy+ y∗2)< γ(c+ y∗+ z∗)2

Proof:
The Jacobian matrix at the interior pointE3(x∗,y∗,z∗)

is given below:

V (E3) =





a11 a12 a13
a21 a22 a23
a31 a32 a33



 where

a11= 1−2x∗−αy∗− h1; a12 =−αx∗;

a21= αy∗; a22 = ax∗− h2−
β (cz∗+ z∗)
(c+ y∗+ z∗)2 ;

a23=
β (cy∗+ y∗

2
)

(c+ y∗+ z∗)2 ;

a31= 0; a32=
δ (cz∗+ z∗2)

(c+ y∗+ z∗)2 ; a33 =
δ (cy∗+ y∗2)

(c+ y∗+ z∗)2 − γ

Then corresponding characteristic equation becomes

λ 3+ S1λ 2+ S2λ + S3 = 0 (16)

where

S1 = −(a11+ a22+ a33)

S2 = a11a22+ a22a33+ a11a33+ a12a21a23a32

S3 = −[(a11a22a33− a11a23a32)− a12(a21a32)]

= a11a23a32+ a12a21a32− a11a22a33

S1S2− S3 = [a12a21(a11+ a22+ a33)+ a23a32(a22+ a33)]

−
[

a2
11(a22+ a33)+ a2

22(a11+ a33)

+a2
33(a11+ a22)−2a11a22a33− a12a21a32

]

The sufficient condition forS1 > 0,S3 > 0,S1S2− S3 > 0
are as followsa11 ≤ 0,a22≤ 0,a33≤ 0 Which implies the
conditions

(ax∗− h2)<
β (cz∗+ z∗2)

(c+ y∗+ z∗)2

δ (cy+ y∗2)< γ(c+ y∗+ z∗)2

Thus if the condition stated in the theorem holds, then all
the Rouh-Hurwitz criteria
(i) S1 > 0
(ii)S2 > 0
(iii) S1S2− S3 > 0
are satisfied and the system is locally asymptotically
stable.
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6 Global Stability Analysis :

In this section, we shall study the global dynamics of the
system (3) around the predator free equilibrium point and
co-existence equilibrium pointE3(x∗,y∗,z∗).

Theorem 6.1

The predator free equilibrium pointE2 is globally
asymptotically stable in the interior of the quadrant of
x− y plane.

Proof

Let H(x,y) =
1
xy

(17)

Clearly H(x,y) is positive in the interior of the positive
quadrant ofx− y plane.

h′(x,y) = x(1− x)−αxy− h1x

h
′′
(x,y) = αxy− h2y

Then ∆(x,y) =
∂
∂x

(h′H)+
∂
∂y

(h′′H)

= −
1
y
< 0 (18)

By using Bendixson-Dulac criteria, we note that∆(x,y)
remains the same sign and is not identically zero in the
interior of the positive quadrant of thex− y plane. This
completes the proof.

Theorem 6.2

The co-existence equilibrium pointE3(x∗,y∗,z∗) is
globally asymptotically stable with respect to all solutions
initiating in the interior of satisfy the following conditions
x < x∗ andzy∗ > z∗y

Proof:

The proof can be reached by using Lypunov stability
theorem which gives sufficient condition. Now let us
define

L = S
[

x− x∗− x∗ln
( x

x∗

)]

+T

[

y− y∗− y∗ln

(

y
y∗

)]

+U

[

z− z∗− z∗ln

(

z
z∗

)]

(19)

Where S,T,U are positive constant to be chosen later.
Differentiate (19) with respect to t and substitute (3) in

(19). We get the following

dL
dt

= S[(1− x)−αy− h1](x− x∗)

+T

[

−β z
c+ y+ z

− h2+αx

]

(y− y∗) (20)

+U

[

δy
c+ y+ z

− γ
]

(z− z∗)

= S [−(x− x∗)−α[y− y∗]] (x− x∗)

+T

[

α(x− x∗)−

[

β z
c+ y+ z

−
β z∗

c+ y∗+ z∗

]]

(y− y∗)

+U(z− z∗)

[

δy
c+ y+ z

−
δy∗

c+ y∗+ z∗

]

= S[−(x− x∗)](x− x∗)

+T

[

−

[

β (c(z− z∗)+ (zy∗− z∗y))
(c+ y+ z)(c+ y∗+ z∗)

]]

(y− y∗)

+U(z− z∗)

[

δ (c(y− y∗)+ (yz∗− y∗z))
(c+ y+ z)(c+ y∗+ z∗)

]

We choose the parametersS = 1,δ = 1,T = U
β then we get

dL
dt

=−(x−x∗)2−
(y∗z− yz∗)

(c+ y+ z)(c+ y∗+ z∗)
(y−y∗)(z−z∗)

Then using the given condition, we see thatdL/dt is
negative definite.L is a Lyapunov function with respect to
all solutions in the interior of the positive octant which
proves the theorem

7 Introduction of Backstep control in
Prey-predator system

In this section, the system with two preys viz. susceptible
prey, infected prey and a predator population controlled
by back stepping using nonlinear feedback control
approach is studied. we initiate the study by assuming
that the system (3) can be written in the suitable for

dx
dt

= x(1− x)−αxy− h1x

dy
dt

= αxy−
β zy

c+ y+ z
− h2y+ u1 (21)

dz
dt

=
δ zy

c+ y+ z
− γz+ u2

Where u1,u2 are back stepping nonlinear feedback
controllers which is the function of state variables and
which will be suitable choice to make the trajectory of the
whole system (21). As long as these feedback stabilize
the system (21) converge to zero as the timet goes to
infinity.(i.e) The system (21) gives limt→∞ ‖x(t)‖ = 0
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Theorem 7.1
Using the backstep control in the three species system,

u1 = −

(

1+αe1− x−
h1

α
+

h2

α
− e1

)

x+
h2

α
+αx2 (22)

u2 =
−δe2(1+αe1− x)
c+αe1− x+αe2

(23)

And with error dynamics

e1 = y−η1;

e2 = z−η2 (24)

The system (21) will be asymptotically stable in the
Lyapunov sense about its equilibrium state.

Proof:
The Lyapunov function of is taken as

F1(x) =
1
2

x2 (25)

Differentiate (25) with respect tot is

Ḟ1 = xẋ

= x(x− x2−αxy− h1x) (26)

By defining the virtual controller
y = η1(x) where

η1 =
1− x

α
(27)

By using virtual controller (27) in the above equation (26),
we get

Ḟ1 = −h1x2 (28)

This is a negative definite function. Now consider the
Lyapunov function of(x,e1)

F2(x,e1) =
1
2

x2+
1
2

e2
1 (29)

Consider the error dynamics

e1 = y−η1(x) (30)

which implies

y = e1+η1(x)

=
1
α
(1+αe1− x) (31)

The derivative of (30) on applying (31) becomes

ė1 = ẏ+
ẋ
α

(32)

= αxy−
β yz

c+ y+ z
− h2y+ u1

1
α
[x(1− x)−αxy− h1x] (33)

Again defining the virtual controller

z = η2(x,y) (34)

whereη2 = 0
By applying (31) and (32) in the equation (33) gives

ė1 =

(

1+αe1− x−
h1

α
+

h2

α
− e1

)

x−
h2

α
−h2e1+ u1 (35)

Now, we have

dx
dt

= x(1− x)−αxy− h1x (36)

By using (31), the above equation (36) gives

dx
dt

= −αe1x− h1x (37)

Differentiate (29) and applying (37) in (29) we get,

Ḟ2 = x(−αe1x− h1x)

+e1

[

(

1+αe1− x−
h1

α
+

h2

α
− e1

)

x−
h2

α

−h2e1+ u1

]

(38)

Choosing the backstepping controller (22) in equation (38)
becomes

Ḟ2 = −h1x2− h2e2
1 (39)

Which is negative definite function. Now consider the
Lyapunov function for(x,e1,e2)

F3(x,e1,e2) =
1
2

x2+
1
2

e2
1+

1
2

e2
2 (40)

The derivative of the above function along the derivative
of (40) is

Ḟ3 = Ḟ2+ e2ė2 (41)

Now consider the error dynamics

e2 = z−η2(y,x) (42)

Let η2 = 0⇒ e2 = z
The derivative of the error dynamics is

ė2 = ż (43)

Hence the derivative (41) along (31),(39),(43) becomes

Ḟ3 = −h1x2− h2e2
1

+e2

[

δe2(1+αe2− x)
(c+αe1− x)+αe2

− γe2+ u2

]

(44)

Choosing the back step controller (23),the above derivative
(44) becomes

Ḟ3 = h1x2− h2e2
1− γe2

2 (45)

This is a negative definite function. Hence the theorem
proves that the system is globally asymptotically stable.
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8 Numerical simulation

Numerical simulation plays the key role in the qualitative
analysis of the system. The main objective of the
numerical simulation is to explore the possibility of
variation and the effect of back step control to this
behavior. For the various choices of the parameter of the
model, we have performed the simulation using
MATLAB. It is observed that they show good agreement
with our analytical findings. First we start by studying the
density behavior of the two preys and one predator with
time of the uncontrolled system.

Let R1 be the parameter set taken as
β = 0.9,δ = 0.5,γ = 0.2,c = 0.35,α = 2.35 With the
above parameter set the system (3) has varying harvesting
rate within the range 0.01 < h1 < 0.2 and
0.01< h2 < 0.2. If h1 = 0.01,h2 = 0.01, the time series
of the system (3) is as shown in figure (1) if
h1 = 0.1,h2 = 0.1 the time series of the system (3) is as
shown in figure (2). Ifh1 = 0.2,h2 = 0.2, the time series
and the phase portrait is as shown in figure(3) and (4).
From the figures (1-4), we observe that increase in the
harvest rate, reduces the population density of the infected
prey , predator with inflation in the susceptible prey.

Let R2 be the parameter set taken as
β = 0.9,δ = 0.5,γ = 0.2,c = 0.35,h1 = h2 = 0.1. With
the above parameter set, the system (3) has varying
diseases transmission rate. Ifα = 2.35, the corresponding
time series and phase portrait are as shown in figure (5)
and (6). . Ifα = 1.85, the corresponding time series and
phase portrait are as shown in figure (7) and (8). It is
observed that the decrease in the transmission rate
decreases the density of infected prey and predator
population and increases the susceptible prey population.

In the controlled system (21), population density
reaches the point(0,0,0) as shown in figure (9), (10),
(11) when the harvesting rates are set as 0.01< h1 < 0.2
and 0.01< h2 < 0.2 with the disease transmission rate to
be in the range 1.85 < α < 2.35 (i.e) the system (21)
converges to zero ast → ∞. The corresponding phase
portrait is shown in Figure (12). The results of numerical
simulation conclude that the three species prey-predator
model is globally asymptotically stable.
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Fig 1. Time series of the system (3)
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Fig 2. Time series of the system (3)
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Fig 3. Time series of the system (3)
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Fig 4. Phase portrait of the system (3)
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Fig 5. Time series of the system (3)
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Fig 6.Phase portrait of the system (3)
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Fig 7. Time series of the system (3)
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Fig 8.Phase portrait of the system (3)
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Fig 9. The variation of susceptible prey
populationapproaches stability of the system(21) with

backstep control
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Fig 10. The variation of infected prey population
approaches stability of the system(21) with backstep

control
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Fig 11. The variation of predator population approaches
stability of the system(21) with backstep control

 

0


0.2

0.4


0.6

0.8


1


0


0.5


1


1.5

0


0.2


0.4


0.6


0.8


1


Susceptible prey


phase portrait


Infected prey


P
re

da
to

r


Fig 12.Phase portrait of the system approaches stability of
the system (21) with backstep control

9 Conclusion

The three species biological model with infected and
susceptible prey has been analyzed for its interactions.
The boundedness and positivity of the system seem to

hold good which indicates that the system considered is
well-behaved. Existence of possible equilibrium points
were obtained and the stability was analyzed at those
points. The controllability conditions and the conditions
for global asymptotic stability have been obtained by
using the backstep control. By using the backstep control
technique. It is proved that the three species prey-predator
model is asymptotically stable to its trivial equilibrium
point. It is observed that the decrease in the transmission
rate decreases the density of infected prey and predator
population and increases the susceptible prey
population.Different parameter values give varying
responses to the system. The chaotic behavior of this
prey-predator system has been visualized by these
varying values. The numerical results add to the novelty
and effectiveness of the proposed work.
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