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Abstract: A three parameter Burr distribution is considered. Two mees of reliability are discussed, namétt) = P(X > t) and
P =P(X >Y). Point and interval estimation procedures are developethéoparametersy(t) andP based on records. Two types of
point estimators are developed — uniformly minimum var@anobiased estimators (UMVUES) and maximum likelihoodnestors

(MLES). A comparative study of different methods of estiimais do

ne through simulation studies and asymptotic cenfid intervals

of the parameters based on MLE and log(MLE) are construedfidence intervals for the MLE and UMVUE of the parametric

functions are obtained. Testing procedures are also deselfor vari

ious hypotheses. Real example is used to iltestna results.
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1 Introduction

The reliability functionR(t) is defined as the probability
of failure-free operation until timé Thus, if the random
variable (rv) X denotes the lifetime of an item or a
system, thenR(t) = P(X > t). Another measure of
reliability under stress-strength setup is the probabilit
P =P(X >Y), which represents the reliability of an item
or a system of random strengthsubject to random stress
Y. A lot of work has been done in the literature for the
point estimation and testing &(t) andP. For example,
Pugh (1963), Basu (1964), Bartholomew (1957, 1963),
Tong (1974, 1975), Johnson (1975), Kelley, Kelley and
Schucany (1976), Sathe and Shah (1981), Chao (1982
Chaturvedi and Surinder (1999) developed inferential
procedures forR(t) and P for exponential distribution.

Constantine, Karson and Tse (1986) derived UMVUE and

MLE for P associated with gamma distribution. Awad and
Gharraf (1986) estimate® for Burr distribution. For
estimation of R(t) corresponding to Maxwell and
generalized Maxwell distributions, one may refer to Tyagi

and Bhattacharya (1981) and Chaturvedi and Rani (1998)

respectively. Inferences have been drawnRgr) and P
for some families of lifetime distributions by Chaturvedi
and Rani (1997), Chaturvedi and Tomer (2003),

Chaturvedi and Singh (2006, 2008), Chaturvedi and
Kumari (2015) and Chaturvedi and Malhotra (2016).
Chaturvedi and Tomer (2002) derived UMVUE fR(t)

and P for negative binomial distribution. For
exponentiated Weibull and Lomax distributions, the
inferential procedures are available in Chaturvedi and
Pathak (2012, 2013, 2014). Many authors have studied
the estimation of Burr type Xl parameters. Burr and
Cislak (1968), Rodriguez (1977) and Tadikamalla (1980)
summarized its properties and verified relations with
some other distributions. Shao (2004) expanded an
extended three parameter Burr type XlI distribution and
used it for flood frequency analysis. Based on type Il
ensored, Wingo (1993) obtained the maximum
ikelihood estimators and discussed the necessary and
sufficient condition to guarantee the existence, uniguenes
and fitness. Wang et al. (1996) presented the methodology
to obtain the maximum likelihood and interval estimation
of Burr type Xl distribution using censored and
uncensored data. Soliman (2005) derived maximum
likelihood, Bayes and empirical Bayes estimators (BES)
of Burr type Xl distribution based on progressive
¢ensored samples using various loss functions and Wang
and Shi (2010) considered empirical Bayes inference for
the Burr model based on record values.
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Chandler (1952) introduced the concept of recordand
values. Based on records, inferential procedures for the K
parameters of different distributions have been developed F(x:k c,a)=1— <1+ f) : x>0,c,ka,>0
by Glick (1978), Nagaraja (1988a, 1988b), Balakrishan, a
Ahsanullah and Chan (1995), Arnold, Balakrishan and (2.2)
g%%%@zréslﬁigsga EHriggil (ZRE)%%),grag;ni?r:aﬁrfndA:rTn?s&Frqm (2.2), the reliability function at a specified timée>
(2011). Arabi Belaghi, Arashi and Tabatabaey (2015) and®) IS*
others. c\ Kk

In this article, Section 2 discusses a three parameter R(t) =P(X>t)= <1+—> (2.3)
Burr distribution by introducing a scale parameter to the a
Burr XIlI model (1942). In Section 3, we develop point From (2.1)and (2.3), the hazard rate is given by:
estimation procedures based on records when one 1
parameter is unknown and the remaining are known and (t) = ket (2.4)
we also discuss the case when all the parameters are tc '
unknown. As far as point estimation is concerned, we a<1+5>
derive UMVUES and MLES. A new technique of ) )
obtaining these estimators is developed, in which first oflt follows from (2.4) and Figure 1 that the hazard rate is a
all the estimators of powers of parameter are obtaineddecreasing function dffor every value of the parameters
These estimators are used to obtain estimatorR(bf. k. ¢ anda except for wherc > 1. Forc > 1, the hazard
Using the derivatives of the estimators &f(t), the  rateincreases upto tinte= 2 and then decreases.
estimators of sampled probability density functiqualf(),
at a specified point, are obtained which are subsequentl& . . .
used to obtain estimators & In Section 4, asymptotic < Point estimation Procedures
confidence intervals (Cls) for scale and shape parameters L .
and reliability function are constructed. Confidence L€t X1:X2,... be an infinite sequence of independent and

intervals for the MLES and UMVUES of the parametric idenFicaIIy distributed (iid) rvs from (2.1). A'n observodi
functions are also obtained. In Section 5, testing’ Will becalledanupperrecord value (or simply arecord)
procedures are developed for the parametér of th f its value exceeds that of all previous observations. Thus

distribution. In Section 6, we present numerical findings i IS & record ifx; > X; for everyi < j.

along with real data analysis and finally in Section 7 we 1 Ne record time sequeng¢&,, n > 0} is defined as:

discuss our results. {TO =1 with probability 1

Ta=min{j:X;>Xr,_,; n>1

2 The Three Parameter Burr Distribution The record value Sequen{;ﬁn} is then defined by

The two parameter Burr type XII distribution was first Ro=X%; n=012...

have a Burr type Xl distribution with the shape

parameters andk, if its cumulative distribution function fk co) — kexe—1 oxol —kloa (1 f )

(cdf) and probability density functionp¢if) have the (xkca)= 70(1+ §) p g(1+ o))

forms, respectively, given by x> 0.kc.a>0

Fxkc)=1-(1+x)% x>0,ck>0 Assuminga andc to be known, the likelihood function of
the firstn+ 1 upper record valueRy, Ry, Ry, ..., Ry is:

and
L(k|Ro,R1,Re, ..., Rn)
f(x;k,c) = ko 1 (14x5)~®D: x> 0,ck>0 1 f(R:kCa)
= Rk ) [ T F= e o
Hogg and Klugman (1984) discussed a three parameter b 1-F(Rikca)
Burr distribution by introducing a scale parameterto Iti t that
the Burr type XII distribution. This distribution haadf o>y 0 S¢€ha
and cdf of the following form respectively: L(k|Ry,R1,Ry, ..., Rn)
kC n+1 Rﬁ‘l n R:il
-1 cy\ —(k+1) == —klog[ 1+20
f(x;k,c,a):ko;{C <1+XE> ; x>0,c.ka>0 (a) exp( og( +a>)ir!)(1+§)
(2.1) (3.2)
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Fig. 1: Hazard Rate fok = 2 anda = 3

The following theorem provides UMVUE of powerskf  Proof. It is easy to see that
This estimator will be utilized to obtain the UMVUE of
reliability functions. For simplicity, we define: R(t) = exp{—kU(t)}

U (x) = log <1+§> :ii(_i—!l)i{ku(t)}i (3-3)

Theorem 1.Forq € (—,»), q# 0, the UMVUE ofk% is Applying Theorem 1, it follows from (3.3) that
given by: ® (1)

r(n+1) o Rty =Y ——u)'k
Rq:{{m}“(w Bonea S

o otherwise = T: (-1 (?) {UU(—(FE:)}I

Proof. It follows from (3.1) and factorisation theorem [see
Rohtagi and Saleh (2012, p. 361)] thhtR,) is a sufficient  and the theorem follows.
statistic fork and thepdf of U (R,) is: The following corollary provides UMVUE of the
KLY (Ry)" sampledpdf. This estimator is derived with the help of

= Fmi1 exp(—kU (Ry)) (3.2) Theorem 2.

(n+1) Corollary 1. The UMVUE of the samplegdf (2.1) at a
From (3.2), since the distribution df (R,) belongs to  specified poink is
exponential family, it is also complete [see Rohtagi and

s |

h(U (Rn)[K)

Saleh (2012, p. 367)]. The result now follows from (3.2) o1 1_ U (x) ”’1_
that Fock 6.) aLHEUR) |7 URY |
S e 09 <U(Ry)

(n+1) 0; otherwise
In the following theorem, we obtain UMVUE of the
reliability function. Proof. We note that the expectation gf° f(xk,c, ar)dx
Theorem 2.The UMVUE of the reliability function is with respect tdR, is R(t). Hence,
U(t) }“ o _
~ ——=1; U{t)<U(R, 3 :/ :
i) — [ O(R) (t) <U(Rn) R(t) t f(x;k.c,a)dx
0; otherwise The result follows from Theorem 2.
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In the following theorem, we obtain expression for the we have
variance of R(t), which will be needed to study its "

efficiency. / 1 exp(—zkU (t))dz
. R o (z+1)i
Theorem 3.The variance oR(t) is given by:

_n7|71 (m_l)! o n—i—m-1
VarR(t) - n;l (n—i—1)!( )
- SIUO} Y exp—u D) R Eiel
_[kua?t) a1 exp(KU (1) 1B (—KU (1)) exp(kU (t))Ei(—kU(t)), i=0,1,2,...,n—2 (3.7)
n-2 (n-i-1 Furthermore,
+ a{ > Ll)!,(—kum)"fi*m*l
& L (n—i—1)! /°° 1 exp(—2kU (1))dz
1 n—i—1 0 (1+Z)
T O terk 0B} -
(n—i—1)t | = exp(kU (1)) / exp(—kU (1) (z+1))dz
2n 1 i—n+1liji—n 1 0 (Z—I— 1)
i(i—n){ —— —(kU(t))" )
e (kum) 2, } =exu) [ = ay
S eRACO) GD - eqmECUW). 38)
wherea; = (—1)' (%) and—Ei(—x) = [’ " du. We have
Proof. Using (3.2) and Theorem 2, o 1
/ exp(—2kU (t))du = <(ku(t)> (3.9)
E{R®)?} ’
_ Kn+1 /oo [ U rn Finally,
Fn+D Juo [© U(R) -
{U(Ro)}" exp{—kU (Ry)}dU (Ro) J, @+ exn-a )z
1 i—n /i 0
= g MO e ) _ 20<'—r”> |2 exn(-awv)dz
o0 ZZn r= .
: exp(—zkU (t))dz CIieny o P
e SV ) e @
= (ku(t)™ exp(—kU(t))I, (say)  (3.5)
r(n+1) The theorem now follows on making substitutions from
(3.7, (3.9, (3.9 and 3.10 in (3.6) and then using3.5).
where Theorem 4.The MLE of R(t) is given by:
= Z;”‘*/ Texp( 4 (1)dz R(t) :exp{ 7*”&;2;’ “)}
+, n+1a/ (z+1) : "exp(~2d (1))dz (3.6) Proof. It can be easily seen from (3.1) that the MLE of
kisk= <”(+1; The theorem now follows from invariance
Using a result of Erdélyi (1954) that property of MLE.
In the following corollary, we obtain the MLE of
® exp(—up) sampledpdf with the help of Theorem 4. This will be
/o W used to obtain MLE oP.
) (—pn-m-1 Corollary 2. The MLE of f(x;k,c,a) at a specified point
= z e X is
_p)n-1 - +1)exet —(n+1)U
_ ((n p—)l)! exp(ap)Ei(—ap) f(xkca)= al(Jn(Rn))(i+ ) exp{ (nU(Rz) (X)}
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Proof. The result follows from Theorem 4 on using the Let{R,} and{R},} be the record value sequencesXds

fact that andY'’s respectively. For simplicity, we define:
~ d - 1 2
fixckca) = —R(). U (x) = log <1+ ’;C—) V(y) = log (1+ ﬁ)
1 az
In the following theorem, we obtain the expression for o
variance oR(t). Theorem 6.The UMVUE of P is given by
Theorem 5.The variance oR(t) is given by: V<Rn> . .
m— _
5_) U{(@m@®-1)3}"dz R<R,
= —{2(n+ DkU (1)} 2 Kpr1(24/2(n+1)kU N 1
m g (1— Z)m‘ [1 U(Rn)~
2 : AR 3 :
-[Rnrnwow }%Knﬂ NI ] Uf(ax(@®) —1)%)'dz Ry >R,

Proof. It follows from Corollary 1 that the UMVUES of

whereK; (-) is modified Bessel function of second kind of F(x:ks, C1, 1) and f(y;kp, Gy, ) at specified points and

orderr. . }
) y are respectively:
Proof. Using (3.2) and Theorem 4, we have L
~ — n_
E(R) LR [1- |
n+1 ) £/ _ a1
“re b ool (R g et UK <U(R)
{U (Rn)}”dU (Rn) 0; otherwise
1 o B (n+1)kU(t) and
= I'(n+1)/o eXp[ {y+ y Hyndy : viy) 1™
me; y©2 1 _ (y)
Applying a result of Watson (1952) that f(y;kz,C2,a2) = “ V(y) < V(R)
/oc u‘mexp{ - (au+ 9) }du 0; otherwise
0 u

From the arguments similar to those used in the proof of

a\ (M
- 2(5) 2Km_1(2V/ab) Corollary 1,
fitis to be noted thaK_m(-) = Km(-) for m=0,1,2,..], P= / / f(xku.cr. @) f(y: ke, co. a2)dxdy
we obtain from (3.11) that
- 2 ni1 =/ R(y;c1,a {——R Co, O }d
E{R(t)}:ﬁ{(n—i—l)ku(t)}(2>Kn+1(2\/(n+1)kU(t)) (viev,00) (v;cz2, 02) dy

. . . mm{Rn Ri}
Similarly, we can obtain the expression B{R(t)?} and

the result follows.
Let X andY be two independent rvs from three V(y)
parameter  Burr distribution f(x;ky,c1,01) and { VR, )}

f(y; ko, C2, a2) respectively, i.e.
The theorem now follows on considering the two cases and
putting vv(%i) =z

{GZVE:;‘:;,(Cij i’:—;) }

f (% ky,C1,01)

k1C1XC1 X .
— ﬁexp —kilog( 1+ @)l Theorem 7. Whenc; = c; =1 anda; = az = 1, the
UMVUE of Pis:
X>0,kg,¢1,01 >0 m-1 min! UR) '™
i In! .
and miZO( b (m—1—i)!(n+1+i)!{U(Rﬁ1)} ’
f(y, k23C2702) 5 Rn ) R;kn
kaCoy®2 1 2 "=
:Lycyczexp{—kzlog<l+£)}; 0 i mn! (Rm)
a5 c 8 G D)
: 2o (Mm+DI(n—i) | U(R,)
y > 0,kp,Cp,a2 >0 Rn > Ry

(@© 2017 NSP
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Proof. TakingU (-) =V(-) in Theorem 6, then foR, < Ry,

U(Rn)

R ST e

(g e

g

and the first assertion follows. Similarly, we can prove the

second assertion.
Theorem 8.The MLE ofP is

ezexp{ —(n+1)
0

U(Rn)
Proof. We have,

P= ol
y=0/x=y

/y—O R(y;c1, a1) f (y; ke, C2, a2)dy

f(x; ke, c1,a1) f(y; ko, Co, a2)dxdly

e (N+DUY) | [ (m+1)cyee?
—/yzoexp{ U(Ry) }{a2V<R¢n><1+>§—§>

m-+1)V(y)

[ ( }
The result now follows on puttm% =z
V(Ry)

Theorem 9.Whenc; = ¢, =1 anda; = a, = 1, the MLE
of P is given by

(Mm+1)U(Rn)
(m+ 1)U (Ry) + (n+ 1)U (RY)

Now we consider the case when all the paraméd¢ersind
o are unknown. From (2.1), the log-likelihood function is
given as:

[(k,c,a)
= L(k, C, G|R0, Rl, R2, R
= (n+1)log(k) +

—klog<1+ ) (c— 1209
—iZOIog(H—?)

The MLEs ofk, ¢c anda are the solutions of the three
simultaneous equations given below:

lf):

,Rn)

(n+1)log(c) — (njL 1)log(a)

(3.12)

ikl—log(leR'c‘) =0 (3.13)
—(n+1) 12
q +k ?;o
(3.14)

and
n+1

a
R.+Z log(Ri)°

G
From (3.13), we get
A n+1

Ke — = 3.16
log(1+ %ﬁ) ( )

wherek, ¢ andé are the MLEs ok, c anda respectively.
Since these non-linear equations don’t have a closed form
solution, therefore we apply Newton Raphson algorithm to
compute MLEs ot anda. These values of MLEs afand
o so obtained can be substituted 81X6 to obtain MLE
of k.

It is to be noted that from Theorem 4, Theorem 8 and
invariance property of MLE, the MLE dR(t) is given as:

_ (Ralog(Rn)
a(l+)
1

(3.15)

Fﬁclog (R)

a

whereU (x) = log(1+ ’7‘;). Whereas the MLE o is given
by:
P= /Om ezexp{ _LS?I;Ln)l)U ((az(e%ﬁf—) — 1))’013)}(12

whereU (x) = log(1+ %), V(x) = log <1+

4 Confidence Intervals

The Fisher information matrix & = (k,c,a)" is:
4 04 0%
okZ  okdc okda
_ 2 92 9
1(0)=-F| jzx 9@ swa
ok I i &
dadk dadc Ja?
a2 —(n+l) 94 _ 94 _ —Rilog(Rn)
where 75 2 dk = T T )
oA _ oA R
Jdadk — dkda 02(l+7§>’
22l 0%l kRSlog(R, Relog(R
dadc  dcda  q2(14 )2 +Zj 2 RC ’
a(1+a) :a(1+a)
0% n+l KRS[20(1+%) RS
da? oz a4 (1+ 52
20(1+ RC 20(1+3) R
_zoa“ —)2 |
94 —(n+1) Iog nRE( Iog
ac? c? Z} a(l
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Since it is a complicated task to obtain the expectation of

Similarly, we construct interval estimates of UMVUE

the above expressions, therefore we use observed Fishand MLE ofR(t). Thus 10Q1 — €)% ClI for R(t) andR(t)
information matrix which is obtained by dropping the is respectively obtained as:
expectation sign. The asymptotic variance-covariance

matrix of the MLEs is the inverse of (é); After
obtaining the inverse matrix, we get variancekp€ and

&. We use these values to construct confidence intervals

of k, canda respectively.

Assuming asymptotic normality of the MLEs, Cls for
k,canda are constructed.ALaTrz(R), 62(6) and 62(a)
be the estimated varianceslof andd respectively. Then
100(1 - €)% asymptotic Cls fok, canda are respectively
given by:

where Z% is the upper 10Q — &) percentile point of

(b

1 2kU (t) }”)
Xzz(n+1)(1 -3)
and

O )

5 Testing of Hypotheses

Suppose for known values ofanda, we have to test the
hypothesidy : k = kg againstHs : k # k. It follows from
(3.1) that, undeHy,

standard normal distribution. Using these Cls, one can

easily obtain the 10Q — €)% aymptoticCl for R(t) as
follows:

exp ~ (k25000 (14 55 ) )

£
2

(e}

selipL(klRo, Ri,...,Rn)

_ (@)“*1exp{ ~tolog (14}

a
"R
Mty o tevw

a

and

Meeker and Escober (1998) reported that the asymptotic

Cl based on log(MLE) has better coverage probability. An

approximate 10 — €)% ClI for log(k), log(c) and log a)
are:

(log(k) — Z5 G (log(k)), log(k) + Z5 G (log(K)) ),
(log(€) —Zz 5 (log(€)),10g(€) + Z5 G (log(¢€)))
and(log(a —Zg&(log(d)),log(&)+Z§6(Iog(&)))

whered?(log(a)) is the estimated variance of lag) and
is approximated by d?(log(@)) = % Similarly,

62(log(k)) and 62(log(¢)) are the estimated variance of
log(k) and logc) and are approximated by

62(log(k)) = fkéﬁ and 62(log(¢)) = 62@ respectively.
Hence, approximate 100— €)% ClI for k, canda are:

Nz 00 g0k S 80 7,60
(ke "2 K ke'2 k) (e "2 ¢ ez ¢ )and
.z 0@ 7 0@

(Ge 277 aes )

sgpL(klRo, Ri,...,Rn)

n+1

G gy e

T2 o= (kK
D)(l—k?)’ k= 0)

Therefore, the likelihood ratio (LR) is given by:

8(Ro, Ry, .., Rn)
~ supy, L(KIRy,Ry,...,Rn)
~ supL(KRo,Ry,...,Rn)

 (kolog(1+ %) 2
_{ n+1 }

R:

exp{—kolog (1+ ?) +(n+ 1)} (5.1)

Now, we construct interval estimates of UMVUE and We note that the first term on the right hand side of (5.1)

MLE of k From (3.2) it follows N that
2klog (1+ %) ~ X22(n+1)' Thus 1001 — €)% CI for k and

k is respectively obtained ag,—20 2\ angd
2n+1)(173) 7 X3ny1)(3)

k(ntl)  2k(n+)
Xzz(n+1)(1_§) ’ Xzz(n+1)(§) '

is monotonically increasing and the second term is
monotonically decreasing in 108+ %). It follows from
(3.2) that Zolog(1+ %) ~ x2 ., Thus, the critical
region is given by
{0< log(1+ %) <lo}U{ly < log(1+ %) < o}, where

(@© 2017 NSP
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X22(n+1) (%)

o and UMVUE of P are shown in Table 1 for several valuesof

lo and I are obtained such thdp =
andm.

1-
lo= w Figure 2 showspdf plot of three parameter Burr
An |mportant hypothesis in life-testing experiments is distribution and also displays the MLE and UMVUE of
Ho : k < ko againstH; : k > ko. It follows from (3.1) that ~ sampledodf.

for kg > ko, In order to investigate the performance of the
estimators obtained under this scheme, we have evaluated
L(k1|Ro, Ry, -, Rn) Var (R(t)) and MSE(R(t)) for ¢ =2, k=3, a = 6.
L(k2|Ro,Ry,...,Rn) Table 2 givesvar(R(t)) and MSE(R(t)) for t = 1(1)20

N Re andn=6,1218 and 21. Figure 3 compares the variance
- <_1> exp{(kz—kl)log <1+_)} (5.2) UMVUE of reliability function with the mean square
ko a error of MLE of reliability function calculated in Table 2
as time t increases for= 17.
It follows from (5.2) that f(xk,c,a) has monotone For computations shown in Table 3 and Table 4, we
likelihood ratio in log1+ %). Thus, the uniformly most have considere#t = 19, c = 25 anda = 17. Fort = 1,
powerful critical region for testingdo againstH; is given  R(t) = 0.3375. From Table 3 and Table 4 we observe that

by [see Lehmann (1959, p.88)] as sample size increases, the length of Cls based on MLE
and log-transformed MLE initially decrease and then start
) ﬁ " increasing. As reported by Meeker and Escober we too
1, log( 1+ <lg :
8(Ro,R1,...,Ry) = a observe that asymptotic Cls based on log-transformed

MLE have better coverage probability.

For computations shown in Table 5 and Table 6, we
2o () have consideredr = 2, c =6 andk = 7. Fort =1,
wherel)j = % R(t) = 0.0585 and we compute point estimate and

interval estimate (Cl) of UMVUE and MLE df andR(t).

From Table 3 and Table 4 we observe that as sample size
increases, the length of Cl of UMVUE and MLE kfaind
R(t) decreases.

In the theory developed in Section 5, we have
considered record values from three parameter Burr

0; otherwise

6 Numerical Findings

In this section we use Monte Carlo simulation technique
to obtain estimates under this scheme. It involves the Sistribution withk — 3.c=5anda = 6.

following steps: 1.438675 1.701992 1.710421 1.847597 1.923981
I. For known values oKy, c1, ai, ko, ¢, and ap, we 2.183058 2.240566 3.043976
generate 1000 samples each from distribution of The MLE and UMVUE of k are obtained as
X ~ Gamma(n+ 1,k;) andY ~ Gamma(m+ 1,k>) k = 3.8879 andk = 3.4019. For testing the hypothesis
for specified values of andm to obtainX; ande, Ho : k = kg = 3.8 againstHs : k # kg = 3.8 under this

j=1,2,...,1000, respectively. scheme, with the help of Chi-Square tables at 5% level of
o _ significance, we obtaineth) = 0.8883 andl; = 3.7095.
IIl. ComputeU (Rn) = mjzlxl Hence, in this case we may accdy at 5% level of
1000 significance sinceJ (R,) = 2.0576. Again, for testing
andV (R%) = a5 z Y;. Ho : k < ko = 3.8 againstH; : k > ko = 3.8, we obtained

lg = 1.0238 and hence, in this case we may acépat
For specified value ot, computeR(t) for the three 5% level of significance. Now, for testing the hypothesis

parameter Burr distribution wittfky,c1, 1) and hence Ho: k= ko = 3.4 againstH; : k # ko = 3.4 under this
compute MLE and UMVUE ofR(t). It can be easily Scheme, with the help of Chi-Square tables at 5% level of

shown that significance, we obtainety = 1.0152 andlj = 4.2395.
Hence, in this case we may accefl at 5% level of
koCp [® ye2t y©2 significance sincdJ (R,) = 2.0576. Again, for testing
T Mol 2 exp(— kzlog <1+ _) Ho : k < ko = 3.4 against; : k > ko = 3.4, we obtained

az lg = 1.1701 and hence, in this case we may acétpat

1 0, 1 ifi
K log <1+ )(/;_) > dy 5% level of significance.
1

In Table 1, fora; =2,¢; =3,ky =0.5,a2=5,c,=2and  An Example on Real Data

ko = 4, we have shown MLE and UMVUE &f for several

values ofn. Fort = 5, R(t) = 0.1254 and the MLE and To illustrate the estimation methods proposed in the
UMVUE of R(t) are shown in Table 1 for several values preceding sections, we consider a data analysis of the
of n. P=0.7701 by the above expression and the MLE andmaximum flood level (in millions of cubic feet per
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Table 1: UMVUE of k,R(t) andP

n, m k k R(t) R(t) P P

10,10 0.50417 0.458338 0.123337 0.121190 0.768618 0.B7602

10,20 0.49715 0.451953 0.126986 0.125216 0.772746 0.78221

10,50 0.50641 0.460375 0.122195 0.119931 0.767525 0.B7836
10,100 0.50093 0.455395 0.125005 0.123031 0.770633 (03319

20,10 0.50077 0.476919 0.125093 0.124347 0.770937 0.87245

20,20 0.49633 0.472699 0.127416 0.126787 0.771640 0.77531

20,50 0.50456 0.480538 0.123136 0.122290 0.769361 0.%7443
20,100 0.49889 0.475132 0.126072 0.125375 0.770301 (070758
50,10 0.50038 0.490572 0.125291 0.125053 0.768763 0.76647
50,20 0.49984 0.490035 0.125577 0.125344 0.770284 0.77027
50,50 0.50163 0.491791 0.124647 0.124396 0.767785 0.B6922
50,100 0.50155 0.491716 0.124686 0.124436 0.770136 (4720
100,10 0.49969 0.494745 0.125652 0.125546 0.770622 Q12671
100,20 0.50136 0.496395 0.124785 0.124671 0.769943 (/%686
100,50 0.50036 0.495406 0.125304 0.125194 0.770147 (®&7703
100,100 0.49892 0.493979 0.126056 0.125954 0.770663 3dB771

0.8 : : : : : : : : :
fl=z)
o7 fizy H
flz)
0o 1

Fig. 2: MLE and UMVUE of samplegdf

second) for the Susquehanna River of Harrisburg over 2Ghown in Table 7. We also compute point estimate,
four-year periods (Dumonceaux and Antle, 1973) and isinterval estimate and MSE of UMVUE and MLE &t)
as follows: for timet = 0.3 and the results are shown in Table 8.
0.6540.613 0.315 0.449 0.297 0.402 0.379
0.4230.3790.32350.269 0.740 0.418 0.412
0.494 0.416 0.338 0.392 0.484 0.265 7 Discussion

The following are the upper record values obtained

fromit. A lot of work has been done in the literature to estimate

0.65400.7400 and test the hypotheses for the reliability functions. ka th
Shao (2004) showed that the MLEkfc anda using  present paper, we have discussed a three parameter Burr
the New-Raphson method are obtainedkas 0.142,  distribution. Based on record values, estimation and
¢ = 6.434 and& = 1350844. Based on the estimates testing procedures are developed for this distribution.
from this sample, we compute interval estimates of In Table 2, a comparative study of efficiencies of
UMVUE and MLE of k and R(t) and the results are UMVUE and MLE of reliability function based on record
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Table 2: Mean Square Error of MLE and UMVUE of Reliability function

n 6 12 18 21

t  Var(Rt)) MSE(R1) Var(Rt)) MSE(R(M) Var(Rtt)) MSE(R1)) Var(Rt)) MSE(R({))
1 001432 014522  0.00714 011452  0.00475  0.09094  0.00407 .10284
2 001596 045428  0.00851  0.37184  0.00580  0.27874  0.00501 .344@L
3 000468 050920  0.00245 039112  0.00166  0.26042  0.00143 .357@R
4 000111 046048  0.00055  0.32348  0.00036  0.18835  0.00031 .286T5
5 000028  0.39893  0.00013  0.25663  0.00008  0.13138  0.00007 .220%8
6 0.00008  0.34526  0.00003  0.20496  0.00002  0.09330  0.00002 .171ZP
7 000003 030163  0.00001  0.16660  0.00001  0.06822  0.00001.13566
8 000001  0.26649  0.00000  0.13796  0.00000  0.05136  0.00000 .109TD
9  0.00000  0.23798  0.00000  0.11620  0.00000  0.03968  0.00000 .090%8
10 0.00000  0.21455  0.00000  0.09934  0.00000  0.03135  0.0000®.07600
11 0.00000  0.19505  0.00000  0.08602  0.00000  0.02526  0.0000®.06470
12 0.00000  0.17861  0.00000  0.07532  0.00000  0.02069  0.0000®.05577
13 0.00000  0.16459  0.00000  0.06659  0.00000  0.01720  0.0000®.04859
14 000000  0.15252  0.00000  0.05937  0.00000  0.01448  0.0000M.04274
15 0.00000  0.14202  0.00000  0.05332  0.00000  0.01232  0.0000®.03791
16  0.00000  0.13281  0.00000  0.04821  0.00000  0.01059  0.0000®.03387
17 0.00000  0.12468  0.00000  0.04384  0.00000  0.00919  0.0000®.03045
18  0.00000  0.11746  0.00000  0.04007  0.00000  0.00803  0.0000®.02754
19 0.00000 011099  0.00000  0.03680  0.00000  0.00706  0.0000®.02504
20 0.00000 010517  0.00000  0.03393  0.00000  0.00626  0.0000®.02288

0.7

——— MZE(E()
0GF — MFEE |

MEE

Fig. 3: Mean Square Error of MLE and UMVUE of Reliability functionrfeample sizen = 3

values has been performed. It is clear from simulationlog-transformed MLE have a better coverage probability.
results that UMVUES of the reliability function are more Table 5 and Table 6 shows the interval estimates based on
efficient than MLE of reliability function. We also UMVUE and MLE of the parameter and reliability
observe that as sample size increases, the UMVUE of théunction. We observe that as sample sizes increase, these
reliability function based on records become moreinterval estimates become more accurate. An analysis on
efficient, but such is not a case in MLE of the reliability real data is in conformity with the results produced by
function based on records. However, with the passage o§imulation. It hereby shows the relevance of the study.
time, the efficiency of these estimators initially decresase

and then starts increasing. In Table 3 and Table 4, we

established that the confidence interval based on
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Table 3: Cl and length of Cl based on MLE and log(MLE) kfindc at 95% and 90% level of significance

n 95%

k

90%

95%

log(k)

90%

Cc

95% 90%

log(c)
95%

90%

5 [8.8059 29.1940]

20.3881

7 [9.5595 28.4404]

18.8809

27.8906

29.7490

[5.0546 32.9453]

[4.1254 33.8745)

[10.4448 27 .5551]
17.1102
[11.0773 26.9226]
15.8453
[7.2966 30.7033]
23.4066
[6.5169 31.4830]
24,9661

21.3804

19.6674

30.4631

32.8822

[11.1107 32.4911]
[11.5602 31.2276]
[9.1200 39.5831]

[8.6847 41.5670)

1126 29.8059]
17.6942
5226 28.8301]
16.3085
3602 35.1773]
24.9150
496336.6510]
26.8014

A
2
2

&t

1.6088 28.3911]
6.7823
2.4869 27.5131]
5.0262
1.3655 28.6344]
7.2689
6.4456 33.5543]
17.1086

5.6919

4.2181

6.1002

14.3580

[22.1540 27.8459]
[22.8909 27.1090]
[21.9498 28.0501]

[17.8209 32.1790]

[287828.6319]
6.8032
[290607.6437]
5.0346
[213628.9119]
7.2945
[17.7852001]
17.4444

[22.3100 28.0143]

B5.704

[22.9774 27.2005]

1.223

[22.1285 28.2440]

4.115

[18.7597 33.3159]

.55a4

Table 4: Cl and length of Cl based on MLE and log(MLE) afand CI and length of Cl oR(t) at 95% and 90% level of significance

a log(Kk) R(t)

n 95% 90% 95% 90% 95% 90%

5 [5.923128.0768] [7.703926.2960] [8.8607 32.6157] [9829.3718] [0.01050.7347] [0.0346 0.6771]
22.1537 18.5920 23.7549 19.5325 0.7242 0.6425

7 [6.371927.6280] [8.0806 25.9193] [9.0978 31.7658] [50028.7282] [0.0158 0.7118] [0.0432 0.6574]
21.2561 17.8387 22.6680 18.6684 0.6960 0.6142

12 [5.3537 28.6462] [7.226126.7738] [8.5688 33.7266] §8630.2092] [0.0035 0.8407] [0.0186 0.7652]
23.2925 19.5477 25.1577 20.6462 0.8372 0.7465

20 [1.818632.1813] [4.2594 29.7405] [6.9600 41.5223] 38H35.9690] [0.0005 1] [0.0032 1]
30.3626 25.4811 34.5623 27.9343 0.9995 0.9968

Table 5: Point estimate, Interval estimate and length of Cl of UMVUTE &LE of k at 95% and 90% level of significance

n K K K
95% 90% 95% 90%

5  6.0733 [2.999515.8954] [3.3292 13.3944] 7.2879 [3.5080244] [3.9950 16.0733]
12.8958 10.0652 15.4750 12.0783

10 6.7769 [3.8063 12.7477] [4.1268 11.3470] 7.4546 [4.1B69225] [4.5395 12.4817]
8.9414 7.2202 9.8355 7.9422

15 7.5237 [4.244111.4812] [4.546010.4623] 8.0253 [4.52XQ466] [4.8490 11.1598]
7.2371 5.9163 7.7195 6.3107

20 6.4420 [4.532410.7697] [4.81729.9488] 6.7641 [4.75D8082] [5.0581 10.4462]
6.2373 5.1315 6.5492 5.3881

Table 6: Point estimate, Interval estimate and length of Cl of UMVUHE&ILE of R(t) at 95% and 90% level of significance

n Rt R(t) R(D) R(t)
95% 90% 95% 90%
5 00336  [00.2481] [00.2073] 0.0520 [0.0004 0.2323] [04011979]
0.2481 0.2073 0.2319 0.1964
10 0.0402 [0.0006 0.1870] [0.00210.1602] 0.0486 [0.0038B1] [0.0063 0.1587]
0.1863 0.1581 0.1797 0.1523
15 0.0330 [0.00370.1607] [0.0068 0.1399] 0.0386 [0.008%@5] [0.0108 0.1399]
0.1569 0.1330 0.1525 0.1291
20 0.0608 [0.00720.1454] [0.01100.1280] 0.0644 [0.010252] [0.0144 0.1286]
0.1382 0.1170 0.1349 0.1141

Table 7: Cl of UMVUE and MLE ofk andR(t) at 95% level of significance

k K R(D) R(t)
95% 95% 95% 95%
[0.0254 0.5862] [0.0509 1.1725] [0.9769 1] [0.9126 1]

Table 8: Point estimate and MSE of UMVUE and MLE &t)
Rt  var(Rt)) R{) MSE(R())
0.9940 3.2751E-14 0.9969 3.5794E-05
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