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Abstract: In this paper,backstep control is employed to a three speéseased biological system having two prey viz. susceysitd
infected prey and a predator. Using the back stepping daésign, the controllability conditions are framed. The#imear feedback
control approach is implemented to derive the global asgtigatability conditions for the biological system. Digerset of parametric
value are used and the corresponding chaotic behavior s/#iem is obtained. Finally numerical simulations by Ma#dae executed
to explore the effect of back stepping control in the system.
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1 Introduction populations to account for the possibility of a contagious
disease crossing species barrier from prey to predator.

Mathematical models have been widely in use toVenturino [L8 portrayed a similar idea on diseases in

exaggerate the ecological populations that is afflicted byinteracting species model. In the subsequent time, many

various infectious diseases. These diseases play a key rodauthors Xiao et al 45, Bera et al 6 proposed and

in regulating the population size of the species. Thesestudied different prey-predator models in the presence of

models are described by differential equations amongdlisease.

which the prey-predator model is of specific interest to

ecologists and mathematicians. ; . : .
controlling linear,nonlinear and several uncertain

In the recent years, the study of the infected e s . :
prey-predator system has been the area of interest focuses'éfStems"t is more sophisticated. It is currently in tremd t

‘eco-epidemiology is the ultimate genre researches bmvestlgate ecological systems with backstep contrallers

theoretical ecologists and epidemiologists. The influence)zj; gr?trcflgr:gzlgglrl%nggEg;ﬂonbsacfsrtecr::%(z{tlfolIg)rlg\?vrirt]rlftshe
of epidemics on predation was first studied by Anderson 9 P

and ey PO21) Arno et 09 Betrami and Carll  »PSSe0on el 1 ey o e ey 2ayes o
[5] and Venturino @], [17] explaines that the ecosystem N - ’ . :
of the disease spread population can be described bfor designing stability controls for non-linear dynamical

cco-epidemic models. Anderson and Ml Hadeler /5o THS approaeh s s rectrsve metfoc fo
and Freedman 1fg] proved that the prey-predator : ' ’ :

populations are destabilized by the invading diseases. Th&ermmates when the final external control is reached.
infection in the predator species can experience a Hwang et al ] proposed a linear suitable to control
stabilizing effect as explained by Hilker and Schmi8¢.[ chaotic systems about the fixed points or limit cycles.
Majority of the eco-epidemiological models that exist Chui and Cheng 3,4,10] analyzed and ensured the
have an infected prey population. Chattopadhyay andossibility of applying the conventional feedback
Arino [13] investigated the epidemics in the predator-preycontrollers to chaotic systems. John J.K. and Amritkar
models with infected predator. Hsieh and Hsi@¥[ [14], Sorrentino et af] suggested an adaptive
considered a predator-prey model with infection in bothsynchronization and control method. Major worksin

Though feedback controllers are powerful in
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nonlinear systems related to chaotic control problems byThe model becomes:

Wang et all1]. An exclusive method have been suggested X

by Wang PR3] to control chaos.Awad Ei-Goharyl] =rX (1——) —aXY — HiX
proved that three species prey-predator population can bgT K

asymptotlcally stabilized to its trivial equilibrium pdin d_Y _ bYz Y )
using feedback control. Pyragdkd] has discussed about dT 1tbhy+z 2

how to choose the feedback coefficient and delay time fordZ ebYz

a system to be effective. dT ~ 1+bhy+Z dz

The rest of the paper is structured as follows. In

section 2, the mathematical model with of the biological Is_ifsr(?e ttirl;(lae p;ﬁ;gg:éersi(e(t) ’\;%’Z(tr)e d ;{t(a)rr]oteo ltJTaetion
system has been mvestlgated The positivity and P ' brey b bop

boundedness of the system is explained in section 3. Irﬁiie\iﬁt'\/?g{é-rhgfpa;ﬁg:ite;‘iﬁi:’d’?’eHl’H%dﬁg?itgr‘:‘ th(tahe
section 4, the Existence of equilibrium points with gnwronmental carrying ca?pacity ?heyratg g‘transn,]ission
feasibility conditions is analyzed. Local stability ansiy from susceptible to infected prey population, death rate of
of all possible equilibrium points are discussed in section redator, the conversion efficiency rate and harvestin
5. Global stability analysis for the equilibrium points are P Y 9

analyzed in section 6.The backstep controlled system |sateTgf;Tr?lﬁlggbtlﬁeaggr':gi(r:tg? parregéiigric;%eollx\l/e d with
explained in section 7. Numerical simulations are Camedthe model svstem. it is extremelpusefulto write the system
out to illustrate the chaotic behavior and justify the y ’ y y

. . . . . in non-dimensionalzed form. For this purpose introduce
numerical manipulations prey -predator model in sectlonthe variableX.Y andT as follow

8.
X Y Z
x—>k,y—> Zﬁbﬁ( andt —Tr (2)
2 Mathematical model In terms of the non-dimensionalized variables the model

system (1) become

In this paper, a continuous time prey-predator system withdx ey —
two prey viz. susceptible and infected prey and a predatordt X(1=X) = axy —hx=xp(x.y)
is taken into account. It is assumed that the susceptiblely Byz
prey population is developed on the basis of logistic law Gt =axy— ctyrz hay = ya(x.y,2) ®3)
and only the infected prey is predated. Now to formulate d
the mathematical model of a prey-predator system with—
disease in prey population, we make the following 9t  C+Y+Z
assumptions: Where the relation between the dimensional and
i) The prey population grows logistically with intrinsic non-dimensional parameters are given by:
growth rater and environmental carrying capacky
ii) In the presence of infection, the prey populationis 5 — a_k’B — 97 - 37h1 — ﬂ’hz - @”: 9
divided into two groups namely susceptible prey denoted r r rh r r r
by X(t) and infected prey denoted b(t) at all time, the
total population i(t) = X(t) + Y(t)
iii) The disease is spread among the prey populationy(o) > 0, y(0) > 0, z(0) > 0 (4)
alone and the disease is not genetically inherited. The B o o
infected prey populations do not recover or becomeThe systemg) is defined on the set
immune.
iv) Assume that the disease transmission follows theRi ={(xy,2) € R®/x>0,y>0,z> 0} (5)
simple law of mass actio@X(t)Y(t) wherea as the
transmission rate.

v) Assume that the predator population consumes3 Positivity and boundedness of solution:
only on infected prey with Beddington-De angelis

z  oyz

—Yyz= Zr(X,y,Z)

Subject to the positive initial conditions:

functional response functionis of the form It is important to show positivity and boundedness for the
system B) as they represent populations. Positivity

£(Y,2) = bZ implies j[hat the population survive; and boundedness

1+bhy+2Zz may be interpreted as a natural restriction to growth as a

consequence of limited resources.
Whereb the total is attack rate for predator or predation In the following theorem, we show that solution of
coefficient and is the handling time of predator to prey.system 8) together with initial condition 4) is positive
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and bounded to establish that the model formulation is4 Existence of equilibrium pointswith

ecologically meaningful.
Theorem 3.1.
All solution of (x(t),y(t),z(t)) of the systemJ) with
initial condition @) are positive for alt > 0
Proof. Equation 8) together with initial condition 4)
gives
t

X(O)exp [ p(x(s).y(8))ds > 0

0
t

Y(O)exp [ 4(x(9).¥(9),2(9))ds > 0

X(t)
y(t)

0
t

Z(t) = z(O)exp/r(x(s),y(s),z(s))ds >0
0

Hence all solutions starting from interior of the first
octant(IntR%) remain in it for future time.
Theorem 3.2.

All the non-negative solutions of the model systed (
that state irRS are uniformly bounded
Proof. Letx(t),y(t),z(t) be any solution of the systerB)(
Since from the first equation of modé)(

dx
< _
gt <X(1—x)
we have limsupx(t) <1
t—oo
Leté =x+ B
= y+ SZ
Therefore
dE _dx dy Pz -
dt dt dt  Sdt
Substituting 8) in equation 6),we get
d
d—f +mé =x((1+m—hy) —x)+(m—hp)y
Py
< x((1+m—hy) —x)
%—f +mé < usince(l+m—h;) = u (say)

Applying Lemma on differential inequalities BirkoffLp],
we obtain

€ (x(0),¥(0),2(0))

Bla—em+ o

m
and fort — o we have

0<é(x,Y,2) <

0<é(xy,2) <

3=

Thus all solutions of systen8) enter into the region
r= {(x,y,z) cER:0<E< %+£,v$>0} 7)

This completes the proof.

feasibility conditions

The system3) may have the following equilibrium points.
i) The trivial equilibrium point Ep(0,0,0) always
exists.
i) The disease and predator free equilibrium point
E1(X,0,0) exists wherex = 1 — h; provided with the
condition.

1-h;>0 8)

iii) In the absence of predator species the susceptible and
infected prey species can survive. The predator free
equilibrium pointE,(X,y,0) exists whergX,y) are given
_h2 _ G(l—hl)—hz

= —’ = 72

Provided with the conditions

asXx

a(l—hy) >hy 9
iv) The co-existence positive equilibrium point
Es(x*,y*,Z") exists in the interior of the first octant if and
only if there is a positive solution to the following
algebraic non-linear system

l1-x—ay—h;=0 (20)
Bz
ax—hy cryrz (11)
oy
_y— 12
C+y+z 4 (12)
Solving the above set of equation, we get
X'=1- GW —hy
_ 0(c+7)
(ax* —hy)(c+y")
Z = 13
B —(ax* —hy) (13)
Provided with the conditions
ax’ >hp,0 > yandf > (ax* —hy) (14)

5 Local and Global stability analysis:

In this section, we shall examine the stability of the
system B8) at all the possible equilibrium points by using
the Jacobian matrix.

Theorem 5.1.

The trivial equilibrium point Eg is locally
asymptotically stable in thex —y — z direction, if
h1 > 1.otherwise unstable.

Pr oof
The Jacobian matrix associated with the equilibrium
point atEy(0,0,0) is
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V(Ep)= 0 —h, 0 By using Routh-Hurwitz criteria Ip; > 0, p3 > 0 and
0 0 — p1p2 — p3 > O thenE; is locally asymptotically stable.
The eigenvalues d&j are Now the straight forward calculation gives
A1 Ao — —ho e — — a < (ahi+hp) and(a?+a) < (ahy +hy), impliesk; is
1= LAz =N, A=Y locally asymptotically stable.
If hy > 1 in this caseA1,A2,A3 are negative, hence is Theorem 5.4.
locally asymptotically stable in the direction. The co-existence equilibrium point of the systed) (

If h; <1inthis case two of the eigen value is negative exists, if is locally asymptotically stable if following
and one of them is positive. I is asymptotically stable conditions hold

(-1+h) O o]

in they — zdirection and unstable xdirection. B(cz* +22
This completes the proof. (ax*—hy) < m7
Theorem 5.2. y

The disease and predator free equilibrium pd&nis 3((cy+y?) < y(c+y" +7)?
locally asymptotically stable in the—y—zplane ifh; < 1

anda(1—hy) < hy. Proof: _ . o o
Butif h; > 1 anda(1—hy) > hyinthis caseitis stable ~ The Jacobian matrix at the interior pol(x",y",z")
in zdirection and unstable ix— y direction. is given below:
Proof: 11 812 813
The Jacobian matrix associated with the equilibriumV (E3) = | 821 822 83| where
point atE;(1— hy,0,0) is 31 32 as3
(=1+h;) —a(l-h;) O 1=1-2x"—ay"—hy; a;p = —ax’;
V(El)z 0 a(l—hl)—hz 0 B(Cf—l—f)
_ ar=ay ap=ax'"—hy— ——~:
0 0 y 21=0Y"; a2 2 Cty 1702

The eigenvalues dE; areAd; = —1+hg, A, =a(1—
h;) —hy, A3=—yIf hy <1anda(1—h;) < hy in this case a3 =
all the eigenvalues are negative. (C+y +27)
Hence E; is asymptotically stable in th& —y — z S(cz+z?%) ey +y?)
direction. But ifh; > 1 anda(1— hy) > hy in this case C+y +2)2 a3z = (C+y +7)2

one of the eigenvalue is negative and two of them SThen corresponding characteristic equation becomes
positive so it is stable iz direction and unstable irR—y

direction. AM+SA2+SA+S5=0 (16)
This completes the proof.

Theorem 5.3. where
The predator free equilibrium pointEy is S = —(ag1+ax+ass)

asymptotically stable in thex —y — z plane if S, = 11800+ ApA33 -+ 811833 + 812821803837
a < (ahy+hp) and(ca?+a) < (ahy+hy)

Bley +y°) |

31=0; agx = -y

Proof: S = —[(a11820833 — A11823832) — A12(821832)]
The Jacobian matrix associated with the equilibrium ~ — 311823332+ 812821832 — 811822833

pointate; is h, H 0 SIS — S5 = [arpai(a11+ ax2+ ass) + azzazz(aza + ass)]

-2 —h
a—(afiihy) o Bla-(ahihp)) — [af1(a2+ a33) + @3,(a11 + ag3)

VE) = a ca®+a(ahyhy) The +a83(a11 + ap2) — 2811820833 — 412821832

0 0 dla-(ahrh) — 53(a11+az2 11822833 — 12821832
ca?+a—(ahy+hy) Y

The sufficient condition fo6;, > 0,S > 0,55 -S> 0

corresponding characteristic equation Egris are as followsy 1 < 0,87, < 0,as3 < 0 Which implies the

AP+ pA2+poA +p3=0 (15) conditions ,
where (ax* —hy) < Blz+z7) )2
m_ 3(a — (ahy+hy)) (C+y*+7)
caz+a (ah;+hy) S(ey+y?) <ylc+y +7)?
ah1+ hy) Thus if the condition stated in the theorem holds, then all
P2 = | (h2) the Rouh-Hurwitz criteria
(i)( (et ) =0
a ca?+a— (ahy+hy) (i) SIS~ S >0

_h hy + h, o((ah_1+hy)—a) n are satisfied and the system is locally asymptotically
Ps = N2 caZ+a— (ah;+hy) stable.
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6 Global Stability Analysis: (19). We get the following
dL
5 = Sl@—x) —ay—hj(x—x)
In this section, we shall study the global dynamics of the Bz
system 8) around the predator free equilibrium point and +T [ —hy+ax| (y—y) (20)
co-existence equilibrium poifz(x*,y*, z*). C+y+z
+ [ o _ } (2—7)
Theorem 6.1 C+y+z Y
The predator free equilibrium poirf, is globally = S[—(x—x") —aly—y]] (x—x)
asymptotically stable in the interior of the quadrant of Bz Bz
x—Yyplane. —x*) — — _
yP T |ax=x) L:+y+z c+y*+z*”(y y)
Pr oof
+U(z—7) [ oy }
Cty+z cty +z
Let H(xy) = — a7 = §—(X—=X)}(x=x)
c A
T [B( (z-2)+ (@ - y))H Y—v)
: L o . (c+y+2)(c+y +7)
Clearly H(x,y) is positive in the interior of the positive
guadrant ok —y plane. +U(z—7) [ (cly—y)+(yz' - y*Z))]
(c+y+2z)(c+y+7z)

W(xy) = x(1—x) - axy—hx We choose the paramet@s-1,6 =1,T = % then we get
h(xy) = axy—hy
dL 2 (Y'z—yz')
= (X=X — — z-z
A v e AU R ICatS
7} 7} . . " .
Then A(x,y) = 0—(h’H)+d—(h’/H) Then using the given condition, we see titit/dt is
X y negative definitel is a Lyapunov function with respect to
_ 1 <0 (18) all solutions in the interior of the positive octant which
y proves the theorem

By using Bendixson-Dulac criteria, we note théatx,y)
remains the same sign and is not identically zero in th
interior of the positive quadrant of the—y plane. This
completes the proof.

®7 Introduction of Backstep control in
Prey-predator system

Theorem 6.2

The co-existence equilibrium poiriz(x*,y*,z") is
globally asymptotically stable with respect to all soluto
initiating in the interior of satisfy the following condins
X < X" andzy* > z*y

In this section, the system with two preys viz. susceptible
prey, infected prey and a predator population controlled
by back stepping using nonlinear feedback control
approach is studied. we initiate the study by assuming
that the system3] can be written in the suitable for

Proof: dx
. o — =X(1—Xx) — axy—hix
The proof can be reached by using Lypunov stability dt
theorem which gives sufficient condition. Now let us dy Bzy
define o oy c+y+z_h2y+ Uy (21)
dz oz VZ-+u
—slx—x—xIn(X v Yy dt  c+y+z 2
L_S[x X xln(x*)}JrT[y y* WIn(y*ﬂ

Where uq,u, are
(19)

oo

which will be suitab

back stepping nonlinear feedback

controllers which is the function of state variables and

le choice to make the trajectory of the

whole system Z1). As long as these feedback stabilize
Where S T,U are positive constant to be chosen later.the system Z1) converge to zero as the tintegoes to

Differentiate (9) with respect to t and substitut&)(in

infinity.(i.e) The system21) gives lim_. ||x(t)|| =0
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Theorem 7.1

Using the backstep control in the three species system, By applying 81) and B2) in the equation33) gives

hy h hy 2 hy  hy
ug <+ e-X-_ty el)x+a+ X°(22) g (1+ae1 X= ot el)x

U —oex(1+ae —X)
27 ctae—x+ae
And with error dynamics

€=y,
€ =2—-1]2

The system 1) will be asymptotically stable in the

Lyapunov sense about its equilibrium state.

Proof:

The Lyapunov function of is taken as
1

Fi(x) = §X2

Differentiate @5) with respect td is
F1 = XX

= X(x— X2 — axy — hix)
By defining the virtual controller
y = n1(X) where

_1-x

m="a

(23)

(24)

(25)

(26)

(27)

By using virtual controller?7) in the above equatior26),

we get

Fi = — th2

(28)

wheren, =0
_he
a
—hye1 +up (35)
Now, we have
% = X(1—Xx) — axy — hix (36)
By using 1), the above equatior36) gives
dx
i —oae;X— hpx (37)

Differentiate 9) and applying 87) in (29) we get,

Fo = X(—aeix— hix)
M

hi h
+e1[(1+ae1—x—gl+§—e1)x .
—h291+U1} (38)

Choosing the backstepping controllgg) in equation 88)
becomes

Fo = —hyx® — hoe? (39)

Which is negative definite function. Now consider the
Lyapunov function for(x, e;, e)

This is a negative definite function. Now consider the The derivative of the above function along the derivative

Lyapunov function of x,e;)

1 1
Fa(x,e1) = -x2 4 - €

2 2
Consider the error dynamics
e =Yy—n(x
which implies
y = e +ni(x)
1
=5 (1+ae —Xx)

The derivative of 80) on applying 81) becomes
vt X
€=y o

Byz

P hytu
cty+z 2y +th

%[x(l— X) — axy —hix

Again defining the virtual controller

z=n2(xy)

(29)

(30)

(31)

(32)

(33)

(34)

1o 1,01
of (40) is
Fs=Fted (41)

Now consider the error dynamics
€ =7— nZ(yvx) (42)

Letno=0=>e=2
The derivative of the error dynamics is

&=z (43)
Hence the derivativel(l) along @1),(39),(43) becomes
Fé = —th2 — hze%

oe(l+aer—x)
(c+ae—x)+ae

+e —ye+uUp (44)

Choosing the back step controll@dj,the above derivative
(44) becomes

Fs = hpd — hoef — yes (45)

This is a negative definite function. Hence the theorem
proves that the system is globally asymptotically stable.
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8 Numerical simulation

Numerical simulation plays the key role in the qualitative
analysis of the system. The main objective of the

numerical simulation is to explore the possibility of
variation and the effect of back step control to this
behavior. For the various choices of the parameter of the
model, we have performed the simulation using
MATLAB. It is observed that they show good agreement
with our analytical findings. First we start by studying the
density behavior of the two preys and one predator with
time of the uncontrolled system.

Let Ry be the parameter set taken as
B =090 =05y=0.2c=0.350a = 235 With the
above parameter set the syste3jl{as varying harvesting
rate within the range 01 < h; < 02 and
0.01< hy, < 0.2. If hy = 0.01,h, = 0.01, the time series

populations

susceptible prey
infected prey
predator

15

0 20 40 60 80 100 120 140 160 180 200
time

of the system 3 is as shown in figure (1) if
h; = 0.1,h, = 0.1 the time series of the systerd) (s as

Fig 1. Time series of the syster8)(

shown in figure (2). Ithy = 0.2,h, = 0.2, the time series
and the phase portrait is as shown in fig@jednd @).
From the figures (1-4), we observe that increase in the
harvest rate, reduces the population density of the infecte
prey , predator with inflation in the susceptible prey.

Let R, be the parameter set taken as
B=090=05y=0.2,c=0.35h; = hy = 0.1. With
the above parameter set, the systeB) llas varying
diseases transmission rateal= 2.35, the corresponding
time series and phase portrait are as shown in figure (5)

and (6). . Ifa = 1.85, the corresponding time series and

populations

susceptible prey
infected prey

predator

15

-

os ||

. . I / / [ I I )
0 20 40 60 80 100 120 140 160 180 200
time

phase portrait are as shown in figure (7) and (8). It is
observed that the decrease in the transmission rate
decreases the density of infected prey and predator

Fig 2. Time series of the syster8)(

population and increases the susceptible prey population.
In the controlled system2(), population density
reaches the point0,0,0) as shown in figure (9), (10),
(11) when the harvesting rates are set &6 h; < 0.2
and Q01 < hy < 0.2 with the disease transmission rate to
be in the range B85 < a < 2.35 (i.e) the system (21)
converges to zero as— . The corresponding phase
portrait is shown in Figure (12). The results of numerical
simulation conclude that the three species prey-predator
model is globally asymptotically stable.

populations

susceptible prey
infected prey
predator

15

-

0.5

L L L L L L L L ,
0 20 40 60 80 100 120 140 160 180 200
time

Fig 3. Time series of the syster8)(
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phase portrait
e 2
susceptible prey
infected prey
1 predator
15
0.75
-‘.% 0.5 é
0.25 5
0
2
SRR N 12 -
S04 06 o8t
Infected prey 070 02 Susceptible prey
Fig 4. Phase portrait of the systeB) ( Fig 7. Time series of the syster8)(
phase portrait
2
susceptible prey
infected prey
predator 1_--7770
e 0.75
g g os
%ﬁ B 0.25
0
2
T 06 O
Infected prey 0o 02 * Susceptible prey
. ' . Fig 8.Phase portrait of the syste
Fig 5. Time series of the syster8)( g P ystes) (
phase portrait 2
N 18
1.6
1
14
0.75 § 1.2
& 2 08
0.25 @
0.6
0 04t |
’ 2 0.2 ‘L
AU AVAV U NS
- 1 » L fl il I I I I I I I I}
- 0a 06 08 0 20 40 60 80 100 120 140 160 180 200
Infected prey 0o %7 Susceptible prey tme
. ) Fig 9. The variation of susceptible prey
Fig 6.Phase portrait of the systeB) ( populationapproaches stability of the system(21) with
backstep control
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hold good which indicates that the system considered is

well-behaved. Existence of possible equilibrium points
2 were obtained and the stability was analyzed at those
18 points. The controllability conditions and the conditions
16 for global asymptotic stability have been obtained by
14 using the backstep control. By using the backstep control
g 12 technique. It is proved that the three species prey-predato
e model is asymptotically stable to its trivial equilibrium
£ 08 point. It is observed that the decrease in the transmission
06 rate decreases the density of infected prey and predator
04 population and increases the susceptible prey
02 population.Different parameter values give varying
% 20 40 0 80 10 0 M0 160 180 200 responses to the system. The chaotic behavior of this
e prey-predator system has been visualized by these
varying values. The numerical results add to the novelty
Fig 10. The variation of infected prey population ~ and effectiveness of the proposed work.
approaches stability of the system(21) with backstep
control
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