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Abstract: A three parameter Burr distribution is considered. Two measures of reliability are discussed, namelyR(t) = P(X > t) and
P = P(X > Y ). Point and interval estimation procedures are developed for the parameters,R(t) andP based on records. Two types of
point estimators are developed – uniformly minimum variance unbiased estimators (UMVUES) and maximum likelihood estimators
(MLES). A comparative study of different methods of estimation is done through simulation studies and asymptotic confidence intervals
of the parameters based on MLE and log(MLE) are constructed.Confidence intervals for the MLE and UMVUE of the parametric
functions are obtained. Testing procedures are also developed for various hypotheses. Real example is used to illustrate the results.
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1 Introduction

The reliability functionR(t) is defined as the probability
of failure-free operation until timet. Thus, if the random
variable (rv) X denotes the lifetime of an item or a
system, thenR(t) = P(X > t). Another measure of
reliability under stress-strength setup is the probability
P = P(X > Y ), which represents the reliability of an item
or a system of random strengthX subject to random stress
Y . A lot of work has been done in the literature for the
point estimation and testing ofR(t) andP. For example,
Pugh (1963), Basu (1964), Bartholomew (1957, 1963),
Tong (1974, 1975), Johnson (1975), Kelley, Kelley and
Schucany (1976), Sathe and Shah (1981), Chao (1982),
Chaturvedi and Surinder (1999) developed inferential
procedures forR(t) and P for exponential distribution.
Constantine, Karson and Tse (1986) derived UMVUE and
MLE for P associated with gamma distribution. Awad and
Gharraf (1986) estimatedP for Burr distribution. For
estimation of R(t) corresponding to Maxwell and
generalized Maxwell distributions, one may refer to Tyagi
and Bhattacharya (1981) and Chaturvedi and Rani (1998),
respectively. Inferences have been drawn forR(t) andP
for some families of lifetime distributions by Chaturvedi
and Rani (1997), Chaturvedi and Tomer (2003),

Chaturvedi and Singh (2006, 2008), Chaturvedi and
Kumari (2015) and Chaturvedi and Malhotra (2016).
Chaturvedi and Tomer (2002) derived UMVUE forR(t)
and P for negative binomial distribution. For
exponentiated Weibull and Lomax distributions, the
inferential procedures are available in Chaturvedi and
Pathak (2012, 2013, 2014). Many authors have studied
the estimation of Burr type XII parameters. Burr and
Cislak (1968), Rodriguez (1977) and Tadikamalla (1980)
summarized its properties and verified relations with
some other distributions. Shao (2004) expanded an
extended three parameter Burr type XII distribution and
used it for flood frequency analysis. Based on type II
censored, Wingo (1993) obtained the maximum
likelihood estimators and discussed the necessary and
sufficient condition to guarantee the existence, uniqueness
and fitness. Wang et al. (1996) presented the methodology
to obtain the maximum likelihood and interval estimation
of Burr type XII distribution using censored and
uncensored data. Soliman (2005) derived maximum
likelihood, Bayes and empirical Bayes estimators (BEs)
of Burr type XII distribution based on progressive
censored samples using various loss functions and Wang
and Shi (2010) considered empirical Bayes inference for
the Burr model based on record values.
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Chandler (1952) introduced the concept of record
values. Based on records, inferential procedures for the
parameters of different distributions have been developed
by Glick (1978), Nagaraja (1988a, 1988b), Balakrishan,
Ahsanullah and Chan (1995), Arnold, Balakrishan and
Nagaraja (1992), Habibi Rad, Arghami and Ahmadi
(2006), Arashi and Emadi (2008), Razmkhah and Ahmadi
(2011), Arabi Belaghi, Arashi and Tabatabaey (2015) and
others.

In this article, Section 2 discusses a three parameter
Burr distribution by introducing a scale parameter to the
Burr XII model (1942). In Section 3, we develop point
estimation procedures based on records when one
parameter is unknown and the remaining are known and
we also discuss the case when all the parameters are
unknown. As far as point estimation is concerned, we
derive UMVUES and MLES. A new technique of
obtaining these estimators is developed, in which first of
all the estimators of powers of parameter are obtained.
These estimators are used to obtain estimators ofR(t).
Using the derivatives of the estimators ofR(t), the
estimators of sampled probability density function (pdf ),
at a specified point, are obtained which are subsequently
used to obtain estimators ofP. In Section 4, asymptotic
confidence intervals (CIs) for scale and shape parameters
and reliability function are constructed. Confidence
intervals for the MLES and UMVUES of the parametric
functions are also obtained. In Section 5, testing
procedures are developed for the parameter of the
distribution. In Section 6, we present numerical findings
along with real data analysis and finally in Section 7 we
discuss our results.

2 The Three Parameter Burr Distribution

The two parameter Burr type XII distribution was first
introduced by Burr (1942). A random variableX is said to
have a Burr type XII distribution with the shape
parametersc andk, if its cumulative distribution function
(cdf) and probability density function (pdf ) have the
forms, respectively, given by

F(x;k,c) = 1− (1+ xc)−k; x > 0,c,k > 0

and

f (x;k,c) = kcxc−1(1+ xc)−(k+1); x > 0,c,k > 0

Hogg and Klugman (1984) discussed a three parameter
Burr distribution by introducing a scale parameterα to
the Burr type XII distribution. This distribution haspdf
and cdf of the following form respectively:

f (x;k,c,α) =
kcxc−1

α

(

1+
xc

α

)−(k+1)

; x > 0,c,k,α > 0

(2.1)

and

F(x;k,c,α) = 1−
(

1+
xc

α

)−k

; x > 0,c,k,α,> 0

(2.2)

From (2.2), the reliability function at a specified timet (>
0) is:

R(t) = P(X > t) =

(

1+
tc

α

)−k

(2.3)

From (2.1)and (2.3), the hazard rate is given by:

h(t) =
kctc−1

α
(

1+ tc

α

) (2.4)

It follows from (2.4) and Figure 1 that the hazard rate is a
decreasing function oft for every value of the parameters
k, c andα except for whenc > 1. For c > 1, the hazard
rate increases upto timet = 2 and then decreases.

3 Point estimation Procedures

Let X1,X2, . . . be an infinite sequence of independent and
identically distributed (iid) rvs from (2.1). An observation
X j will be called an upper record value (or simply a record)
if its value exceeds that of all previous observations. Thus
X j is a record ifX j > Xi for everyi < j.

The record time sequence{Tn,n ≥ 0} is defined as:
{

T0 = 1; with probability 1
Tn = min{ j : X j > XTn−1; n ≥ 1

The record value sequence{Rn} is then defined by:

Rn = XTn ; n = 0,1,2, . . .

We can rewrite (2.1) as follows:

f (x;k,c,α) =
kcxc−1

α(1+ xc

α )
exp

(

− k log

(

1+
xc

α

))

;

x > 0,k,c,α > 0

Assumingα andc to be known, the likelihood function of
the firstn+1 upper record valuesR0,R1,R2, . . . ,Rn is:

L(k|R0,R1,R2, . . . ,Rn)

= f (Rn;k,c,α)
n−1

∏
i=0

f (Ri;k,c,α)

1−F(Ri;k,c,α)

It is easy to see that

L(k|R0,R1,R2, . . . ,Rn)

=

(

kc
α

)n+1

exp

(

− k log

(

1+
Rc

n

α

)) n

∏
i=0

Rc−1
i

(1+
Rc

i
α )

(3.1)
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Fig. 1: Hazard Rate fork = 2 andα = 3

The following theorem provides UMVUE of powers ofk.
This estimator will be utilized to obtain the UMVUE of
reliability functions. For simplicity, we define:

U(x) = log

(

1+
xc

α

)

Theorem 1.For q ∈ (−∞,∞), q 6= 0, the UMVUE ofkq is
given by:

k̃q =







{

Γ (n+1)
Γ (n− q+1)

}

(U(Rn))
−q; n > q−1

0; otherwise

Proof. It follows from (3.1) and factorisation theorem [see
Rohtagi and Saleh (2012, p. 361)] thatU(Rn) is a sufficient
statistic fork and thepdf of U(Rn) is:

h(U(Rn)|k) =
kn+1U(Rn)

n

Γ (n+1)
exp(−kU(Rn)) (3.2)

From (3.2), since the distribution ofU(Rn) belongs to
exponential family, it is also complete [see Rohtagi and
Saleh (2012, p. 367)]. The result now follows from (3.2)
that

E[U(Rn)
−q] =

{

Γ (n− q+1)
Γ (n+1)

}

kq

In the following theorem, we obtain UMVUE of the
reliability function.
Theorem 2.The UMVUE of the reliability function is

R̃(t) =











[

1− U(t)
U(Rn)

]n

; U(t)<U(Rn)

0; otherwise

Proof. It is easy to see that

R(t) = exp{−kU(t)}

=
∞

∑
i=0

(−1)i

i!
{kU(t)}i (3.3)

Applying Theorem 1, it follows from (3.3) that

R̃(t) =
∞

∑
i=0

(−1)i

i!
U(t)ik̃i

=
n

∑
i=0

(−1)i
(

n
i

){

U(t)
U(Rn)

}i

and the theorem follows.
The following corollary provides UMVUE of the

sampledpdf. This estimator is derived with the help of
Theorem 2.

Corollary 1. The UMVUE of the sampledpdf (2.1) at a
specified pointx is

f̃ (x;k,c,α) =























ncxc−1

α(1+ xc
α )U(Rn)

[

1− U(x)
U(Rn)

]n−1

;

U(x)<U(Rn)

0; otherwise

Proof. We note that the expectation of
∫ ∞

t f̃ (x;k,c,α)dx
with respect toRn is R(t). Hence,

R̃(t) =
∫ ∞

t
f̃ (x;k,c,α)dx

The result follows from Theorem 2.
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In the following theorem, we obtain expression for the
variance of R̃(t), which will be needed to study its
efficiency.

Theorem 3.The variance of̃R(t) is given by:

VarR̃(t)

=
1
n!
{kU(t)}(n+1)exp{−kU(t)}

·
[

an

kU(t)
− an−1exp{kU(t)}Ei(−kU(t))

+
n−2

∑
i=0

ai

{ n−i−1

∑
m=1

(m−1)!
(n− i−1)!

(−kU(t))n−i−m−1

− 1
(n− i−1)!

(−kU(t))n−i−1exp(kU(t))Ei(−kU(t))

}

+
2n

∑
i=n+1

ai(i− n)!

(

1
kU(t)

)i−n+1 i−n

∑
r=0

1
r!
(kU(t))r

]

−exp{−2kU(t)}, (3.4)

whereai = (−1)i
(2n

i

)

and−Ei(−x) =
∫ ∞

x
e−u

u du.

Proof. Using (3.2) and Theorem 2,

E{R̃(t)2}

=
kn+1

Γ (n+1)

∫ ∞

U(t)

[

1− U(t)
U(Rn)

]2n

{U(Rn)}n exp{−kU(Rn)}dU(Rn)

=
1

Γ (n+1)
(kU(t))n+1exp(−kU(t))

·
∫ ∞

0

z2n

(1+ z)n exp(−zkU(t))dz

=
1

Γ (n+1)
(kU(t))n+1exp(−kU(t))I, (say) (3.5)

where

I =
n

∑
i=0

ai

∫ ∞

0

1
(z+1)n−i exp(−zkU(t))dz

+
2n

∑
i=n+1

ai

∫ ∞

0
(z+1)i−n exp(−zkU(t))dz (3.6)

Using a result of Erdélyi (1954) that

∫ ∞

0

exp(−up)
(u+ a)n du

=
n−1

∑
m=1

(m−1)!(−p)n−m−1

(n−1)!am

− (−p)n−1

(n−1)!
exp(ap)Ei(−ap)

we have
∫ ∞

0

1
(z+1)n−i exp(−zkU(t))dz

=
n−i−1

∑
m=1

(m−1)!
(n− i−1)!

(−kU(t))n−i−m−1

− 1
(n− i−1)!

(−kU(t))n−i−1

exp(kU(t))Ei(−kU(t)), i = 0,1,2, . . . ,n−2 (3.7)

Furthermore,

∫ ∞

0

1
(1+ z)

exp(−zkU(t))dz

= exp(kU(t))
∫ ∞

0

1
(z+1)

exp(−kU(t)(z+1))dz

= exp(kU(t))
∫ ∞

(kU(t))

e−y

y
dy

=−exp(kU(t))Ei(−kU(t)). (3.8)

We have

∫ ∞

0
exp(−zkU(t))du =

(

1
(kU(t)

)

(3.9)

Finally,

∫ ∞

0
(1+ z)i−n exp(−zkU(t))dz

=
i−n

∑
r=0

(

i− n
r

)

∫ ∞

0
zi−n−r exp(−zkU(t))dz

=
i−n

∑
r=0

(

i−n
r

){

1
kU(t)

}i−n−r+1

Γ (i−n−r+1) (3.10)

The theorem now follows on making substitutions from
(3.7), (3.8), (3.9) and (3.10) in (3.6) and then using (3.5).

Theorem 4.The MLE ofR(t) is given by:

R̂(t) = exp

{−(n+1)U(t)
U(Rn)

}

Proof. It can be easily seen from (3.1) that the MLE of
k is k̂ = (n+1)

U(Rn)
. The theorem now follows from invariance

property of MLE.
In the following corollary, we obtain the MLE of

sampledpdf with the help of Theorem 4. This will be
used to obtain MLE ofP.

Corollary 2. The MLE of f (x;k,c,α) at a specified point
x is

f̂ (x;k,c,α) =
(n+1)cxc−1

αU(Rn)(1+ xc

α )
exp

{−(n+1)U(x)
U(Rn)

}
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Proof. The result follows from Theorem 4 on using the
fact that

f̂ (x;k,c,α) =− d
dt

R̂(t).

In the following theorem, we obtain the expression for
variance ofR̂(t).
Theorem 5.The variance of̂R(t) is given by:

Var{R̂(t)}

=
2
n!
{2(n+1)kU(t)} n+1

2 Kn+1(2
√

2(n+1)kU(t) )

−
[

2
n!
{(n+1)kU(t)} n+1

2 Kn+1(2
√

(n+1)kU(t) )

]2

whereKr(·) is modified Bessel function of second kind of
orderr.
Proof. Using (3.2) and Theorem 4, we have

E{R̂(t)}

=
kn+1

Γ (n+1)

∫ ∞

0
exp

[

−
{

kU(Rn)+
(n+1)U(t)

U(Rn)

}]

{U(Rn)}ndU(Rn)

=
1

Γ (n+1)

∫ ∞

0
exp

[

−
{

y+
(n+1)kU(t)

y

}]

yndy

(3.11)

Applying a result of Watson (1952) that
∫ ∞

0
u−m exp

{

−
(

au+
b
u

)}

du

= 2

(

a
b

)(m−1)

2Km−1(2
√

ab)

[it is to be noted thatK−m(·) = Km(·) for m = 0,1,2, . . .],
we obtain from (3.11) that

E{R̂(t)}= 2
n!
{(n+1)kU(t)}

(n+1)
2 Kn+1(2

√

(n+1)kU(t))

Similarly, we can obtain the expression forE{R̂(t)2} and
the result follows.

Let X and Y be two independent rvs from three
parameter Burr distribution f (x;k1,c1,α1) and
f (y;k2,c2,α2) respectively, i.e.

f (x;k1,c1,α1)

=
k1c1xc1−1

α1(1+ xc1
α1

)
exp

{

− k1 log

(

1+
xc1

α1

)}

;

x > 0,k1,c1,α1 > 0

and

f (y;k2,c2,α2)

=
k2c2yc2−1

α2(1+
yc2

α2
)

exp

{

− k2 log

(

1+
yc2

α2

)}

;

y > 0,k2,c2,α2 > 0

Let {Rn} and{R∗
m} be the record value sequences forX ’s

andY ’s respectively. For simplicity, we define:

U(x) = log

(

1+
xc1

α1

)

, V (y) = log

(

1+
yc2

α2

)

Theorem 6.The UMVUE ofP is given by

P̃ =































m
∫

V (Rn)
V(R∗m)

0 (1− z)m−1[1−U(Rn)
−1

U{(α2(ezV (R∗
m)−1))

1
c2 }]ndz; Rn < R∗

m

m
∫ 1

0 (1− z)m−1[1−U(Rn)
−1

U{(α2(ezV (R∗
m)−1))

1
c2 }]ndz; Rn ≥ R∗

m

Proof. It follows from Corollary 1 that the UMVUES of
f (x;k1,c1,α1) and f (y;k2,c2,α2) at specified pointsx and
y are respectively:

f̃ (x;k1,c1,α1) =























nc1xc1−1

α1(1+
xc1
α1

)
U(Rn)

[

1− U(x)
U(Rn)

]n−1

;

U(x)<U(Rn)

0; otherwise

and

f̃ (y;k2,c2,α2) =























mc1yc2−1

α2(1+
yc2
α2

)
U(Rn)

[

1− V (y)
U(R∗

m)

]m−1

;

V (y)<V (R∗
m)

0; otherwise

From the arguments similar to those used in the proof of
Corollary 1,

P̃ =

∫ ∞

y=0

∫ ∞

x=y
f̃ (x;k1,c1,α1) f̃ (y;k2,c2,α2)dxdy

=

∫ ∞

y=0
R̃(y;c1,α1)

{

− d
dy

R̃(y;c2,α2)

}

dy

= m
∫ min{Rn,R∗

m}

0

[

1− U(y)
U(Rn)

]n{ mc2yc2−1

α2V (R∗
m)(1+

yc2

α2
)

}

×
[

1− V (y)
V (R∗

m)

]m−1

dy

The theorem now follows on considering the two cases and
putting V (y)

V (R∗
m)

= z.

Theorem 7. When c1 = c2 = 1 and α1 = α2 = 1, the
UMVUE of P is:

P̃ =











































m
m−1
∑

i=0
(−1)i m!n!

(m−1− i)!(n+1+ i)!

{

U(Rn)

U(R∗
m)

}i+1

;

Rn < R∗
m

m
n
∑

i=0
(−1)i m!n!

(m+ i)!(n− i)!

{

U(R∗
m)

U(Rn)

}i

;

Rn ≥ R∗
m
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Proof. TakingU(·) =V (·) in Theorem 6, then forRn < R∗
m

P̃ = m
∫

U(Rn)
U(R∗m)

0
(1− z)m−1

{

1− zU(R∗
m)

U(Rn)

}n

dz

= m

{

U(Rn)

U(R∗
m)

}

∫ 1

0

{

1− wU(Rn)

U(R∗
m)

}m−1

(1−w)ndw

= m
m−1

∑
i=0

(−1)i
(

m−1
i

){

U(Rn)

U(R∗
m)

}i+1∫ 1

0
wi(1−w)ndw

and the first assertion follows. Similarly, we can prove the
second assertion.
Theorem 8.The MLE ofP is

P̂ =

∫ ∞

0
e−z exp

{−(n+1)
U(Rn)

U((α2(e
zV (R∗m)

m+1 −1))
1

c2 )

}

dz

Proof. We have,

P̂ =

∫ ∞

y=0

∫ ∞

x=y
f̂ (x;k1,c1,α1) f̂ (y;k2,c2,α2)dxdy

=

∫ ∞

y=0
R̂(y;c1,α1) f̂ (y;k2,c2,α2)dy

=

∫ ∞

y=0
exp

{−(n+1)U(y)
U(Rn)

}{

(m+1)c2yc2−1

α2V (R∗
m)(1+

yc2

α2
)

·exp

{−(m+1)V(y)
V (R∗

m)

}

dy

The result now follows on putting

{

(m+1)V(y)
V (R∗

m)

}

= z.

Theorem 9.Whenc1 = c2 = 1 andα1 = α2 = 1, the MLE
of P is given by

P̂ =
(m+1)U(Rn)

(m+1)U(Rn)+ (n+1)U(R∗
m)

Now we consider the case when all the parametersk, c and
α are unknown. From (2.1), the log-likelihood function is
given as:

l(k,c,α)

= L(k,c,α|R0,R1,R2, . . . ,Rn)

= (n+1) log(k)+ (n+1) log(c)− (n+1) log(α)

− k log

(

1+
Rc

n

α

)

+(c−1)
n

∑
i=0

log(Ri)

−
n

∑
i=0

log

(

1+
Rc

i

α

)

(3.12)

The MLEs of k, c and α are the solutions of the three
simultaneous equations given below:

n+1
k

− log

(

1+
Rc

n

α

)

= 0 (3.13)

−(n+1)
α

+ k
Rc

n

α2(1+ Rc
n

α )
+

1
α2

n

∑
i=0

Rc
i

(1+
Rc

i
α )

= 0

(3.14)

and
n+1

α
− k

Rc
n log(Rn)

α(1+ Rc
n

α )

−
n

∑
i=0

1

(1+
Ri+

n
∑

i=0
log(Ri)c

α )

Rc
i

α
log(Ri) = 0 (3.15)

From (3.13), we get

k̂ =
n+1

log(1+ Rĉ
n

α̂ )
(3.16)

wherek̂, ĉ andα̂ are the MLEs ofk, c andα respectively.
Since these non-linear equations don’t have a closed form
solution, therefore we apply Newton Raphson algorithm to
compute MLEs ofc andα. These values of MLEs ofc and
α so obtained can be substituted in (3.16) to obtain MLE
of k.

It is to be noted that from Theorem 4, Theorem 8 and
invariance property of MLE, the MLE ofR(t) is given as:

R̂(t) = exp

{−(n+1)U(t)
U(Rn)

}

whereU(x) = log(1+ xĉ

α̂ ). Whereas the MLE ofP is given
by:

P̂ =

∫ ∞

0
e−z exp

{−(n+1)
U(Rn)

U((α̂2
(

e
zV(R∗m)

m+1 −1))
1

ĉ2 )

}

dz

whereU(x) = log(1+ xĉ1
α̂1

), V (x) = log

(

1+ xĉ2
α̂2

)

.

4 Confidence Intervals

The Fisher information matrix ofθ = (k,c,α)T is:

I(θ ) =−E













∂ 2l
∂k2

∂ 2l
∂k∂c

∂ 2l
∂k∂α

∂ 2l
∂c∂k

∂ 2l
∂c2

∂ 2l
∂c∂α

∂ 2l
∂α∂k

∂ 2l
∂α∂c

∂ 2l
∂α2













where ∂ 2l
∂k2 = −(n+1)

k2 , ∂ 2l
∂c∂k = ∂ 2l

∂k∂c = −Rc
n log(Rn)

α(1+ Rc
n

α )
,

∂ 2l
∂α∂k = ∂ 2l

∂k∂α = Rc
n

α2(1+ Rc
n

α )
,

∂ 2l
∂α∂c

=
∂ 2l

∂c∂α
=

kRc
n log(Rn)

α2(1+ Rc
n

α )2
+

n

∑
i=0

Rc
i log(Ri)

α2(1+
Rc

i
α )2

,

∂ 2l
∂α2 =

n+1
α2 − kRc

n

α4

[

2α(1+ Rc
n

α )−Rc
n

(1+ Rc
n

α )2

]

−
n

∑
i=0

Rc
i

α4

[

2α(1+ Rc
i

α )−Rc
i

(1+ Rc
n

α )2

]

,

∂ 2l
∂c2 =

−(n+1)
c2 − kRc

n(log(Rn))
2

α(1+ Rc
n

α )2
−

n

∑
i=0

Rc
i (log(Ri))

2

α(1+
Rc

i
α )2

c© 2017 NSP
Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci.11, No. 3, 837-849 (2017) /www.naturalspublishing.com/Journals.asp 843

Since it is a complicated task to obtain the expectation of
the above expressions, therefore we use observed Fisher
information matrix which is obtained by dropping the
expectation sign. The asymptotic variance-covariance
matrix of the MLEs is the inverse ofI (θ̂ ). After
obtaining the inverse matrix, we get variance ofk̂, ĉ and
α̂. We use these values to construct confidence intervals
of k, c andα respectively.

Assuming asymptotic normality of the MLEs, CIs for
k, c andα are constructed. Let̂σ2(k̂), σ̂2(ĉ) and σ̂2(α̂)

be the estimated variances ofk̂, ĉ andα̂ respectively. Then
100(1−ε)% asymptotic CIs fork, c andα are respectively
given by:

(k̂−Z ε
2
σ̂(k̂), k̂+Z ε

2
σ̂(k̂)), (ĉ−Z ε

2
σ̂(ĉ), ĉ+Z ε

2
σ̂(ĉ))

and (α̂ −Z ε
2
σ̂(α̂), α̂ +Z ε

2
σ̂(α̂))

where Z ε
2

is the upper 100(1− ε) percentile point of
standard normal distribution. Using these CIs, one can
easily obtain the 100(1− ε)% aymptoticCI for R(t) as
follows:

(

exp

(

− (k̂+Z ε
2
σ̂(k̂)) log

(

1+
t
ĉ+Z ε

2
σ̂(ĉ)

α̂ −Z ε
2
σ̂(α̂)

,

exp

(

− (k̂−Z ε
2
σ̂(k̂)) log

(

1+
t
ĉ−Z ε

2
σ̂(ĉ)

α̂ +Z ε
2
σ̂(α̂)

)))

Meeker and Escober (1998) reported that the asymptotic
CI based on log(MLE) has better coverage probability. An
approximate 100(1−ε)% CI for log(k), log(c) and log(α)
are:

(log(k̂)−Z ε
2
σ̂(log(k̂)), log(k̂)+Z ε

2
σ̂(log(k̂))),

(log(ĉ)−Z ε
2
σ̂(log(ĉ)), log(ĉ)+Z ε

2
σ̂(log(ĉ)))

and(log(α̂)−Z ε
2
σ̂(log(α̂)), log(α̂)+Z ε

2
σ̂(log(α̂)))

whereσ̂2(log(α̂)) is the estimated variance of log(α) and

is approximated by σ̂2(log(α̂)) = σ̂2(α̂)

α̂2 . Similarly,

σ̂2(log(k̂)) and σ̂2(log(ĉ)) are the estimated variance of
log(k) and log(c) and are approximated by

σ̂2(log(k̂)) = σ̂2(k̂)
k̂2 and σ̂2(log(ĉ)) = σ̂2(ĉ)

ĉ2 respectively.
Hence, approximate 100(1− ε)% CI for k, c andα are:

(k̂e
−Z ε

2

σ̂(k̂)
k̂ , k̂e

Z ε
2

σ̂ (k̂)
k̂ ), (ĉe

−Z ε
2

σ̂(ĉ)
ĉ
, ĉe

Z ε
2

σ̂(ĉ)
ĉ ) and

(α̂e
−Z ε

2

σ̂(α̂)
α̂

, α̂e
Z ε

2

σ̂ (α̂)
α̂ )

Now, we construct interval estimates of UMVUE and
MLE of k. From (3.2) it follows that
2k log

(

1+ Rc
n

α
)

∼ χ2
2(n+1). Thus 100(1− ε)% CI for k̃ and

k̂ is respectively obtained as:( 2kn
χ2

2(n+1)(1−
ε
2 )
,

2kn
χ2

2(n+1)(
ε
2 )
) and

( 2k(n+1)
χ2

2(n+1)(1−
ε
2 )
,

2k(n+1)
χ2

2(n+1)(
ε
2 )
).

Similarly, we construct interval estimates of UMVUE
and MLE ofR(t). Thus 100(1− ε)% CI for R̃(t) andR̂(t)
is respectively obtained as:

([

1− 2kU(t)

χ2
2(n+1)(

ε
2)

]n

,

[

1− 2kU(t)

χ2
2(n+1)(1−

ε
2)

]n)

and
(

exp

(

− 2k(n+1)U(t)

χ2
2(n+1)(

ε
2)

)

,exp

(

− 2k(n+1)U(t)

χ2
2(n+1)(1−

ε
2)

))

5 Testing of Hypotheses

Suppose for known values ofc andα, we have to test the
hypothesisH0 : k = k0 againstH1 : k 6= k0. It follows from
(3.1) that, underH0,

sup
θ0

L(k|R0,R1, . . . ,Rn)

=

(

k0c
α

)n+1

exp

{

− k0 log

(

1+
Rc

n

α

)}

n

∏
i=0

Rc
i

(1+
Rc

i
α )

; θ0 = {k : k = k0}

and

sup
θ

L(k|R0,R1, . . . ,Rn)

=

(

c
α

)n+1{ n+1

log

(

1+ Rc
n

α

)

}n+1

exp(−(n+1))

n

∏
i=0

Rc
i

(1+
Rc

i
α )

; θ = {k : k > 0}

Therefore, the likelihood ratio (LR) is given by:

θ (R0,R1, . . . ,Rn)

=
supθ0

L(k|R0,R1, . . . ,Rn)

supθ L(k|R0,R1, . . . ,Rn)

=

{

k0 log(1+ Rc
n

α )

n+1

}n+1

exp

{

− k0 log

(

1+
Rc

n

α

)

+(n+1)

}

(5.1)

We note that the first term on the right hand side of (5.1)
is monotonically increasing and the second term is
monotonically decreasing in log(1+ Rc

n
α ). It follows from

(3.2) that 2k0 log(1+
Rc

n
α ) ∼ χ2

2(n+1). Thus, the critical
region is given by
{0< log(1+ Rc

n
α ) < l0}∪ {l′0 < log(1+ Rc

n
α ) < ∞}, where
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l0 and l′0 are obtained such thatl0 =
χ2

2(n+1)

(

ε
2

)

2k0
and

l′0 =
χ2

2(n+1)

(

1− ε
2

)

2k0
.

An important hypothesis in life-testing experiments is
H0 : k ≤ k0 againstH1 : k > k0. It follows from (3.1) that
for k1 > k2,

L(k1|R0,R1, . . . ,Rn)

L(k2|R0,R1, . . . ,Rn)

=

(

k1

k2

)n+1

exp

{

(k2− k1) log

(

1+
Rc

n

α

)}

(5.2)

It follows from (5.2) that f (x;k,c,α) has monotone
likelihood ratio in log(1+ Rc

n
α ). Thus, the uniformly most

powerful critical region for testingH0 againstH1 is given
by [see Lehmann (1959, p.88)]

θ (R0,R1, . . . ,Rn) =











1; log

(

1+
Rc

n

α

)

≤ l′′0

0; otherwise

wherel′′0 =
χ2

2(n+1)(ε)
2k0

.

6 Numerical Findings

In this section we use Monte Carlo simulation technique
to obtain estimates under this scheme. It involves the
following steps:

I. For known values ofk1, c1, α1, k2, c2 and α2, we
generate 1000 samples each from distribution of
X ∼ Gamma(n+ 1,k1) andY ∼ Gamma(m+ 1,k2)
for specified values ofn andm to obtainX j andYj,
j = 1,2, . . . ,1000, respectively.

II. ComputeU(Rn) =
1

1000

1000
∑
j=1

X j

andV (R∗
m) =

1
1000

1000
∑
j=1

Yj.

For specified value oft, compute R(t) for the three
parameter Burr distribution with(k1,c1,α1) and hence
compute MLE and UMVUE ofR(t). It can be easily
shown that

P =
k2c2

α2

∫ ∞

y=0

yc2−1

1+ yc2

α2

exp

(

− k2 log

(

1+
yc2

α2

)

− k1 log

(

1+
yc1

α1

))

dy

In Table 1, forα1 = 2, c1 = 3, k1 = 0.5, α2 = 5, c2 = 2 and
k2 = 4, we have shown MLE and UMVUE ofk1 for several
values ofn. For t = 5, R(t) = 0.1254 and the MLE and
UMVUE of R(t) are shown in Table 1 for several values
of n. P= 0.7701 by the above expression and the MLE and

UMVUE of P are shown in Table 1 for several values ofn
andm.

Figure 2 showspdf plot of three parameter Burr
distribution and also displays the MLE and UMVUE of
sampledpdf.

In order to investigate the performance of the
estimators obtained under this scheme, we have evaluated
Var(R̃(t)) and MSE(R̂(t)) for c = 2, k = 3, α = 6.
Table 2 givesVar(R̃(t)) and MSE(R̂(t)) for t = 1(1)20
andn = 6,12,18 and 21. Figure 3 compares the variance
UMVUE of reliability function with the mean square
error of MLE of reliability function calculated in Table 2
as time t increases forn = 17.

For computations shown in Table 3 and Table 4, we
have consideredk = 19, c = 25 andα = 17. For t = 1,
R(t) = 0.3375. From Table 3 and Table 4 we observe that
as sample size increases, the length of CIs based on MLE
and log-transformed MLE initially decrease and then start
increasing. As reported by Meeker and Escober we too
observe that asymptotic CIs based on log-transformed
MLE have better coverage probability.

For computations shown in Table 5 and Table 6, we
have consideredα = 2, c = 6 and k = 7. For t = 1,
R(t) = 0.0585 and we compute point estimate and
interval estimate (CI) of UMVUE and MLE ofk andR(t).
From Table 3 and Table 4 we observe that as sample size
increases, the length of CI of UMVUE and MLE ofk and
R(t) decreases.

In the theory developed in Section 5, we have
considered record values from three parameter Burr
distribution withk = 3, c = 5 andα = 6.

1.438675 1.701992 1.710421 1.847597 1.923981
2.183058 2.240566 3.043976
The MLE and UMVUE of k are obtained as

k̂ = 3.8879 andk̃ = 3.4019. For testing the hypothesis
H0 : k = k0 = 3.8 againstH1 : k 6= k0 = 3.8 under this
scheme, with the help of Chi-Square tables at 5% level of
significance, we obtainedl0 = 0.8883 andl′0 = 3.7095.
Hence, in this case we may acceptH0 at 5% level of
significance sinceU(Rn) = 2.0576. Again, for testing
H0 : k ≤ k0 = 3.8 againstH1 : k > k0 = 3.8, we obtained
l′′0 = 1.0238 and hence, in this case we may acceptH0 at
5% level of significance. Now, for testing the hypothesis
H0 : k = k0 = 3.4 againstH1 : k 6= k0 = 3.4 under this
scheme, with the help of Chi-Square tables at 5% level of
significance, we obtainedl0 = 1.0152 andl′0 = 4.2395.
Hence, in this case we may acceptH0 at 5% level of
significance sinceU(Rn) = 2.0576. Again, for testing
H0 : k ≤ k0 = 3.4 againstH1 : k > k0 = 3.4, we obtained
l′′0 = 1.1701 and hence, in this case we may acceptH0 at
5% level of significance.

An Example on Real Data

To illustrate the estimation methods proposed in the
preceding sections, we consider a data analysis of the
maximum flood level (in millions of cubic feet per
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Table 1: UMVUE of k,R(t) andP

n, m k̂ k̃ R̂(t) R̃(t) P̂ P̃
10,10 0.50417 0.458338 0.123337 0.121190 0.768618 0.776029
10,20 0.49715 0.451953 0.126986 0.125216 0.772746 0.782217
10,50 0.50641 0.460375 0.122195 0.119931 0.767525 0.778363
10,100 0.50093 0.455395 0.125005 0.123031 0.770633 0.781903
20,10 0.50077 0.476919 0.125093 0.124347 0.770937 0.772458
20,20 0.49633 0.472699 0.127416 0.126787 0.771640 0.775317
20,50 0.50456 0.480538 0.123136 0.122290 0.769361 0.774436
20,100 0.49889 0.475132 0.126072 0.125375 0.770301 0.775870
50,10 0.50038 0.490572 0.125291 0.125053 0.768763 0.766477
50,20 0.49984 0.490035 0.125577 0.125344 0.770284 0.770277
50,50 0.50163 0.491791 0.124647 0.124396 0.767785 0.769229
50,100 0.50155 0.491716 0.124686 0.124436 0.770136 0.772094
100,10 0.49969 0.494745 0.125652 0.125546 0.770622 0.767112
100,20 0.50136 0.496395 0.124785 0.124671 0.769943 0.768675
100,50 0.50036 0.495406 0.125304 0.125194 0.770147 0.770357
100,100 0.49892 0.493979 0.126056 0.125954 0.770663 0.771387

Fig. 2: MLE and UMVUE of sampledpdf

second) for the Susquehanna River of Harrisburg over 20
four-year periods (Dumonceaux and Antle, 1973) and is
as follows:

0.6540.613 0.315 0.449 0.297 0.402 0.379
0.423 0.379 0.3235 0.269 0.740 0.418 0.412
0.494 0.416 0.338 0.392 0.484 0.265
The following are the upper record values obtained

from it.
0.65400.7400
Shao (2004) showed that the MLE ofk, c andα using

the New-Raphson method are obtained ask̂ = 0.142,
ĉ = 6.434 and α̂ = 1350.844. Based on the estimates
from this sample, we compute interval estimates of
UMVUE and MLE of k and R(t) and the results are

shown in Table 7. We also compute point estimate,
interval estimate and MSE of UMVUE and MLE ofR(t)
for time t = 0.3 and the results are shown in Table 8.

7 Discussion

A lot of work has been done in the literature to estimate
and test the hypotheses for the reliability functions. In the
present paper, we have discussed a three parameter Burr
distribution. Based on record values, estimation and
testing procedures are developed for this distribution.

In Table 2, a comparative study of efficiencies of
UMVUE and MLE of reliability function based on record
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Table 2: Mean Square Error of MLE and UMVUE of Reliability function
n 6 12 18 21
t Var(R̃(t)) MSE(R̂(t)) Var(R̃(t)) MSE(R̂(t)) Var(R̃(t)) MSE(R̂(t)) Var(R̃(t)) MSE(R̂(t))
1 0.01432 0.14522 0.00714 0.11452 0.00475 0.09094 0.00407 0.10254
2 0.01596 0.45428 0.00851 0.37184 0.00580 0.27874 0.00501 0.34401
3 0.00468 0.50920 0.00245 0.39112 0.00166 0.26042 0.00143 0.35702
4 0.00111 0.46048 0.00055 0.32348 0.00036 0.18835 0.00031 0.28675
5 0.00028 0.39893 0.00013 0.25663 0.00008 0.13138 0.00007 0.22058
6 0.00008 0.34526 0.00003 0.20496 0.00002 0.09330 0.00002 0.17122
7 0.00003 0.30163 0.00001 0.16660 0.00001 0.06822 0.00001 0.13566
8 0.00001 0.26649 0.00000 0.13796 0.00000 0.05136 0.00000 0.10979
9 0.00000 0.23798 0.00000 0.11620 0.00000 0.03968 0.00000 0.09058
10 0.00000 0.21455 0.00000 0.09934 0.00000 0.03135 0.000000.07600
11 0.00000 0.19505 0.00000 0.08602 0.00000 0.02526 0.000000.06470
12 0.00000 0.17861 0.00000 0.07532 0.00000 0.02069 0.000000.05577
13 0.00000 0.16459 0.00000 0.06659 0.00000 0.01720 0.000000.04859
14 0.00000 0.15252 0.00000 0.05937 0.00000 0.01448 0.000000.04274
15 0.00000 0.14202 0.00000 0.05332 0.00000 0.01232 0.000000.03791
16 0.00000 0.13281 0.00000 0.04821 0.00000 0.01059 0.000000.03387
17 0.00000 0.12468 0.00000 0.04384 0.00000 0.00919 0.000000.03045
18 0.00000 0.11746 0.00000 0.04007 0.00000 0.00803 0.000000.02754
19 0.00000 0.11099 0.00000 0.03680 0.00000 0.00706 0.000000.02504
20 0.00000 0.10517 0.00000 0.03393 0.00000 0.00626 0.000000.02288

Fig. 3: Mean Square Error of MLE and UMVUE of Reliability function for sample sizen = 3

values has been performed. It is clear from simulation
results that UMVUES of the reliability function are more
efficient than MLE of reliability function. We also
observe that as sample size increases, the UMVUE of the
reliability function based on records become more
efficient, but such is not a case in MLE of the reliability
function based on records. However, with the passage of
time, the efficiency of these estimators initially decreases
and then starts increasing. In Table 3 and Table 4, we
established that the confidence interval based on

log-transformed MLE have a better coverage probability.
Table 5 and Table 6 shows the interval estimates based on
UMVUE and MLE of the parameter and reliability
function. We observe that as sample sizes increase, these
interval estimates become more accurate. An analysis on
real data is in conformity with the results produced by
simulation. It hereby shows the relevance of the study.
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Table 3: CI and length of CI based on MLE and log(MLE) ofk andc at 95% and 90% level of significance
k log(k) c log(c)

n 95% 90% 95% 90% 95% 90% 95% 90%
5 [ 8.8059 29.1940] [10.4448 27.5551] [11.1107 32.4911] [12.1116 29.8059] [21.6088 28.3911] [22.1540 27.8459] [21.8287 28.6319] [22.3100 28.0143]

20.3881 17.1102 21.3804 17.6942 6.7823 5.6919 6.8032 5.7042
7 [9.5595 28.4404] [11.0773 26.9226] [11.5602 31.2276] [12.5216 28.8301] [22.4869 27.5131] [22.8909 27.1090] [22.6090 27.6437] [22.9774 27.2005]

18.8809 15.8453 19.6674 16.3085 5.0262 4.2181 5.0346 4.2231
12 [5.0546 32.9453] [7.2966 30.7033] [9.1200 39.5831] [10.2622 35.1773] [21.3655 28.6344] [21.9498 28.0501] [21.6173 28.9119] [22.1285 28.2440]

27.8906 23.4066 30.4631 24.9150 7.2689 6.1002 7.2945 6.1154
20 [4.1254 33.8745] [6.5169 31.4830] [8.6847 41.5670] [9.8496 36.6510] [16.4456 33.5543] [17.8209 32.1790] [17.755635.2001] [18.7597 33.3159]

29.7490 24.9661 32.8822 26.8014 17.1086 14.3580 17.4444 14.5561

Table 4: CI and length of CI based on MLE and log(MLE) ofα and CI and length of CI ofR(t) at 95% and 90% level of significance
α log(k) R(t)

n 95% 90% 95% 90% 95% 90%
5 [5.9231 28.0768] [7.7039 26.2960] [8.8607 32.6157] [9.8393 29.3718] [0.0105 0.7347] [0.0346 0.6771]

22.1537 18.5920 23.7549 19.5325 0.7242 0.6425
7 [6.3719 27.6280] [8.0806 25.9193] [9.0978 31.7658] [10.0597 28.7282] [0.0158 0.7118] [0.0432 0.6574]

21.2561 17.8387 22.6680 18.6684 0.6960 0.6142
12 [5.3537 28.6462] [7.2261 26.7738] [8.5688 33.7266] [9.5666 30.2092] [0.0035 0.8407] [0.0186 0.7652]

23.2925 19.5477 25.1577 20.6462 0.8372 0.7465
20 [1.8186 32.1813] [4.2594 29.7405] [6.9600 41.5223] [8.0346 35.9690] [0.0005 1] [0.0032 1]

30.3626 25.4811 34.5623 27.9343 0.9995 0.9968

Table 5: Point estimate, Interval estimate and length of CI of UMVUE and MLE of k at 95% and 90% level of significance

n k̂ k̂ k̂ k̂
95% 90% 95% 90%

5 6.0733 [2.9995 15.8954] [3.3292 13.3944] 7.2879 [3.5994 19.0744] [3.9950 16.0733]
12.8958 10.0652 15.4750 12.0783

10 6.7769 [3.8063 12.7477] [4.1268 11.3470] 7.4546 [4.186914.0225] [4.5395 12.4817]
8.9414 7.2202 9.8355 7.9422

15 7.5237 [4.2441 11.4812] [4.5460 10.4623] 8.0253 [4.527012.2466] [4.8490 11.1598]
7.2371 5.9163 7.7195 6.3107

20 6.4420 [4.5324 10.7697] [4.8172 9.9488] 6.7641 [4.7590 11.3082] [5.0581 10.4462]
6.2373 5.1315 6.5492 5.3881

Table 6: Point estimate, Interval estimate and length of CI of UMVUE and MLE of R(t) at 95% and 90% level of significance
n R̃(t) R̃(t) R̂(t) R̂(t)

95% 90% 95% 90%
5 0.0336 [0 0.2481] [0 0.2073] 0.0520 [0.0004 0.2323] [0.0014 0.1979]

0.2481 0.2073 0.2319 0.1964
10 0.0402 [0.0006 0.1870] [0.0021 0.1602] 0.0486 [0.0033 0.1831] [0.0063 0.1587]

0.1863 0.1581 0.1797 0.1523
15 0.0330 [0.0037 0.1607] [0.0068 0.1399] 0.0386 [0.0069 0.1595] [0.0108 0.1399]

0.1569 0.1330 0.1525 0.1291
20 0.0608 [0.0072 0.1454] [0.0110 0.1280] 0.0644 [0.0102 0.1452] [0.0144 0.1286]

0.1382 0.1170 0.1349 0.1141

Table 7: CI of UMVUE and MLE ofk andR(t) at 95% level of significance

k̃ k̂ R̃(t) R̂(t)
95% 95% 95% 95%

[0.0254 0.5862] [0.0509 1.1725] [0.9769 1] [0.9126 1]

Table 8: Point estimate and MSE of UMVUE and MLE ofR(t)

R̃(t) Var(R̃(t)) R̂(t) MSE(R̂(t))
0.9940 3.2751E-14 0.9969 3.5794E-05
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